1
|
Patel MA, Kapdi AR. Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. CHEM REC 2024; 24:e202400057. [PMID: 39162777 DOI: 10.1002/tcr.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.
Collapse
Affiliation(s)
- Manisha A Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
2
|
Virdi J, Dusunge A, Handa S. Aqueous Micelles as Solvent, Ligand, and Reaction Promoter in Catalysis. JACS AU 2024; 4:301-317. [PMID: 38425936 PMCID: PMC10900500 DOI: 10.1021/jacsau.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Water is considered to be the most sustainable and safest solvent. Micellar catalysis is a significant contributor to the chemistry in water. It promotes pathways involving water-sensitive intermediates and transient catalytic species under micelles' shielding effect while also replacing costly ligands and dipolar-aprotic solvents. However, there is a lack of critical information about micellar catalysis. This includes why it works better than traditional catalysis in organic solvents, why specific rules in micellar catalysis differ from those of conventional catalysis, and how the limitations of micellar catalysis can be addressed in the future. This Perspective aims to highlight the current gaps in our understanding of micellar catalysis and provide an analysis of designer surfactants' origin and essential components. This will also provide a fundamental understanding of micellar catalysis, including how aqueous micelles can simultaneously perform multiple functions such as solvent, ligand, and reaction promoter.
Collapse
Affiliation(s)
- Jagdeep
K. Virdi
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Ashish Dusunge
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| | - Sachin Handa
- Department of Chemistry, University
of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Chao X, Johnson TG, Temian MC, Docker A, Wallabregue ALD, Scott A, Conway SJ, Langton MJ. Coupling Photoresponsive Transmembrane Ion Transport with Transition Metal Catalysis. J Am Chem Soc 2024; 146:4351-4356. [PMID: 38334376 PMCID: PMC10885138 DOI: 10.1021/jacs.3c13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.
Collapse
Affiliation(s)
- Xiangyu Chao
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Toby G. Johnson
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Maria-Carmen Temian
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Docker
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Aaron Scott
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Stuart J. Conway
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| | - Matthew J. Langton
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Puschnig J, Jevric M, Sumby CJ, Greatrex BW. Intermolecular Enamine Mizoroki-Heck Reactions on a Bio-Derived Scaffold. J Org Chem 2024. [PMID: 38190610 DOI: 10.1021/acs.joc.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The intramolecular enamine-Mizoroki-Heck reaction allows for the construction of nitrogen-containing heterocycles, although the related intermolecular version is less known. The reactions of enamines derived from Cyrene were investigated under Mizoroki-Heck conditions. An optimization study was used to identify that 1.5 mol % Pd(dba)2 with PCy3 in xylene at reflux temperature gave the highest yield with electron-rich aryl iodides. Arylation occurred predominantly at the C-N center of the enamine, while the diastereoselectivity was dependent on the nitrogen substitution in the enamine.
Collapse
Affiliation(s)
- Johannes Puschnig
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| | - Martyn Jevric
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, 5005, Australia
| | - Ben W Greatrex
- Faculty of Medicine and Health, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
5
|
Zeng W, Chen AW, Yan MJ, Wang J. Sterically demanding Csp 2( ortho-substitution)-Csp 3(tertiary) bond formation via carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free conditions. Org Biomol Chem 2023; 22:80-84. [PMID: 38051230 DOI: 10.1039/d3ob01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Construction of the sterically demanding Csp2(oS)-Csp3(T) bond was achieved by carrying out the Pd-catalyzed carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free aqueous conditions. The cooperative role of the presence of water with the absence of phosphine ligand was proposed to accelerate the migratory insertion process considerably, delivering a broad substrate scope.
