1
|
Rawool SA, Pai MR, Banerjee AM, Nath S, Bapat RD, Sharma RK, Jagannath, Dutta B, Hassan PA, Tripathi AK. Superior Interfacial Contact Yields Efficient Electron Transfer Rate and Enhanced Solar Photocatalytic Hydrogen Generation in M/C 3N 4 Schottky Junctions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39926-39945. [PMID: 37556210 DOI: 10.1021/acsami.3c05833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Various literature studies (Table 6) have reported that dispersion of metal nanoparticles (NPs) on graphitic carbon nitride g-C3N4 (M/CN) has considerably improved the photocatalytic hydrogen yield. It is understood that metal NPs create active sites on the surface of CN and act as a cocatalyst. However, the precise changes induced by different metal NPs on the surface of CN still elude us. Here, we report a thorough understanding and comparison of the morphology, metal-support interactions, interfacial charge transfer kinetics, and band characteristics in different M/CN (M = Pt, Pd, Au, Ag, Cu) correlated with photocatalytic activity. Among all metals, Pt/CN was found to be the best performer both under sunlight and UV-visible irradiation. Under sunlight, maximum H2@ 2.7 mmol/h/g was observed over Pt/CN followed by Pd/CN > Au/CN > Ag/CN > Cu/CN ≈ CN. The present study revealed that among all metals, Pt formed superior interfacial contact with g-C3N4 as compared to other metals. The maximum Schottky barrier height (Φb,Pt) of 0.66 V was observed at Pt/CN followed by Φb,Au/CN (0.46 V) and Φb,Pd/CN (0.05 V). The presence of electron-deficient Pt in Pt-XPS, decrease in the intensity of d-DOS of Pt near the Fermi level in VB-XPS, increase in CB tail states, and cathodic shift in Vfb in MS plots sufficiently confirmed strong metal-support interactions in Pt/CN. Due to the SPR effect, Au and Ag NPs suffered from agglomeration and poor dispersion during photodeposition. Finely dispersed Pt NPs (2-4 nm, 53% dispersion) successfully competed with shallow/deep trap states and drove the photogenerated electrons to active metallic sites in a drastically reduced time period as investigated by femtosecond transient absorption spectroscopy. Typically, an interfacial electron transfer rate, KIET,avg, of 2.5 × 1010 s-1 was observed for Pt/CN, while 0.087 × 1010 s-1 was observed in Au/CN. Band alignment/potentials at M/CN Schottky junctions were derived and most favorable in Pt/CN with CB tail states much above the water reduction potential; however, in the case of Pd, these extend much below the H+/H2 potential and hence behave like deep trap states. Thus, in Pd/CN (τ0 = 4200 ps, 49%) and Ag/CN (3870 ps, 53%), electron deep trapping dominates over charge transfer to active sites. The present study will help in designing futuristic new cocatalyst-photocatalyst systems.
Collapse
Affiliation(s)
- Sushma A Rawool
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| | - Mrinal R Pai
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| | - A M Banerjee
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| | - S Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| | - R D Bapat
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, Maharashtra India
| | - R K Sharma
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Jagannath
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - B Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| | - A K Tripathi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra India
| |
Collapse
|
2
|
Kumar A, Majithia P, Choudhary P, Mabbett I, Kuehnel MF, Pitchaimuthu S, Krishnan V. MXene coupled graphitic carbon nitride nanosheets based plasmonic photocatalysts for removal of pharmaceutical pollutant. CHEMOSPHERE 2022; 308:136297. [PMID: 36064026 DOI: 10.1016/j.chemosphere.2022.136297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The continuous rise in the amount of industrial and pharmaceutical waste in water sources is an alarming concern. Effective strategies should be developed for the treatment of pharmaceutical industrial waste. Hence the alternative renewable source of energy, such as solar energy, should be utilized for a sustainable future. Herein, a series of Au plasmonic nanoparticle decorated ternary photocatalysts comprising graphitic carbon nitride and Ti3C2 MXene has been designed to degrade colourless pharmaceutical pollutants, cefixime under visible light irradiation. These photocatalysts were synthesized by varying the amount of Ti3C2 MXene, and their catalytic potential was explored. The optimized photocatalyst having 3 wt% Ti3C2 MXene achieved 64.69% removal of the pharmaceutical pollutant, cefixime within 105 min of exposure to visible light. The presence of the Au nanoparticles and MXene in the nanocomposite facilitates the excellent charge carrier separation and increased the number of active sites due to the formation of interfacial contact with graphitic carbon nitride nanosheets. Besides, the plasmonic effect of the Au nanoparticles improves the absorption of light causing enhanced photocatalytic performance of the nanocomposite. Based on the obtained results, a plausible mechanism has been formulated to understand the contribution of different components in photocatalytic activity. In addition, the optimized photocatalyst shows excellent activity and can be reused for up to three cycles without any significant loss in its photocatalytic performance. Overall, the current work provides deeper physical insight into the future development of MXene graphitic carbon nitride-based plasmonic ternary photocatalysts.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Palak Majithia
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Ian Mabbett
- Department of Chemistry, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Moritz F Kuehnel
