1
|
Di Florio DN, Weigel GJ, Gorelov DJ, McCabe EJ, Beetler DJ, Shapiro KA, Bruno KA, Chekuri I, Jain A, Whelan ER, Salomon GR, Khatib S, Bonvie-Hill NE, Fliess JJ, Giresi PG, Hamilton C, Hartmoyer CJ, Balamurugan V, Darakjian AA, Edenfield BH, Kocsis SC, McLeod CJ, Cooper LT, Audet-Walsh É, Coronado MJ, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. Biol Sex Differ 2024; 15:104. [PMID: 39696682 DOI: 10.1186/s13293-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. METHODS Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis and functional validation to understand sex differences in the transcriptional landscape of myocarditis and identify factors that might drive sex differences in myocarditis. RESULTS As expected, the hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. Unique to this study, we found that males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial electron transport function while females were enriched for pathways related to mitochondrial homeostasis. Mitochondria isolated from the heart of males were confirmed to have worse mitochondrial respiration than females during myocarditis. Unbiased TRANSFAC analysis identified estrogen-related receptor alpha (ERRα) as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Transcript and protein levels of ERRα were confirmed as elevated in females with myocarditis compared to males. Differential binding analysis from chromatin immunoprecipitation (ChIP) sequencing confirmed that ERRα bound highly to select predicted respiratory chain genes in females more than males during myocarditis. CONCLUSIONS Females with viral myocarditis regulate mitochondrial homeostasis by upregulating master regulators of mitochondrial transcription including ERRα.
Collapse
Affiliation(s)
- Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriel J Weigel
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - David J Gorelov
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Katie A Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gary R Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica J Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Presley G Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charwan Hamilton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ashley A Darakjian
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - S Christian Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Division, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Yan HW, Feng YD, Tang N, Cao FC, Lei YF, Cao W, Li XQ. Viral myocarditis: From molecular mechanisms to therapeutic prospects. Eur J Pharmacol 2024; 982:176935. [PMID: 39182550 DOI: 10.1016/j.ejphar.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.
Collapse
Affiliation(s)
- Han-Wei Yan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng-Chuan Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Chakraborty S, Wei D, Tran M, Lang FF, Newman RA, Yang P. PBI-05204, a supercritical CO 2 extract of Nerium oleander, suppresses glioblastoma stem cells by inhibiting GRP78 and inducing programmed necroptotic cell death. Neoplasia 2024; 54:101008. [PMID: 38823209 PMCID: PMC11177059 DOI: 10.1016/j.neo.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Newman
- Phoenix Biotechnology, San Antonio, Texas 78217, United States
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.
| |
Collapse
|
5
|
Xiang Q, Geng ZX, Yi X, Wei X, Zhu XH, Jiang DS. PANoptosis: a novel target for cardiovascular diseases. Trends Pharmacol Sci 2024; 45:739-756. [PMID: 39003157 DOI: 10.1016/j.tips.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen-Xi Geng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Wei J, Wang D, Cui C, Tan J, Peng M, Lu H. CXCL4/CXCR3 axis regulates cardiac fibrosis by activating TGF-β1/Smad2/3 signaling in mouse viral myocarditis. Immun Inflamm Dis 2024; 12:e1237. [PMID: 38577984 PMCID: PMC10996374 DOI: 10.1002/iid3.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. CXCL4 is a chemokine that has been reported to have pro-inflammatory and profibrotic functions. The exact role of CXCL4 in cardiac fibrosis remains unclear. METHODS Viral myocarditis (VMC) models were induced by intraperitoneal injection of Coxsackie B Type 3 (CVB3). In vivo, CVB3 (100 TCID50) and CVB3-AMG487 (CVB3: 100 TCID50; AMG487: 5 mg/kg) combination were administered in the VMC and VMC+AMG487 groups, respectively. Hematoxylin and eosin staining, severity score, Masson staining, and immunofluorescence staining were performed to measure myocardial morphology in VMC. Enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to quantify inflammatory factors (IL-1β, IL-6, TNF-α, and CXCL4). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase-myocardial band (CK-MB) levels were analyzed by commercial kits. CXCL4, CXCR3B, α-SMA, TGF-β1, Collagen I, and Collagen III were determined by Western blot and immunofluorescence staining. RESULTS In vivo, CVB3-AMG487 reduced cardiac injury, α-SMA, Collagen I and Collagen III levels, and collagen deposition in VMC+AMG487 group. Additionally, compared with VMC group, VMC+AMG group decreased the levels of inflammatory factors (IL-1β, IL-6, and TNF-α). In vitro, CXCL4/CXCR3B axis activation TGF-β1/Smad2/3 pathway promote mice cardiac fibroblasts differentiation. CONCLUSION CXCL4 acts as a profibrotic factor in TGF-β1/Smad2/3 pathway-induced cardiac fibroblast activation and ECM synthesis, and eventually progresses to cardiac fibrosis. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.