Collapse
Affiliation(s)
- Wei Zeng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Wen Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Jie Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Dohendou M, Dekamin MG, Namaki D. Supramolecular Pd@methioine-EDTA-chitosan nanocomposite: an effective and recyclable bio-based and eco-friendly catalyst for the green Heck cross-coupling reaction under mild conditions. NANOSCALE ADVANCES 2023; 5:3463-3484. [PMID: 37383074 PMCID: PMC10295217 DOI: 10.1039/d3na00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular palladium(ii) supported on modified chitosan by dl-methionine using an ethylenediaminetetraacetic acid linker (Pd@MET-EDTA-CS) was designed and prepared through a simple procedure. The structure of this novel supramolecular nanocomposite was characterized by different spectroscopic, microscopic and analytical techniques including FTIR, EDX, XRD, FESEM, TGA, DRS, TEM, AA, and BET. The obtained bio-based nanomaterial was successfully investigated, as a highly efficient and green heterogeneous catalyst, in the Heck cross-coupling reaction (HCR) for the synthesis of various valuable biologically active cinnamic acid ester derivatives from the corresponding aryl halides using several acrylates. Indeed, aryl halides containing I or Br survived very well under optimized conditions to afford the corresponding products compared to the substrates with Cl. The prepared Pd@MET-EDTA-CS nanocatalyst promoted the HCR in high to excellent yields and short reaction times with minimum Pd loading (0.0027 mol%) on its structure as well as without any leaching occurring during the process. The recovery of the catalyst was performed by simple filtration and the catalytic activity remained approximately constant after five runs for the model reaction.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Danial Namaki
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
7
|
Wei D, Lu HY, Miao HZ, Feng CG, Lin GQ, Liu Y. Pd-catalyzed intermolecular consecutive double Heck reaction "on water" under air: facile synthesis of substituted indenes. RSC Adv 2023; 13:19312-19316. [PMID: 37377870 PMCID: PMC10291873 DOI: 10.1039/d3ra03510g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
An efficient and environmentally benign method for the preparation of substituted indene derivatives has been developed by using water as the sole solvent. This reaction proceeded under air, tolerated a wide range of functional-groups and was easily scaled up. Bioactive natural products like indriline were synthesized via the developed protocol. Preliminary results demonstrate that the enantioselective variant can also be achieved.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Zhe Miao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
8
|
Dohendou M, Dekamin MG, Namaki D. Pd@l-asparagine-EDTA-chitosan: a highly effective and reusable bio-based and biodegradable catalyst for the Heck cross-coupling reaction under mild conditions. NANOSCALE ADVANCES 2023; 5:2621-2638. [PMID: 37143802 PMCID: PMC10153479 DOI: 10.1039/d3na00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
In this research, a novel supramolecular Pd(ii) catalyst supported on chitosan grafted by l-asparagine and an EDTA linker, named Pd@ASP-EDTA-CS, was prepared for the first time. The structure of the obtained multifunctional Pd@ASP-EDTA-CS nanocomposite was appropriately characterized by various spectroscopic, microscopic, and analytical techniques, including FTIR, EDX, XRD, FESEM, TGA, DRS, and BET. The Pd@ASP-EDTA-CS nanomaterial was successfully employed, as a heterogeneous catalytic system, in the Heck cross-coupling reaction (HCR) to afford various valuable biologically-active cinnamic acid derivatives in good to excellent yields. Different aryl halides containing I, Br and even Cl were used in HCR with various acrylates for the synthesis of corresponding cinnamic acid ester derivatives. The catalyst shows a variety of advantages including high catalytic activity, excellent thermal stability, easy recovery by simple filtration, more than five cycles of reusability with no significant decrease in its efficacy, biodegradability, and excellent results in the HCR using low-loaded Pd on the support. In addition, no leaching of Pd into the reaction medium and the final products was observed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| | - Danial Namaki
- Department of Chemistry, Pharmaceutical and Heterocyclic Compounds Research Laboratory, Iran University of Science and Technology Iran
| |
Collapse
|
9
|
Huo LQ, Wang XH, Zhang Z, Jia Z, Peng XS, Wong HNC. Sustainable and practical formation of carbon-carbon and carbon-heteroatom bonds employing organo-alkali metal reagents. Chem Sci 2023; 14:1342-1362. [PMID: 36794178 PMCID: PMC9906645 DOI: 10.1039/d2sc05475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metal-catalysed cross-coupling reactions are amongst the most widely used methods to directly construct new bonds. In this connection, sustainable and practical protocols, especially transition metal-catalysed cross-coupling reactions, have become the focus in many aspects of synthetic chemistry due to their high efficiency and atom economy. This review summarises recent advances from 2012 to 2022 in the formation of carbon-carbon bonds and carbon-heteroatom bonds by employing organo-alkali metal reagents.
