1
|
Neglia G, Calabrò S, Cotticelli A, Salzano A, Matera R, Vastolo A, D'Onofrio N, Giorgino A, Martino E, Balestrieri ML, Campanile G. Use of former food products in dairy buffalo nutrition: In vitro and in vivo evaluation. J Anim Physiol Anim Nutr (Berl) 2023; 107:1347-1355. [PMID: 37195024 DOI: 10.1111/jpn.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
A feeding strategy that maintains high content of functional molecules in buffalo milk has been verified by giving Sorghum vulgare as green fodder, but it is not available all year round. The aim of this study was to evaluate the inclusion of former food products (FFPs) containing 87% biscuit meal (nonstructural carbohydrate: 60.1%; starch 14.7; crude protein 10.6), in the diet of buffaloes in terms of: (a) fermentation characteristics through gas production technique; (b) milk yield (MY) and quality; (c) content of some biomolecules and total antioxidant activity. The experiment was performed involving 50 buffaloes divided into two groups: Green group and FFPs group (animals fed Total Mixed Ration with either green forage or FFPs respectively). Daily MY was recorded and milk qualitative analyses were determined monthly for 90 days. Furthermore, fermentation characteristics of the diets were studied in vitro. No significant differences were recorded in feed intake, BCS and MY and quality. Similar in vitro fermentation data of two diets were found, with slight differences in terms of gas production and degradability. During the incubation, kinetic parameters showed a faster fermentation process with the diet of the FFPs group in relation to Green group (p < 0.05). Green group had higher levels (p < 0.01) of γ-butyrobetaine, glycine betaine, l-carnitine and propionyl l-carnitine in milk, whereas no differences were observed for δ-valerobetaine and acetyl l-carnitine. Total antioxidant capacity and iron reduction antioxidant assay were higher (p < 0.05) in the plasma and milk of the Green group. The administration of a diet high in simple sugars, obtained with FFPs, seems to favour the ruminal biosynthesis of some metabolites in milk, such as δ-valerobetaine and acetyl- l-carnitine, similar to green forage administration. Overall, the use of biscuit meal can be an alternative to green fodder when it is not available to ensure environmental sustainability and optimize costs without compromising milk quality.
Collapse
Affiliation(s)
- Gianluca Neglia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessio Cotticelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Roberta Matera
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria L Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Bagheri S, Samiee S, Zarif MN, Deyhim MR. L-carnitine modulates free mitochondrial DNA DAMPs and platelet storage lesions during storage of platelet concentrates. J Thromb Thrombolysis 2023; 55:60-66. [PMID: 36380102 DOI: 10.1007/s11239-022-02725-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Platelet storage lesions may occur in Platelet concentrates (PCs) storage time, reducing PCs' quality. Mitochondrial damage causes mitochondrial DNA (mtDNA) to be released into the extracellular space. In this study, we evaluated the effect of L-carnitine (LC) as an antioxidant on free mtDNA DAMPs release in PCs during storage. Ten PCs prepared by the PRP method were studied. The copy numbers of free mtDNA, total reactive oxygen species (ROS), lactate dehydrogenase (LDH) enzyme activity, pH, and platelet counts were measured on days 0, 3, 5, and 7 of PCs storage in LC-treated and untreated platelets. LDH activity was significantly lower than the control group during 7 days of PCs storage (p = 0.041). Also, ROS production decreased in LC-treated PCs compared to the control group during storage (p = 0.026), and the difference mean of ROS between the two groups was significant on day 3, 5, and 7 (Pday3 = 0.02, Pday5 = 0.0001, Pday7 = 0.031). Moreover, LC decreased the copy numbers of free mtDNA during 7 days of storage (p = 0.021), and the difference mean of the copy numbers of free mtDNA in LC-treated PCs compared to the control group was significant on day 5 and 7 (Pday5 = 0.041، Pday7 = 0.022). It seems that LC can maintain the metabolism and antioxidant capacity of PCs and thus can reduce mitochondrial damage and mtDNA release; consequently, it can decrease DAMPs in PCs. Therefore, it may be possible to use this substance as a platelet additive solution in the future.
Collapse
Affiliation(s)
- Saeede Bagheri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Department of Clinical Chemistry, Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box: 14665-1157, Tehran, Iran.
| |
Collapse
|
3
|
Kononov SU, Meyer J, Frahm J, Kersten S, Kluess J, Bühler S, Wegerich A, Rehage J, Meyer U, Huber K, Dänicke S. Dietary L-Carnitine Affects Leukocyte Count and Function in Dairy Cows Around Parturition. Front Immunol 2022; 13:784046. [PMID: 35370999 PMCID: PMC8965741 DOI: 10.3389/fimmu.2022.784046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for β-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.