Collapse
Affiliation(s)
- Jing Wei
- Department of Laboratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Dan‐feng Wang
- Department of Laboratory MedicineJiangning Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Cong‐cong Cui
- Department of Laboratory MedicineJiangning Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Jia‐jia Tan
- Department of Laboratory MedicineJiangning Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Ming‐yu Peng
- Department of Laboratory MedicineJiangning Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Hong‐xiang Lu
- Department of Laboratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina
- Department of Laboratory MedicineJiangning Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Sun B, Lin L, Yao T, Yao J, Zhang G, Li Y, Li C. Jingfang Granule mitigates Coxsackievirus B3-induced myocardial damage by modulating mucolipin 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117396. [PMID: 37951374 DOI: 10.1016/j.jep.2023.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granules (JFG) originate from the traditional herbal formula Jingfang Baidu powder. It has the effects of inducing sweating and dispelling wind. It is a classic medication used for treating external pathogenic factors and viral diseases. However, the therapeutic mechanism of JFG for viral myocarditis needs further clarification. AIM OF THE STUDY This study aimed to explore the therapeutic efficacy of JFG on coxsackievirus B3-induced viral myocarditis (VMC), along with the elucidation of its underlying mechanisms. MATERIALS AND METHODS C57 BL/6JNifdc mice were divided randomly into several groups: control, model, Jingfang Granule groups (0.23, 0.46, and 0.69 g/20g, respectively), and a positive group (oseltamivir, 19.33 mg/kg). Following the establishment of the VMC model, the mice underwent an 8 -week treatment regimen. Pathological alterations in cardiac tissues and inflammatory protein expression were monitored. Differential gene analysis was conducted utilizing transcriptomic techniques. The differential gene mucolipin 1 (Mcoln1) was knocked down by transfection with siRNA in H9C2 cell, and investigative techniques such as immunoblotting, qRT-PCR, immunofluorescence, JC-1 staining, reactive oxygen species (ROS) detection, and mitochondrial stress testing were employed to examine its mechanism of action. RESULTS JFG significantly mitigates the pathological damage observed in the cardiac tissues of CVB3-induced VMC mice and attenuates the expression of inflammatory genes. Subsequently, differentially expressed genes are identified through transcriptomic analysis and validated via PCR. Among these, the upregulation of Mcoln1 promotes autophagy, facilitating the clearance of damaged mitochondria and excessive ROS. This has been substantiated through in vitro experiments. Excessive ROS precipitates a reduction in mitochondrial membrane potential, instigating cell apoptosis. In accordance with TUNEL staining results, JFG acts to inhibit cell apoptosis. To ascertain whether Mcoln1 is a crucial target for JFG in treating VMC, Mcoln1 was suppressed in H9C2 cells. The suppression of Mcoln1 hinders the elevation in autophagy levels post-JFG treatment, obstructs the enhancement of mitochondrial function, and impedes the clearance of ROS. Furthermore, the inhibitory effect of JFG on cell apoptosis is attenuated. CONCLUSION The research findings indicate that JFG has a protective effect on CVB3-induced H9C2 cell injury. JFG may exert its effects in VMC treatment by enhancing autophagy to suppress cell apoptosis through the mitochondrial pathway, thereby counteracting cell damage.