Collapse
Affiliation(s)
- Lu-Qiong Huo
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Xin-Hao Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiao-Shui Peng
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| | - Henry N C Wong
- School of Science and Engineering, Shenzhen Key Laboratory of Innovative Drug Synthesis, The Chinese University of Hong Kong (Shenzhen) Longgang District Shenzhen China
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
10
|
Dávila Cerón V, Illicachi LA, Insuasty B. Triazine: An Important Building Block of Organic Materials for Solar Cell Application. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010257. [PMID: 36615449 PMCID: PMC9822301 DOI: 10.3390/molecules28010257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Since the beginning of the 21st century, triazine-based molecules have been employed to construct different organic materials due to their unique optoelectronic properties. Among their applications, photovoltaics stands out because of the current need to develop efficient, economic, and green alternatives to energy generation based mainly on fossil fuels. Here, we review all the development of triazine-based organic materials for solar cell applications, including organic solar cells, dye-sensitized solar cells, and perovskite solar cells. Firstly, we attempt to illustrate the main synthetic routes to prepare triazine derivatives. Then, we introduce the main aspects associated with solar cells and their performance. Afterward, we discuss different works focused on the preparation, characterization, and evaluation of triazine derivatives in solar cells, distinguishing the type of photovoltaics and the role of the triazine-based material in their performance (e.g., as a donor, acceptor, hole-transporting material, electron-transporting material, among others). Throughout this review, the progress, drawbacks, and main issues of the performance of the mentioned solar cells are exposed and discussed. Finally, some conclusions and perspectives about this research topic are mentioned.
Collapse
Affiliation(s)
- Valeria Dávila Cerón
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
| | - Luis Alberto Illicachi
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
- Correspondence:
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
| |
Collapse
|
11
|
Peng Y, Li Z, Hu J, Wu T. Palladium-Catalyzed Denitrative Mizoroki–Heck Reactions of Aryl or Alkyl Olefins with Nitrobenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Borthakur I, Kumari S, Kundu S. Water as a solvent: transition metal catalyzed dehydrogenation of alcohols going green. Dalton Trans 2022; 51:11987-12020. [PMID: 35894592 DOI: 10.1039/d2dt01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long-established practice of using organic solvents in synthetic chemistry is currently becoming a major focus of environmental alarms as many of the chemical wastes are generated in the form of organic solvents. Recently, various alternative solvents have been recognized by the scientific community, including water, ionic liquids, supercritical fluids, glycerol, polyethylene glycol, etc. Among these alternatives, water is unquestionably an ideal solvent as it is abundant, cheap, non-toxic, and non-flammable. In the last few decades, a breakthrough has been achieved in the field of transition metal-catalyzed dehydrogenation of alcohols and the related chemistry for the sustainable synthesis of a wide range of valuable compounds. Although a large number of reports with new potential are published every year following this alcohol dehydrogenation strategy, the utilization of water as a solvent in alcohol dehydrogenation and related coupling reactions is yet to be highlighted properly. This review summarizes the advances in metal-catalyzed dehydrogenative functionalization of alcohols using water as a solvent.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| |
Collapse
|
14
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
15
|
Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Top Catal 2022. [DOI: 10.1007/s11244-022-01672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Wang L, Zhu WY, Zhang X. Selective and sensitive fluorescence detection of Pd (Ⅱ) in 100% water and imaging application in living cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Larina EV, Kurokhtina AA, Lagoda NA, Schmidt AF. Effect of Salt and Phosphine Additives on the Composition of Active Palladium Complexes in the Mizoroki–Heck Reaction with Aromatic Carboxylic Anhydrides. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