Collapse
Affiliation(s)
- Susanne Ursula Kononov
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany.,Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jennifer Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Anja Wegerich
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Korinna Huber
- Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
4
|
Basaki M, Hashemvand A, Tayefi-Nasrabadi H, Panahi Y, Dolatyari M. Artemisinin and l-carnitine combination therapy alters the erythrocytes redox status. Cell Biol Int 2022; 46:1137-1143. [PMID: 35293664 DOI: 10.1002/cbin.11793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/09/2022] [Accepted: 03/13/2022] [Indexed: 11/10/2022]
Abstract
Hematopoiesis is a sensitive target of artemisinin (ART) and its derivatives, and hemolysis is one of their commonly reported side effects. L-carnitine (LC), an amino acid derivative involved in lipid metabolism, is beneficial for hematological parameters. Sixty adult laboratory mice were randomly divided into six groups. Group I (control) received saline and corn oil; groups II and III received therapeutic (50 mg/kg) and toxic (250 mg/kg) doses of ART, respectively; groups IV and V received 370 mg/kg LC along with the 50 and 250 mg/kg ART, respectively; and group VI received 370 mg/kg LC. Drugs were administered orally for seven consecutive days. The erythrocyte glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and peroxidase (POX) activity, and the reduced glutathione (GSH) level were assessed by colorimetric methods. ART reduced the G6PD activity both at therapeutic and toxic doses. The therapeutic dose of ART reduced the CAT activity and the GSH level, non-significantly. The toxic dose of ART reduced the CAT activity and increased the POX activity. LC reduced the G6PD, CAT, and POX activities and increased GSH level. The therapeutic dose of ART and LC showed synergy in reducing the G6PD activity. LC and ART combination reduced POX activity and increased GSH level without any significant effect on the CAT activity. Inhibition of G6PD may be a potentially new mechanism of ART action. Co-administration of LC with ART or following treatment with ART may have protective effects on erythrocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Akbar Hashemvand
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Tayefi-Nasrabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Yousef Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahdi Dolatyari
- DVM Student, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Effects of Dietary L-Carnitine Supplementation on Platelets and Erythrogram of Dairy Cows with Special Emphasis on Parturition. DAIRY 2020. [DOI: 10.3390/dairy2010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid utilization for generating adenosine triphosphate (ATP). As it might be insufficient around calving due to increased need, L-carnitine supplementation is frequently recommended. Thus, the present study addressed the interplay between the red hemogram, platelets, oxidative stress indices, and L-carnitine supplementation of dairy cows around calving. German Holstein cows were assigned to a control (n = 30) and an L-carnitine group (n = 29, 25 g of rumen-protected L-carnitine per cow and per day), and blood samples were taken from day 42 ante partum (ap) until day 110 postpartum (pp), with a higher sampling frequency during the first three days pp. The time courses of the erythrogram parameters reflected the physiological adaptations to the oxygen need without being influenced by L-carnitine supplementation. Erythrocytic antioxidative enzymatic defence paralleled the relative development of polycythemia ap, while non-enzymatic total plasma antioxidative capacity continuously increased pp. In contrast to erythrocytes, the platelet counts of the L-carnitine supplemented cows varied at significantly higher levels. This can be interpreted as a result of a membrane-stabilizing effect of L-carnitine.
Collapse
|
6
|
ACE2 in the renin-angiotensin system. Clin Sci (Lond) 2020; 134:3063-3078. [PMID: 33264412 DOI: 10.1042/cs20200478] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023]
Abstract
In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin-angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.
Collapse
|
7
|
Amiri F, Dahaj MM, Siasi NH, Deyhim MR. Treatment of platelet concentrates with the L-carnitine modulates platelets oxidative stress and platelet apoptosis due to mitochondrial reactive oxygen species reduction and reducing cytochrome C release during storage. J Thromb Thrombolysis 2020; 51:277-285. [PMID: 32794131 DOI: 10.1007/s11239-020-02241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Platelet concentrate (PC) transfusion is administrated to reduce the hemostatic complications in patients with thrombocytopenia. Strength platelet against oxidative stress conditions lead to decrease in platelet storage lesion (PSL). This study was aimed to evaluate L-carnitine (LC) effects on platelet oxidative stress and platelet apoptosis during storage time. PC bags were randomly selected and each bag was divided into two equal parts. L-carnitine was added to test groups. Normal saline was added to control groups. Platelets count, mean platelet volume (MPV), pH, Platelet aggregation, nitric oxide metabolism (nitric/nitrate), total antioxidant capacity (TAC), malondealdehyde concentration (MDA), lactate dehydrogenase (LDH) enzyme activity, mitochondrial reactive oxygen species (ROS) and cytochrome C releasing were assayed by standard methods in 1, 3, 5 and 7 days of platelet storage. LDH enzyme activity was increased during storage but it had lower level in L-carnitine-treated platelets. LC treatment led to reduction in MDA concentration (3.35 ± 0.98 vs 5.3 ± 1.32, p = 0.003 and 6.52 ± 1.88 vs 5.67 ± 1.25, p = 0.005 for day 5 and day 7 respectively). Increased level of TAC was detected in LC-treated platelets in comparison to control (0.29 ± 0.06 vs 0.21 ± 0.05, p = 0.008 and 0.22 ± 0.03 vs 0.16 ± 0.03, p = 0.003 for day 5 and day 7 respectively). Interestingly, mitochondrial ROS and cytochrome C releasing was significantly lower in LC-treated versus control group during platelet storage. L-carnitine not only decreases mitochondrial ROS but also reduces cytochrome C releasing in PCs during storage. It might be considered as safe additive to decrease PSL in the future.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Malihe Mohammadi Dahaj
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Nooshin Helmi Siasi
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran
| | - Mohammad Reza Deyhim
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Hemmat Exp. way, Next To the Milad Tower, Tehran, Iran.