Collapse
Affiliation(s)
- Bowen Sun
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Lin
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tian Yao
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Yunlun Li
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
9
|
Zhao R, Teng X, Yang Y. Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2024; 61:533-540. [PMID: 37642934 DOI: 10.1007/s12035-023-03594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiufei Teng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanchao Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
10
|
Di Florio D, Gorelov D, McCabe E, Beetler D, Shapiro K, Bruno K, Chekuri I, Jain A, Whelan E, Salomon G, Khatib S, Bonvie-Hill N, Giresi P, Balamurugan V, Weigel G, Fliess J, Darakjian A, Edenfield B, Kocsis C, McLeod C, Cooper L, Audet-Walsh E, Coronado M, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. RESEARCH SQUARE 2023:rs.3.rs-3716881. [PMID: 38196574 PMCID: PMC10775395 DOI: 10.21203/rs.3.rs-3716881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.
Collapse
|
11
|
Yang ZH, Hao JW, Liu JP, Bao B, Li TL, Wu QX, He MG, Bi HS, Guo DD. Electroacupuncture alleviates ciliary muscle cell apoptosis in lens-induced myopic guinea pigs through inhibiting the mitochondrial signaling pathway. Int J Ophthalmol 2023; 16:1942-1951. [PMID: 38111935 PMCID: PMC10700068 DOI: 10.18240/ijo.2023.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 12/20/2023] Open
Abstract
AIM To investigate the effect of electroacupuncture (EA) on the mitochondria-dependent apoptotic signaling pathway in the ciliary muscle of guinea pigs with negative lens-induced myopia (LIM). METHODS Guinea pigs were randomly divided into normal control (NC) group, LIM group, LIM+SHAM acupoint (LIM+SHAM) group, and LIM+EA group. Animals in the NC group received no intervention, while those in other three groups were covered with -6.0 diopter (D) lenses on right eyes. Meanwhile, animals in the LIM+EA group received EA at Hegu (LI4) combined with Taiyang (EX-HN5) acupoints, while those in the LIM+SHAM group were treated at sham points. After treatments for 1, 2, and 4wk, morphological changes in ciliary muscles were observed with hematoxylin and eosin (H&E) staining and nick end labeling (TUNEL), and the expression of the mitochondrial apoptotic signaling pathway-related molecules in ciliary muscles was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Additionally, the adenosine triphosphate (ATP) contents were also determined in ciliary muscles. RESULTS Axial length increased significantly in the LIM and LIM+SHAM groups and decreased in the LIM+EA group. The ciliary muscle fibers were broken and destroyed in both LIM and LIM+SHAM groups, whereas those in the LIM+EA group improved significantly. TUNEL assay showed the number of apoptotic cells increased in the LIM and LIM+SHAM groups, whereas reduced in the LIM+EA group. ATP contents showed a significant decrease in the LIM and LIM+SHAM groups, whereas increased after EA treatment. Compared with the NC group, the dynamin-related protein 1 (DRP1), Caspase3, and apoptotic protease activator 1 (APAF1) levels were significantly increased in the LIM group and decreased in the LIM+EA group. CONCLUSION The results provide evidence of EA inhibiting the development of myopia by regulating the mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Zhao-Hui Yang
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Jia-Wen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Jin-Peng Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Tu-Ling Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Qiu-Xin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Clinical Medical Research Center of Optometry and Adolescent Low Vision Prevention and Control, Jinan 250002, Shandong Province, China
| | - Ming-Guang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Hong-Sheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Clinical Medical Research Center of Optometry and Adolescent Low Vision Prevention and Control, Jinan 250002, Shandong Province, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| | - Da-Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, Shandong Province, China
| |
Collapse
|
12
|
Jin Yang H, Kwon EB, Choi JG, Li W. Sarcodonol A-D from fruiting bodies of Sarcodon imbricatus inhibits HCoV-OC43 induced apoptosis in MRC-5 cells. Bioorg Chem 2023; 140:106824. [PMID: 37669581 DOI: 10.1016/j.bioorg.2023.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 μM; CC50 > 100 μM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.