19
|
Khan M, Ashraf M, Shaik MR, Adil SF, Islam MS, Kuniyil M, Khan M, Hatshan MR, Alshammari RH, Siddiqui MRH, Tahir MN. Pyrene Functionalized Highly Reduced Graphene Oxide-palladium Nanocomposite: A Novel Catalyst for the Mizoroki-Heck Reaction in Water. Front Chem 2022; 10:872366. [PMID: 35572099 PMCID: PMC9101052 DOI: 10.3389/fchem.2022.872366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The formation of a C-C bond through Mizoroki-Heck cross-coupling reactions in water with efficient heterogeneous catalysts is a challenging task. In this current study, a highly reduced graphene oxide (HRG) immobilized palladium (Pd) nanoparticle based catalyst (HRG-Py-Pd) is used to catalyze Mizoroki-Heck cross-coupling reactions in water. During the preparation of the catalyst, amino pyrene is used as a smart functionalizing ligand, which offered chemically specific binding sites for the effective and homogeneous nucleation of Pd NPs on the surface of HRG, which significantly enhanced the physical stability and dispersibility of the resulting catalyst in an aqueous medium. Microscopic analysis of the catalyst revealed a uniform distribution of ultrafine Pd NPs on a solid support. The catalytic properties of HRG-Py-Pd are tested towards the Mizoroki-Heck cross-coupling reactions of various aryl halides with acrylic acid in an aqueous medium. Furthermore, the catalytic efficacy of HRG-Py-Pd is also compared with its non-functionalized counterparts such as HRG-Pd and pristine Pd NPs (Pd-NPs). Using the HRG-Py-Pd nanocatalyst, the highest conversion of 99% is achieved in the coupling reaction of 4-bromoanisol and acrylic acid in an aqueous solution in a relatively short period of time (3 h), with less quantity of catalyst (3 mg). Comparatively, pristine Pd NPs delivered lower conversion (∼92%) for the same reaction required a long reaction time and a large amount of catalyst (5.3 mg). Indeed, the conversion of the reaction further decreased to just 40% when 3 mg of Pd-NPs was used which was sufficient to produce 99% conversion in the case of HRG-Py-Pd. On the other hand, HRG-Pd did not deliver any conversion and was ineffective even after using a high amount of catalyst and a longer reaction time. The inability of the HRG-Pd to promote coupling reactions can be attributed to the agglomeration of Pd NPs which reduced the dispersion quality of the catalyst in water. Therefore, the high aqueous stability of HRG-Py-Pd due to smart functionalization can be utilized to perform other organic transformations in water which was otherwise not possible.
Collapse
Affiliation(s)
- Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Mujeeb Khan, ; Mohammad Shahidul Islam,
| | - Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Mujeeb Khan, ; Mohammad Shahidul Islam,
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh H. Alshammari
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
20
|
Sayahi MH, Toosibashi M, Bahmaei M, Lijan H, Ma'Mani L, Mahdavi M, Bahadorikhalili S. Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C–C Bond Formation Reactions. Front Chem 2022; 10:838294. [PMID: 35433633 PMCID: PMC9008749 DOI: 10.3389/fchem.2022.838294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel catalyst is introduced based on the immobilization of palladium onto dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles. The dipyrido (3,2-a:2′,3′-c) phenazine (Py2PZ) ligand is synthesized in a simple method from the reaction of 1,10-phenanthroline-5,6-dione and 3,4-diaminobenzoic acid as starting materials. The ligand is used to functionalize mesoporous silica nanoparticles (MSNs) and modify their surface chemistry for the immobilization of palladium. The palladium-immobilized dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles (Pd@Py2PZ@MSNs) are synthesized and characterized by several characterization techniques, including TEM, SEM, FT-IR, TGA, ICP, XRD, and EDS analyses. After the careful characterization of Pd@Py2PZ@MSNs, the activity and efficiency of this catalyst is examined in carbon–carbon bond formation reactions. The results are advantageous in water and the products are obtained in high isolated yields. In addition, the catalyst showed very good reusability and did not show significant loss in activity after 10 sequential runs.