| |
Collapse
|
8
|
Protective effect of L-carnitine on platelet apoptosis during storage of platelet concentrate. Transfus Clin Biol 2020; 27:139-146. [PMID: 32544525 DOI: 10.1016/j.tracli.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet apoptosis is considered as one of the important factors involved in platelet storage lesion (PSL) and affect the quality of platelets during storage. The beneficial effect of L-carnitine (LC) on platelet apoptosis during platelet concentrates (PCs) storage has not been fully investigated. The aim of this study was to evaluate the effects of LC on platelets of PC regarding their apoptosis markers during storage. METHODS Ten PCs from healthy donors were investigated in this study. PCs were prepared by platelet rich plasma (PRP) method and stored at 22±2°C with gentle agitation during storage. The effects of LC (15mM) on the platelet apoptosis were assessed by analyzing different indicative presence or absence of LC. Sampling was performed to evaluate apoptosis markers during platelet storage. RESULTS The results indicated significantly higher mitochondrial membrane potential for LC-treated platelets than the untreated on the days 2 and 5 of storage (Pday2=0.001, Pday5=0.001). Phosphatidylserine (PS) exposure significantly increased on the untreated compared with LC-treated platelets on the second and third days of storage (Pday2=0.014, Pday3=0.012). Also, active caspase 3 was lower in the LC- treated platelets than the control group on the day 5 of storage (Pday5=0.004). Cytosolic cytochrome C was so significantly lower in LC-treated compared to the untreated platelets during storage time (Pday2=0.002, Pday3=0.001, Pday5=0.001). CONCLUSION The results of this study indicate that the use of LC as an additive solution in platelets may be useful to reduce PSL by decreasing platelet apoptosis via mitochondrial pathway and increase platelet quality during storage.
Collapse
|
9
|
Rababa'h SY, Alzoubi KH, Hammad HM, Alquraan L, El-Salem K. Memory Impairment Induced by Chronic Psychosocial Stress Is Prevented by L-Carnitine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 13:4341-4350. [PMID: 31908419 PMCID: PMC6927795 DOI: 10.2147/dddt.s225264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Introduction Psychosocial stress (STS) negatively influences memory. This might be associated to oxidative stress-induced progressive destruction of numerous brain structures and functions. L-carnitine (L-CAR) is a widely used antioxidant compound that is endogenously made in mammalian species. The current study investigated the effect of L-CAR on STS-induced memory impairment in the rat hippocampus. Methods The STS was induced using intruder model, where two rats were randomly switched from each one cage to another, once/day for 6 weeks. Concurrently, L-CAR (300mg/kg/day) was intraperitoneally administered for 6 weeks. After that, radial arm water maze (RAWM) was used to assess spatial learning memory in rats. Hippocampal biomarkers of oxidative stress, including thiobarbituric acid reactive substance (TBARs), oxidized glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and Brain-derived neurotrophic factor (BDNF) were examined. Results The results showed impairment of short-term memory (P < 0.05) during STS, whereas L-CAR treatment protected against this effect. Furthermore, while no change was observed in GSH, GSSG, GPx, catalase, and SOD, L-carnitine normalized STS-induced reduction in the hippocampal BDNF levels and increase in TBARS levels. Discussion Chronic psychosocial stress-induced memory impairment was prevented via L-CAR administration, which could have been achieved via normalizing changes in lipid peroxidation (TBARs) and BDNF levels in the hippocampus.