Collapse
Affiliation(s)
- Hye Jin Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
13
|
Wang Y, Li M, Chen J, Yu Y, Yu Y, Shi H, Liu X, Chen Z, Chen R, Ge J. Macrophage CAPN4 regulates CVB3-induced cardiac inflammation and injury by promoting NLRP3 inflammasome activation and phenotypic transformation to the inflammatory subtype. Free Radic Biol Med 2023; 208:430-444. [PMID: 37660839 DOI: 10.1016/j.freeradbiomed.2023.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Exploring the immune mechanism of coxsackievirus B3 (CVB3)-induced myocarditis may provide a promising therapeutic strategy. Here, we investigated the regulatory role of macrophage CAPN4 in the phenotypic transformation of macrophages and NOD-like receptor protein 3 (NLRP3) inflammasome activation. We found that CAPN4 was the most upregulated subtype of the calpain family in CVB3-infected bone marrow-derived macrophages (BMDMs) and Raw 264.7 cells after CVB3 infection and was upregulated in cardiac macrophages from CVB3-infected mice. Conditional knockout of CAPN4 (CAPN4flox/flox; LYZ2-Cre, CAPN4-cKO mice) ameliorated inflammation and myocardial injury and improved cardiac function and survival after CVB3 infection. Enrichment analysis revealed that macrophage differentiation and the interleukin signaling pathway were the most predominant biological processes in macrophages after CVB3 infection. We further found that CVB3 infection and the overexpression of CAPN4 promoted macrophage M1 polarization and NLRP3 inflammasome activation, while CAPN4 knockdown reversed these changes. Correspondingly, CAPN4-cKO alleviated CVB3-induced M1 macrophage transformation and NLRP3 expression and moderately increased M2 transformation in vivo. The culture supernatant of CAPN4-overexpressing or CVB3-infected macrophages impaired cardiac fibroblast function and viability. Moreover, macrophage CAPN4 could upregulate C/EBP-homologous protein (chop) expression, which increased proinflammatory cytokine release by activating the phosphorylation of transducer of activator of transcription 1 (STAT1) and 3 (STAT3). Overall, these results suggest that CAPN4 increases M1-type and inhibits M2-type macrophage polarization through the chop-STAT1/STAT3 signaling pathway to mediate CVB3-induced myocardial inflammation and injury. CAPN4 may be a novel target for viral myocarditis treatment.
Collapse
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Minghui Li
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Jun Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Yong Yu
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Hui Shi
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Xiaoxiao Liu
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Zhiwei Chen
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| | - Ruizhen Chen
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China.
| | - Junbo Ge
- Key Laboratory of Viral Cardiovascular Diseases, Ministry of Health, China & Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui District, Shanghai, 200010, China
| |
Collapse
|
14
|
Qin A, Wen Z, Xiong S. Myocardial Mitochondrial DNA Drives Macrophage Inflammatory Response through STING Signaling in Coxsackievirus B3-Induced Viral Myocarditis. Cells 2023; 12:2555. [PMID: 37947632 PMCID: PMC10648438 DOI: 10.3390/cells12212555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded positive RNA virus, primarily infects cardiac myocytes and is a major causative pathogen for viral myocarditis (VMC), driving cardiac inflammation and organ dysfunction. However, whether and how myocardial damage is involved in CVB3-induced VMC remains unclear. Herein, we demonstrate that the CVB3 infection of cardiac myocytes results in the release of mitochondrial DNA (mtDNA), which functions as an important driver of cardiac macrophage inflammation through the stimulator of interferon genes (STING) dependent mechanism. More specifically, the CVB3 infection of cardiac myocytes promotes the accumulation of extracellular mtDNA. Such myocardial mtDNA is indispensable for CVB3-infected myocytes in that it induces a macrophage inflammatory response. Mechanistically, a CVB3 infection upregulates the expression of the classical DNA sensor STING, which is predominantly localized within cardiac macrophages in VMC murine models. Myocardial mtDNA efficiently triggers STING signaling in those macrophages, resulting in strong NF-kB activation when inducing the inflammatory response. Accordingly, STING-deficient mice are able to resist CVB3-induced cardiac inflammation, exhibiting minimal inflammation with regard to their functional cardiac capacities, and they exhibit higher survival rates. Moreover, our findings pinpoint myocardial mtDNA as a central element driving the cardiac inflammation of CVB3-induced VMC, and we consider the DNA sensor, STING, to be a promising therapeutic target for protecting against RNA viral infections.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Yip F, Lai B, Yang D. Role of Coxsackievirus B3-Induced Immune Responses in the Transition from Myocarditis to Dilated Cardiomyopathy and Heart Failure. Int J Mol Sci 2023; 24:ijms24097717. [PMID: 37175422 PMCID: PMC10178405 DOI: 10.3390/ijms24097717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Collapse
Affiliation(s)
- Fione Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Lai
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
16
|
Mitochondria Dysfunction at the Heart of Viral Myocarditis: Mechanistic Insights and Therapeutic Implications. Viruses 2023; 15:v15020351. [PMID: 36851568 PMCID: PMC9963085 DOI: 10.3390/v15020351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.