Collapse
Affiliation(s)
- Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| | | | - Mehdi Bahmaei
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Hosein Lijan
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Leila Ma'Mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| |
Collapse
|
21
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
22
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Wang X, Sun L, Wang M, Maestri G, Malacria M, Liu X, Wang Y, Wu L. C‐I Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Tri‐palladium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoshuang Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Lei Sun
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Miaomiao Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma deparment of chemistry, life sciences and environmental sustainability ITALY
| | - Max Malacria
- CNRS: Centre National de la Recherche Scientifique ICSN FRANCE
| | - Xiang Liu
- China Three Gorges University college of materials and chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University Department of chemistry and chemical engineering 1,Hunan Road, Liaocheng City, Shandong Province, China 252059 Liaocheng CHINA
| | - Lingang Wu
- Liaocheng University department of chemistry and chemical engineering CHINA
| |
Collapse
|
24
|
Bumagin NA. Chitosan-Based Magnetic Polymetallic Pd-Catalysts for Heck Reaction in Aqueous Media. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Pai M M, Batakurki SR, Yallur BC, Adimule VM, Kusanur R, Ahmed E. Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene. Top Catal 2022. [DOI: 10.1007/s11244-022-01576-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Stepanova VA, Patrushev SS, Rybalova TV, Shults EE. Cross-copling reaction to access a library of eudesmane-type methylene lactones with quinoline or isoquinoline substituent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Kuchkina NV, Sorokina SA, Bykov AV, Sulman MG, Bronstein LM, Shifrina ZB. Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3345. [PMID: 34947694 PMCID: PMC8708486 DOI: 10.3390/nano11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Carbon-carbon cross-coupling reactions are among the most important synthetic tools for the preparation of pharmaceuticals and bioactive compounds. However, these reactions are normally carried out using copper, phosphines, and/or amines, which are poisonous for pharmaceuticals. The use of nanocomposite catalysts holds promise for facilitating these reactions and making them more environmentally friendly. In the present work, the PEGylated (PEG stands for poly(ethylene glycol) pyridylphenylene dendrons immobilized on silica loaded with magnetic nanoparticles have been successfully employed for the stabilization of Pd2+ complexes and Pd nanoparticles. The catalyst developed showed excellent catalytic activity in copper-free Sonogashira and Heck cross-coupling reactions. The reactions proceeded smoothly in green solvents at low palladium loading, resulting in high yields of cross-coupling products (from 80% to 97%) within short reaction times. The presence of magnetic nanoparticles allows easy magnetic separation for repeated use without a noticeable decrease of catalytic activity due to the strong stabilization of Pd species by rigid and bulky dendritic ligands. The PEG dendron periphery makes the catalyst hydrophilic and better suited for green solvents. The minor drop in activity upon the catalyst reuse is explained by the formation of Pd nanoparticles from the Pd2+ species during the catalytic reaction. The magnetic separation and reuse of the nanocomposite catalyst reduces the cost of target products as well as energy and material consumption and diminishes residual contamination by the catalyst. These factors as well as the absence of copper in the catalyst makeup pave the way for future applications of such catalysts in cross-coupling reactions.
Collapse
Affiliation(s)
- Nina V. Kuchkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Svetlana A. Sorokina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Alexey V. Bykov
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Mikhail G. Sulman
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| |
Collapse
|
28
|
Abstract
Most of the traditional methods for organic synthesis have been associated with environmental
concern. The transition from traditional to modern methods of synthesis is mainly based on
principles of green chemistry to achieve better sustainability by reducing the negative impact on
the environment and health. It has been found that the use of microwaves as an energy source in organic
synthesis has a great advantage over conventional heating. Microwave-assisted reactions are
energy efficient and hence, are being considered in the preview of the green chemistry principles.
The use of safer solvents is another important principle of green chemistry. The use of water as a
solvent in organic synthesis has great benefits over the use of hazardous organic solvents in terms
of environment and safety. This compilation will cover the use of both microwave and water simultaneously
in organic reactions.