Collapse
Affiliation(s)
- Suzie Y Rababa'h
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Department of Medical Science, Irbid Faculty, Al-Balqa Applied University (BAU), Irbid 21110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hana M Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Laiali Alquraan
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan.,Department of Biology, Yarmouk University, Irbid 21163, Jordan
| | - Khalid El-Salem
- Department of Neurosciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
10
|
Olas B, Bryś M. Effects of coffee, energy drinks and their components on hemostasis: The hypothetical mechanisms of their action. Food Chem Toxicol 2019; 127:31-41. [DOI: 10.1016/j.fct.2019.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/28/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
|
11
|
Sato S, Moriya K, Furukawa M, Saikawa S, Namisaki T, Kitade M, Kawaratani H, Kaji K, Takaya H, Shimozato N, Sawada Y, Seki K, Kitagawa K, Akahane T, Mitoro A, Okura Y, Yamao J, Yoshiji H. Efficacy of L-carnitine on ribavirin-induced hemolytic anemia in patients with hepatitis C virus infection. Clin Mol Hepatol 2019; 25:65-73. [PMID: 30798587 PMCID: PMC6435976 DOI: 10.3350/cmh.2018.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/14/2018] [Indexed: 12/03/2022] Open
Abstract
Background/Aims L-carnitine not only alleviates hyperammonemia and reduces muscle cramps in patients with liver cirrhosis, but also improves anemia in patients with chronic hepatitis and renal dysfunction. This study prospectively evaluated the preventative efficacy of L-carnitine supplementation against hemolytic anemia during antiviral treatment using ribavirin in patients with hepatitis C virus (HCV)-related chronic liver disease. Methods A total of 41 patients with chronic hepatitis were consecutively enrolled in this study. Group A (n=22) received sofosbuvir plus ribavirin for 3 months, whereas group B (n=19) was treated with sofosbuvir, ribavirin, and L-carnitine. Hemoglobin concentration changes, the effects of antiviral treatment, and the health status of patients were analyzed using short form-8 questionnaires. Results A significantly smaller decrease in hemoglobin concentration was observed in group B compared to group A at every time point. Moreover, the prescribed dose intensity of ribavirin in group B was higher than that of group A, resulting in a higher ratio of sustained virological response (SVR) 24 in group B compared with group A. The physical function of patients in group B was also significantly improved compared to group A at the end of antiviral treatment. Conclusions L-carnitine supplementation alleviates ribavirin-induced hemolytic anemia in patients with HCV and helps relieve the physical burden of treatment with ribavirin-containing regimens. These advantages significantly increase the likelihood of achieving SVR.
Collapse
Affiliation(s)
- Shinya Sato
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kei Moriya
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Masanori Furukawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Soichiro Saikawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Namisaki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Mitsuteru Kitade
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hideto Kawaratani
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kosuke Kaji
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Hiroaki Takaya
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Naotaka Shimozato
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yasuhiko Sawada
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Kenichiro Seki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Koh Kitagawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Takemi Akahane
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Akira Mitoro
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yasushi Okura
- Department of Endoscopy, Nara Medical University, Nara, Japan
| | - Junichi Yamao
- Department of Endoscopy, Nara Medical University, Nara, Japan
| | - Hitoshi Yoshiji
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
12
|
L-Carnitine as an additive in Tyrode's buffer during platelet storage. Blood Coagul Fibrinolysis 2019; 29:613-621. [PMID: 29995655 DOI: 10.1097/mbc.0000000000000760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Platelets are stored at 22-24°C for 5 days, with gentle agitation. Platelet storage lesion decreases efficacy and safety of stored platelets. L-Carnitine is a nonessential amino acid. Its interference with arachidonic acid metabolism affects platelet functions and oxidative stress. Hence, our study focuses on the use of L-carnitine in storage solution and investigates its influence on platelet functions and oxidative stress. Platelets isolated from 4-month-old male Wistar rats were stored with and without L-carnitine (10, 50 and 100 mmol/l) at 22°C for 12 days. Various markers were analyzed on days 0, 4, 8 and 12. Aggregation with collagen decreased in LC100 (day 12), whereas adenosine triphosphate secretion increased in all L-carnitine groups. Glucose consumption was less in L-carnitine groups and pH was maintained at 7.4 in LC50 (day 8). Conjugate dienes (day 4) and thiobarbituric acid reactive substances (day 8) increased in LC10 and LC100. Protein carbonyls were maintained in L-carnitine groups. Catalase activity and total antioxidant capacity increased gradually. L-Carnitine proved to be beneficial in platelet storage solution. There was improvement in platelet metabolism, decrements in lipid peroxidation and elevations in total antioxidant capacity up to 12 days. However, pH results emphasize that platelets with L-carnitine (50 mmol/l) could be stored up to 8 days. Therefore, Tyrode's buffer with L-carnitine can be an effective storage solution for extended platelet storage. This study contributes towards the development of better storage solutions for platelets.