- Department of Chemistry, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom; Fraunhofer Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237, Leuna, Germany
| | - Sudhagar Pitchaimuthu
- SPECIFIC, College of Engineering, Swansea University (Bay Campus), Swansea, SA1 8EN, Wales, United Kingdom; Research Centre for Carbon Solutions, Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
3
|
Beasley C, Gnanamani MK, Qian D, Hopps SD. Photocatalytic Reforming of Sucrose and Dextrose for Hydrogen Production on Pd/TiO
2. ChemistrySelect 2021. [DOI: 10.1002/slct.202101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charles Beasley
- University of Kentucky Center for Applied Energy Research 2540 Research Park Drive Lexington KY 40511 USA
| | - Muthu Kumaran Gnanamani
- University of Kentucky Center for Applied Energy Research 2540 Research Park Drive Lexington KY 40511 USA
| | - Dali Qian
- University of Kentucky Center for Applied Energy Research 2540 Research Park Drive Lexington KY 40511 USA
- University of Kentucky Electron Microscopy Center (EMC), ASTeCC Building 145 Graham Avenue Lexington KY 40506 USA
| | - Shelley D. Hopps
- University of Kentucky Center for Applied Energy Research 2540 Research Park Drive Lexington KY 40511 USA
| |
Collapse
|
4
|
Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem Asian J 2021; 16:720-742. [PMID: 33440045 DOI: 10.1002/asia.202001202] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Inducing plasmonic characteristics, primarily localized surface plasmon resonance (LSPR), in conventional AuNPs through particle size and shape control could lead to a significant enhancement in electrical, electrochemical, and optical properties. Synthetic protocols and versatile fabrication methods play pivotal roles to produced plasmonic gold nanoparticles (AuNPs), which can be employed in multipurpose energy, environmental and biomedical applications. The main focus of this review is to provide a comprehensive and tutorial overview of various synthetic methods to design highly plasmonic AuNPs, along with a brief essay to understand the experimental procedure for each technique. The latter part of the review is dedicated to the most advanced and recent solar-induced energy, environmental and biomedical applications. The synthesis methods are compared to identify the best possible synthetic route, which can be adopted while employing plasmonic AuNPs for a specific application. The tutorial nature of the review would be helpful not only for expert researchers but also for novices in the field of nanomaterial synthesis and utilization of plasmonic nanomaterials in various industries and technologies.
Collapse
Affiliation(s)
- Nafeesa Sarfraz
- Department of Chemistry, Govt. Post Graduate College (For Women), University of Harīpur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Ibrahim Khan
- Centre for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Abstract
The conversion of solar to chemical energy is one of the central processes considered in the emerging renewable energy economy. Hydrogen production from water splitting over particulate semiconductor catalysts has often been proposed as a simple and a cost-effective method for large-scale production. In this review, we summarize the basic concepts of the overall water splitting (in the absence of sacrificial agents) using particulate photocatalysts, with a focus on their synthetic methods and the role of the so-called “co-catalysts”. Then, a focus is then given on improving light absorption in which the Z-scheme concept and the overall system efficiency are discussed. A section on reactor design and cost of the overall technology is given, where the possibility of the different technologies to be deployed at a commercial scale and the considerable challenges ahead are discussed. To date, the highest reported efficiency of any of these systems is at least one order of magnitude lower than that deserving consideration for practical applications.
Collapse
|
7
|
Castillo-Rodriguez J, Ortiz PD, Isaacs M, Martinez NP, O’Shea JN, Hart J, Temperton R, Zarate X, Contreras D, Schott E. Highly efficient hydrogen evolution reaction, plasmon-enhanced by AuNP-l-TiO2NP photocatalysts. NEW J CHEM 2020. [DOI: 10.1039/d0nj03250f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A set of AuNPs-l-TiO2NPs nanoaggregates which showed efficient covering of the semiconductor's surface by AuNPs, as well as suitable AuNP sizes for LSPR-sensibilization were used as highly efficient photocatalysts for photoinduced HER.
Collapse
|
8
|
DRIFTS study of Fe promoter effect on Rh/Al2O3 catalyst for C2 oxygenates synthesis from syngas. APPLIED PETROCHEMICAL RESEARCH 2019. [DOI: 10.1007/s13203-019-00238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
DRIFTS experiments such as CO adsorption, CO-TPSR and CO+H2 were designated to study the effect of Fe promoter on the key steps of C2 oxygenates formation from syngas. The CO adsorption results demonstrated that Fe weakened CO adsorption and especially the bridging adsorption. It was found in CO-TPSR experiments that the catalyst with lower Fe loading is more easily dissociated while the ones with higher Fe loading own stronger hydrogenation activity. Moreover, it was observed by CO+H2 experiments that Fe plays a role in stabilizing the lineally adsorbed CO species and decreasing the CO desorption rate. The catalytic performance results indicated that when Fe content is 4wt. %, the selectivity of total C2 oxygenates is the highest, which was in accordance with the DRIFTS results.
Collapse
|
9
|
Zhang R, Wei C, Li D, Jiang Z, Wang B, Ling L, Fan M. The new role of surface adsorbed CH (x = 1–3) intermediates as a co-adsorbed promoter in self-promoting syngas conversion to form CH intermediates and C2 oxygenates on the Rh-doped Cu catalyst. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|