Collapse
Affiliation(s)
- Geetanjali
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110 007, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi-110 042, India
| |
Collapse
|
29
|
Deepa M, Selvarasu U, Kalaivani K, Parasuraman K. Recyclable heterogeneous iron supported on imidazolium ionic liquid catalysed palladium and copper-free Heck reaction. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
31
|
Water-Dispersible Pd–N-Heterocyclic Carbene Complex Immobilized on Magnetic Nanoparticles as a New Heterogeneous Catalyst for Fluoride-Free Hiyama, Suzuki–Miyaura and Cyanation Reactions in Aqueous Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03824-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Synthesis of new Pd(NHC)-PEPPSI type complexes as catalysts toward C-C cross-coupling reactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Dandia A, Saini P, Sethi M, Kumar K, Saini S, Meena S, Meena S, Parewa V. Nanocarbons in quantum regime: An emerging sustainable catalytic platform for organic synthesis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1985866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Mukul Sethi
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Krishan Kumar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Savita Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Swati Meena
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India
| |
Collapse
|
34
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Mansour W, Suleiman R, Iali W, Fettouhi M, El Ali B. Synthesis, crystal structure, and catalytic activity of bridged-bis(N-heterocyclic carbene) palladium(II) complexes in selective Mizoroki-Heck cross-coupling reactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Hosseini R, Ranjbar‐Karimi R, Mohammadiannejad K. Copper‐Catalyzed Arylation of Olefins Using a Novel N,N‐Bidentate TRAM‐Based Ligand: Application in Synthesis of Functionalized Triarylmethanes[]**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raziyeh Hosseini
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Reza Ranjbar‐Karimi
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Kazem Mohammadiannejad
- NMR Laboratory Faculty of Science Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| |
Collapse
|
37
|
Suzuki N, Koyama S, Koike R, Ebara N, Arai R, Takeoka Y, Rikukawa M, Tsai FY. Palladium-Catalyzed Mizoroki-Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers (Basel) 2021; 13:2717. [PMID: 34451255 PMCID: PMC8402173 DOI: 10.3390/polym13162717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
A few kinds of thermoresponsive diblock copolymers have been synthesized and utilized for palladium-catalyzed coupling reactions in water. Poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-diethylacrylamide) (PDEAAm) are employed for thermoresponsive segments and poly(sodium 4-styrenesulfonate) (PSSNa) and poly(sodium 2-acrylamido-methylpropanesulfonate) (PAMPSNa) are employed for hydrophilic segments. Palladium-catalyzed Mizoroki-Heck reactions are performed in water and the efficiency of the extraction process is studied. More efficient extraction was observed for the PDEAAm copolymers when compared with the PNIPAAm copolymers and conventional surfactants. In the study of the Sonogashira coupling reactions in water, aggregative precipitation of the products was observed. Washing the precipitate with water gave the product with satisfactory purity with a good yield.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Shun Koyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Rina Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Nozomu Ebara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Rikito Arai
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Yuko Takeoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (S.K.); (R.K.); (N.E.); (R.A.); (Y.T.); (M.R.)
| | - Fu-Yu Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan
| |
Collapse
|
38
|
Moyo PS, Matsinha LC, Makhubela BC. Mizoroki-Heck carbon-carbon cross-coupling reactions by water-soluble palladium (II) complexes in neat water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Abstract
In this study, we present the synthesis of chiral fragrance aldehydes, which was tackled by a combination of chemo-catalysis and a multi-enzymatic in vivo cascade reaction and the development of a highly versatile high-throughput assay for the enzymatic reduction of carboxylic acids. We investigated a biocompatible metal-catalyzed synthesis for the preparation of α or β substituted cinnamic acid derivatives which were fed directly into the biocatalytic system. Subsequently, the target molecules were synthesized by an enzymatic cascade consisting of a carboxylate reduction, followed by the selective C-C double bond reduction catalyzed by appropriate enoate reductases. We investigated a biocompatible oxidative Heck protocol and combined it with cells expressing a carboxylic acid reductase from Neurospora crassa (NcCAR) and an ene reductase from Saccharomyces pastorianus for the production fragrance aldehydes.