Collapse
|
13
|
Hamza RZ, Al-Eisa RA, Mehana AE, El-Shenawy NS. Effect of l-carnitine on aspartame-induced oxidative stress, histopathological changes, and genotoxicity in liver of male rats. J Basic Clin Physiol Pharmacol 2019; 30:219-232. [PMID: 30645201 DOI: 10.1515/jbcpp-2018-0064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Background Aspartame (ASP) is used for treatment of obesity and diabetes mellitus. This study was designed to illustrate the biochemical responses and histopathological alterations besides the genotoxicity of ASP alone or with l-carnitine (LC) in the liver of rats. Methods Animals were separated into six groups: control, lower dose of ASP (ASP-LD; 75 mg/kg), higher dose of ASP (ASP-HD; 150 mg/kg), l-carnitine (LC; 10 mg/kg), ASP-LD plus LC, and ASP-HD plus LC. Treatment was carried out orally for 30 consecutive days. Results ASP raised the activity of some enzymes of liver markers and disturbed the lipid profile levels. The hepatic reduced glutathione (GSH) levels, the marker enzymes of antioxidant activities, were obviously diminished, and, possibly, the lipid peroxidation, C-reactive protein, and interleukins levels were increased. ASP significantly increased the DNA deterioration in comparison with the control in a dose-dependent manner. LC prevented ASP-induced liver damage as demonstrated by the enhancement of all the above parameters. Results of histopathological and electron microscopic examination proved the biochemical feedback and the improved LC effect on liver toxicity. Conclusions The co-treatment of LC showed different improvement mechanisms against ASP-induced liver impairment. So, the intake of ASP should be regulated and taken with LC when it is consumed in different foods or drinks to decrease its oxidative stress, histopathology, and genotoxicity of liver.
Collapse
Affiliation(s)
- Reham Z Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Rasha A Al-Eisa
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Amir E Mehana
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt, Phone: 002/01008660620, E-mail:
| |
Collapse
|
14
|
Bijak M, Synowiec E, Sitarek P, Sliwiński T, Saluk-Bijak J. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients 2017; 9:E1356. [PMID: 29240674 PMCID: PMC5748806 DOI: 10.3390/nu9121356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonolignans are the main components of silymarin, which represents 1.5-3% of the dry fruit weight of Milk thistle (Silybum marianum L. Gaernt.). In ancient Greece and Romania, physicians and herbalists used the Silybum marianum to treat a range of liver diseases. Besides their hepatoprotective action, silymarin flavonolignans have many other healthy properties, such as anti-platelet and anti-inflammatory actions. The aim of this study was to evaluate the toxic effect of flavonolignans on blood platelets, peripheral blood mononuclear cells (PBMCs) and human lung cancer cell line-A549-using different molecular techniques. We established that three major flavonolignans: silybin, silychristin and silydianin, in concentrations of up to 100 µM, have neither a cytotoxic nor genotoxic effect on blood platelets, PMBCs and A549. We also saw that silybin and silychristin have a protective effect on cellular mitochondria, observed as a reduction of spontaneous mitochondrial DNA (mtDNA) damage in A549, measured as mtDNA copies, and mtDNA lesions in ND1 and ND5 genes. Additionally, we observed that flavonolignans increase the blood platelets' mitochondrial membrane potential and reduce the generation of reactive oxygen species in blood platelets. Our current findings show for the first time that the three major flavonolignans, silybin, silychristin and silydianin, do not have any cytotoxicity and genotoxicity in various cellular models, and that they actually protect cellular mitochondria. This proves that the antiplatelet and anti-inflammatory effect of these compounds is part of our molecular health mechanisms.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Tomasz Sliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
15
|
Preventive effect of l-carnitine and its derivatives on endothelial dysfunction and platelet aggregation. Clin Nutr ESPEN 2016; 15:1-10. [DOI: 10.1016/j.clnesp.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022]
|
16
|
Sung D, Kim S, Kim J, An H, So WY. Role of l-carnitine in sports performance: Focus on ergogenic aid and antioxidant. Sci Sports 2016. [DOI: 10.1016/j.scispo.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Tidjane N, Hachem A, Zaid Y, Merhi Y, Gaboury L, Girolami JP, Couture R. A primary role for kinin B1 receptor in inflammation, organ damage, and lethal thrombosis in a rat model of septic shock in diabetes. EUR J INFLAMM 2015; 13:40-52. [PMID: 26413099 DOI: 10.1177/1721727x15577736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus and septic shock increase the incidence of mortality by thrombosis. Although kinin B1 receptor (B1R) is involved in both pathologies, its role in platelet function and thrombosis remains unknown. This study investigates the expression, the inflammatory, and pro-thrombotic effects of B1R in a model of septic shock in diabetic rats. Sprague-Dawley rats were made diabetic with streptozotocin (STZ) (65 mg/kg, i.p.). Four days later, control and STZ-diabetic rats were injected with lipopolysaccharide (LPS) (2 mg/kg, i.p.) or the vehicle. B1R antagonist (SSR240612, 10 mg/kg by gavage) was given either acutely (12 and 24 h prior to endpoint analysis) or daily for up to 7 days. Moreover, a 7-day treatment was given either with cyclooxygenase (COX)-2 inhibitor (niflumic acid, 5 mg/kg, i.p.), non-selective COX-1 and COX-2 inhibitor (indomethacin, 10 mg/kg, i.p.), non-selective nitric oxide synthase (NOS) inhibitor (L-NAME, 50 mg/kg by gavage), iNOS inhibitor (1400W, 5 mg/kg, i.p.), or heparin (100 IU/kg, s.c.). The following endpoints were measured: edema and vascular permeability (Evans blue dye), B1R expression (qRT-PCR, western blot, flow cytometry), aggregation in platelet-rich plasma (optical aggregometry), and organ damage (histology). Rats treated with STZ, LPS, and STZ plus LPS showed significant increases in edema and vascular permeability (heart, kidney, lung, and liver) and increased expression of B1R in heart and kidney (mRNA) and platelets (protein). Lethal septic shock induced by LPS was enhanced in STZ-diabetic rats and was associated with lung and kidney damage, including platelet micro-aggregate formation. SSR240612 prevented all these abnormalities as well as STZ-induced hyperglycemia and LPS-induced hyperthermia. Similarly to SSR240612, blockade of iNOS and COX-2 improved survival. Data provide the first evidence that kinin B1R plays a primary role in lethal thrombosis in a rat model of septic shock in diabetes. Pharmacological rescue was made possible with B1R antagonism or by inhibition of iNOS and COX-2, which may act as downstream mechanisms.
Collapse
Affiliation(s)
- N Tidjane
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - Y Zaid
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - Y Merhi
- Laboratory of Thrombosis and Hemostasis, Research Centre, Montreal Heart Institute, Montréal, QC, Canada
| | - L Gaboury
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - J-P Girolami
- Institute of Metabolic and Cardiovascular Diseases, INSERM, U 1048, Université Paul Sabatier, Toulouse, France
| | - R Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
L-carnitine effectively improves the metabolism and quality of platelet concentrates during storage. Ann Hematol 2014; 94:671-80. [DOI: 10.1007/s00277-014-2243-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/19/2014] [Indexed: 11/27/2022]
|
19
|
Hatamkhani S, Khalili H, Karimzadeh I, Dashti-Khavidaki S, Abdollahi A, Jafari S. Carnitine for prevention of antituberculosis drug-induced hepatotoxicity: a randomized, clinical trial. J Gastroenterol Hepatol 2014; 29:997-1004. [PMID: 24325386 DOI: 10.1111/jgh.12474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM In the present study, the potential benefits of oral carnitine in preventing antituberculosis drug-induced hepatotoxicity (ATDH) were evaluated. METHODS Fifty-four patients in the carnitine and 62 patients in the placebo group completed the study. The carnitine group received 1000 mg oral carnitine solution twice daily for 4 weeks. The placebo group received 10 mL of oral placebo solution twice daily for 4 weeks. ATDH was defined as an increase in the serum level of aspartate aminotransferase or alanine aminotransferase greater than three or five times of the upper limit of normal with or without clinical symptoms of hepatotoxicity, respectively. RESULTS During the study period, 29 (25%) patients experienced ATDH. Among these patients, nine (16.7%) and 20 (32.3%) were in the carnitine and placebo groups, respectively (P = 0.049). Based on multivariate logistic regression model, age over 35 years old (odds ratio [OR] = 7.01, P = 0.002), human immunodeficiency virus infection (OR = 40.4, P < 0.001), diabetes mellitus (OR = 37.6, P = 0.001), and placebo treatment (OR = 0.1, P = 0.01) were identified as predisposing factors for ATDH. CONCLUSION Results of our preliminary clinical trial suggested that cotreatment with 2000 mg oral L-carnitine solution daily for 4 weeks significantly decreased the rate of ATDH.