Collapse
|
41
|
A new PEPPSI type N-heterocyclic carbene palladium(II) complexes and its efficiency as a catalyst for Mizoroki-Heck cross-coupling reactions in water : Synthesis, Characterization and their antimicrobial and Cytotoxic activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Palladium and silk fibroin-containing magnetic nano-biocomposite: a highly efficient heterogeneous nanocatalyst in Heck coupling reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04462-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Mohammadi M, Khodamorady M, Tahmasbi B, Bahrami K, Ghorbani-Choghamarani A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Baloutaki BA, Sayahi MH, Nikpassand M, Kefayati H. Palladium supported terpyridine modified magnetic nanoparticles as an efficient catalyst for carbon-carbon bond formation. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Fatahi Y, Ghaempanah A, Maˈmani L, Mahdavi M, Bahadorikhalili S. Palladium supported aminobenzamide modified silica coated superparamagnetic iron oxide as an applicable nanocatalyst for Heck cross-coupling reaction. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Zhang X, Landis RF, Keshri P, Cao-Milán R, Luther DC, Gopalakrishnan S, Liu Y, Huang R, Li G, Malassiné M, Uddin I, Rondon B, Rotello VM. Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts. Adv Healthc Mater 2021; 10:e2001627. [PMID: 33314745 PMCID: PMC7933084 DOI: 10.1002/adhm.202001627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Indexed: 12/31/2022]
Abstract
Bioorthogonal catalysis provides a promising strategy for imaging and therapeutic applications, providing controlled in situ activation of pro-dyes and prodrugs. In this work, the use of a polymeric scaffold to encapsulate transition metal catalysts (TMCs), generating bioorthogonal "polyzymes," is presented. These polyzymes enhance the stability of TMCs, protecting the catalytic centers from deactivation in biological media. The therapeutic potential of these polyzymes is demonstrated by the transformation of a nontoxic prodrug to an anticancer drug (mitoxantrone), leading to the cancer cell death in vitro.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Gengtan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Morgane Malassiné
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
- École Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, Mulhouse, 68200, France
| | - Imad Uddin
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Brayan Rondon
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
47
|
Pang H, Hu Y, Yu J, Gallou F, Lipshutz BH. Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki-Heck Couplings under Aqueous Micellar Catalysis Conditions. J Am Chem Soc 2021; 143:3373-3382. [PMID: 33630579 DOI: 10.1021/jacs.0c11484] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Powdery, spherical nanoparticles (NPs) containing ppm levels of palladium ligated by t-Bu3P, derived from FeCl3, upon simple exposure to water undergo a remarkable alteration in their morphology leading to nanorods that catalyze Mizoroki-Heck (MH) couplings. Such NP alteration is general, shown to occur with three unrelated phosphine ligand-containing NPs. Each catalyst has been studied using X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) analyses. Couplings that rely specifically on NPs containing t-Bu3P-ligated Pd occur under aqueous micellar catalysis conditions between room temperature and 45 °C, and show broad substrate scope. Other key features associated with this new technology include low residual Pd in the product, recycling of the aqueous reaction medium, and an associated low E Factor. Synthesis of the precursor to galipinine, a member of the Hancock family of alkaloids, is suggestive of potential industrial applications.
Collapse
Affiliation(s)
- Haobo Pang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Julie Yu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
48
|
Introduction of a Recyclable Basic Ionic Solvent with Bis-(NHC) Ligand Property and The Possibility of Immobilization on Magnetite for Ligand- and Base-Free Pd-Catalyzed Heck, Suzuki and Sonogashira Cross-Coupling Reactions in Water. Catal Letters 2021. [DOI: 10.1007/s10562-021-03552-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Anchored PdCl2 on fish scale: an efficient and recyclable catalyst for Suzuki coupling reaction in aqueous media. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Ashraf MA, Liu Z, Li C, Zhang D. Fe3O4@HcdMeen-Pd(0) Organic–Inorganic Hybrid: As a Novel Heterogeneous Nanocatalyst for Chemo and Homoselective Heck C–C Cross-Coupling Synthesis of Butyl Cinnamates. Catal Letters 2021. [DOI: 10.1007/s10562-020-03509-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|