Collapse
Affiliation(s)
- Shima Hatamkhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Nassiri A, Dashti-Khavidaki S, Khalili H, Nassiri-Toosi M, Abdollahi A. Serum carnitine level and its associated factors in patients with chronic viral hepatitis. Future Virol 2014. [DOI: 10.2217/fvl.14.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT: Aim: Serum carnitine level and its associated factors have been evaluated in patients with chronic viral hepatitis. Methods: Patients with confirmed chronic viral hepatitis based on the serological markers and liver biopsy were included. In total, 86 volunteers and 86 patients with chronic viral hepatitis completed the study. Demographic data, type of treatment regimen and nutritional status of the patients were recorded and one blood sample was collected from each patient after an overnight fasting. A double antibody sandwich ELISA kit was used to measure carnitine serum level. Results: Mean ± standard deviation of serum carnitine level in the case and control groups were 34.3 ± 15.3 and 55.7 ± 28.4 μmol/l, respectively (p = 0.001). Regarding carnitine deficiency definition, 64 out of 86 patients (74.4%) and 21 out of 86 (24.5%) healthy individuals suffered from carnitine deficiency (p < 0.001). Carnitine dietary intake was significantly lower (p < 0.001). Compared with patients with chronic hepatitis C infection, a more severe form of carnitine deficiency was detected in patients with chronic hepatitis B infection (18.39 ± 15.68 μmol/l vs 42.30 ± 32.92 μmol/l; p = 0.03). In addition, serum carnitine level (41.1 ± 14.8 μmol/l) was significantly higher in the cirrhotic than noncirrhotic patients (31.60 ± 13.2 μmol/l; p = 0.04). Conclusion: Although the cirrhotic patients had higher serum carnitine level compared with noncirrhotic patients, serum carnitine level in the patients with chronic hepatitis was significantly lower than the healthy individuals. Also compared with the defined cut-off point for normal carnitine serum level, carnitine deficiency was common in Iranian patients with chronic hepatitis.
Collapse
Affiliation(s)
- Azin Nassiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khalili
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nassiri-Toosi
- Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Vali-E-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Effects of warfarin and L-carnitine on hemostatic function and oxidative stress in streptozotocin-induced diabetic rats. J Physiol Biochem 2014; 70:535-46. [PMID: 24671746 DOI: 10.1007/s13105-014-0333-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Diabetes mellitus (DM) is a complex progressive disease characterized by hyperglycemia and a high risk of atherothrombotic disorders affecting the coronary, cerebral, and peripheral arterial trees. Oxidative stress is reported in diabetic patients. We investigated the hemostatic functions and oxidative stress in streptozotocin (STZ)-induced diabetic rats and the effects of warfarin and L-carnitine on those parameters. Forty male Sprague-Dawley rats were divided into four groups: control, DM, and DM received warfarin or L-carnitine. In all rats, blood glucose, insulin, hemoglobin A1c (HbA1c), fibrinogen, factor VII (FVII), plasminogen activator inhibitor-1 (PAI-1), fibrin degradation products (FDP), protein C, antithrombin III (ATIII), malondialdehydes (MDA), and antioxidants (superoxide dismutase, catalase, glutathione peroxidase, glutathione) were measured. Also, prothrombin time (PT), activated partial thromboplastin time (aPTT), coagulation time, and platelet aggregation were evaluated. In diabetic rats, plasma glucose, HbA1c, MDA, fibrinogen, FVII, FDP, PAI-1, and platelet aggregation increased while insulin, PT, aPTT, coagulation time, protein C, ATIII, and antioxidants decreased. Warfarin administration to diabetic rats decreased FVII and FDP and increased PT, aPTT, and coagulation time with no effect on MDA, antioxidants, PAI-1, protein C, ATIII, and platelet aggregation. On the other hand, L-carnitine decreased fibrinogen, FVII, FDP, PAI-1, MDA, and platelet aggregation and increased PT, aPTT, coagulation time, protein C, ATIII, and antioxidants in diabetic rats. Therefore, we concluded that hyperglycemia plays an important role in hypercoagulation state and oxidative stress in STZ-induced DM. While L-carnitine improves oxidative stress and decreases the hypercoagulation state in DM, warfarin normalizes the hypercoagulation state with no effect on oxidative stress.
Collapse
|
22
|
Alexandru N, Popov D, Georgescu A. Intraplatelet oxidative/nitrative stress: inductors, consequences, and control. Trends Cardiovasc Med 2012; 20:232-8. [PMID: 22293024 DOI: 10.1016/j.tcm.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article provides an overview of the current knowledge on intraplatelet oxidative/nitrative stress, an abnormality associated with platelet activation and hyper-reactivity. The first issue discussed is related to induction of platelet endogenous stress by the molecules present within the circulating (extracellular) milieu that bathes these cells. The second issue concerns the intraplatelet oxidative/nitrative stress associated with specific pathologies or clinical procedures and action of particular molecules and platelet agonists as well as of the specialized intraplatelet milieu and its redox system; the biomarkers of endogenous oxidative/nitrative stress are also briefly outlined. Next, the association between intraplatelet oxidative/nitrative stress and the risk factors of the metabolic syndrome is presented. Then, the most recent strategies aimed at the control/regulation of platelet endogenous oxidative/nitrative stress, such as exploitation of circulating extracellular reactive oxygen species scavengers, manipulation of platelet molecules, and the use of antioxidants, are discussed. Finally, the results of studies on platelet-dependent redox mechanisms, which deserve immediate attention for potential clinical exploitation, are illustrated.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania. @icbp.ro
| | | | | |
Collapse
|
23
|
Watt J, Ewart MA, Greig FH, Oldroyd KG, Wadsworth RM, Kennedy S. The effect of reactive oxygen species on whole blood aggregation and the endothelial cell-platelet interaction in patients with coronary heart disease. Thromb Res 2012; 130:210-5. [PMID: 22520023 PMCID: PMC3413886 DOI: 10.1016/j.thromres.2012.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/14/2012] [Accepted: 03/26/2012] [Indexed: 11/13/2022]
Abstract
Background The effect of reactive oxygen species (ROS) on platelet function in coronary heart disease (CHD) is complex and poorly defined. Platelet aggregation studies in healthy volunteers have demonstrated contrasting results when platelets are exposed to ROS. We investigated the effect of ROS on whole blood aggregation (WBA) and the endothelial cell-platelet interaction in patients with CHD. Methods and Results ROS generated by xanthine and xanthine oxidase caused a concentration-dependent inhibition of WBA in blood from healthy donors and patients with CHD. In patients with CHD, 100 μM xanthine and 100 mU/ml xanthine oxidase inhibited WBA in response to 3 μg/ml collagen by 28.9% (95% CI 15.9%-41.8%, p < 0.001) and in response to 5 μM ADP by 36.0% (95% CI 9.6%-62.4%, p = 0.005). Using nitrotyrosine expression, platelets isolated from patients with CHD were found to be susceptible to peroxynitrite damage. The addition of 1 × 105 cultured endothelial cells inhibited WBA in response to 3 μg/ml collagen by 31.2% (95% CI 12.2%-50.2%, p < 0.05) and in response to 5 μM ADP by 31.6% (95% CI 2.5-60.7%, p < 0.05). Addition of xanthine and xanthine oxidase did not alter this effect, however pre-treatment of endothelial cells with a nitric oxide synthase inhibitor (L-NAME) partly reversed the inhibition. Conclusion ROS inhibit WBA in blood from patients with CHD. Whilst endothelial cells also inhibit WBA, the effect is attenuated by L-NAME, suggesting that nitric oxide is likely to remain an important protective mechanism against thrombosis in CHD.
Collapse
Affiliation(s)
- Jonathan Watt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0NR, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Malaguarnera M, Vacante M, Giordano M, Motta M, Bertino G, Pennisi M, Neri S, Malaguarnera M, Volti GL, Galvano F. L-carnitine supplementation improves hematological pattern in patients affected by HCV treated with Peg interferon-α 2b plus ribavirin. World J Gastroenterol 2011; 17:4414-20. [PMID: 22110268 PMCID: PMC3218156 DOI: 10.3748/wjg.v17.i39.4414] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of L-carnitine on alleviating anemia, thrombocytopenia and leukopenia, and minimizing dose reductions in patients with chronic hepatitis C virus (HCV) in treatment with Interferon α (IFN-α) plus ribavirin.
METHODS: Sixty-nine patients with chronic hepatitis C were enrolled in the study and divided into two groups. group A (n = 35) received Peg-IFN-α 2b plus ribavirin plus L-carnitine, and group B (n = 34) received Peg-IFN-α and ribavirin for 12 mo. All patients underwent laboratory investigations including: red cell count, hemoglobin, white cell count, platelets, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and viremia.
RESULTS: After 12 mo in group A compared to group B we observed significant differences in AST 108.8 vs 76.8 (IU/L; P < 0.001), ALT 137.9 vs 112.3 (IU/L; P < 0.001), viremia 4.04 vs 2.36 (× 106 copies/mL; P < 0.001), Hb 1 vs 3.5 (g/dL; P < 0.05), red blood cells 0.3 vs 1.1 (× 1012/L; P < 0.001), white blood cells 1.5 vs 3 (× 109/L; P < 0.001) and platelets 86 vs 85 (× 109/L; P < 0.001). The end treatment responders were 18 vs 12 (60% vs 44%) and the non responders were 12 vs 15 (40% vs 50%) [odds ratio (OR) 1.65, 95% CI = 0.65-5.37, P < 0.05]. In group A compared to group B there was a significant improvement of sustained virological response in 15 vs 7 patients (50% vs 25%), while the relapsers were 3 vs 5 (10% vs 18%) (OR 3.57, 95% CI = 0.65-19.3, P < 0.001).
CONCLUSION: L-carnitine supplementations modulate erythropoiesis, leucopoiesis and thrombocytopoiesis, and may be useful in patients treated for HCV. L-carnitine treatment offers the possibility of achieving a sustained virological response while preventing overtreatment.
Collapse
|