Collapse
|
17
|
Tang YL, Kong YH, Qin S, Merchant A, Shi JZ, Zhou XG, Li MW, Wang Q. Transcriptomic dissection of termite gut microbiota following entomopathogenic fungal infection. Front Physiol 2023; 14:1194370. [PMID: 37153226 PMCID: PMC10161392 DOI: 10.3389/fphys.2023.1194370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.
Collapse
Affiliation(s)
- Ya-ling Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun-hui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Ji-zhe Shi
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xu-guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Mu-wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| |
Collapse
|
18
|
Jing X, Hao L, Yuan‐Nan L, Wei‐Ke L, Lu‐Shen J, Jin‐Yan K, Yi‐Lian C, Yi‐Xuan Q, Li‐Sha G, Yue‐Chun L. The protective effect of LCZ696 in coxsackievirus B3-induced acute viral myocarditis mice. ESC Heart Fail 2022; 10:366-376. [PMID: 36245336 PMCID: PMC9871654 DOI: 10.1002/ehf2.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/17/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Acute viral myocarditis (AVMC) is the aetiology of heart failure (HF) with few specific treatments. The improvement of left ventricular ejection fraction (LVEF) is a critical predictor for the prognosis of AVMC. LCZ696 is a drug used in HF to improve LVEF, with a few research on AVMC. In this research, we evaluated the effects and mechanism of LCZ696 in improving LVEF in AVMC. METHODS Eighty 4-week-old male BALB/c mice were randomly divided into four groups of 20: Sham; Sham + LCZ696 (60 mg/kg/d); AVMC; AVMC + LCZ696. The above experiments were repeated by CVB3-infected HL-1 and Mdivi-1 to down-regulated dynamin-related protein 1(Drp1). Adeno-associated virus 9 (AAV9) with enhanced green fluorescent proteins (GFP) was injected to produce Drp1-overexpression mice and set up four groups: AVMC group, AVMC + AAV group, AVMC + LCZ696 group, and AVMC + LCZ696 + AAV group (n = 20 in each group). LVEF was evaluated by echocardiography at a similar heart rate (HR) at d7, Drp1 (p-Drp1), inflammation and apoptosis by histology and Western blot (WB), and mitochondrial by electron microscopy. RESULTS Cardiac function were injured in AVMC that LCZ696 reversed (LVEF, %: Sham: 68.99 ± 9.67; Sham + LCZ696: 71.96 ± 6.20; AVMC: 30.95 ± 6.40*; AVMC + LCZ696: 68.99 ± 9.67*#, *P < 0.05 vs. Sham, #P < 0.05 vs. AVMC). LCZ696 attenuated p-Drp1 expression, inflammation, apoptosis, and mitochondrial fission (p-Drp1/Drp1: Sham: 1; Sham + LCZ696: 1.37 ± 0.22; AVMC: 2.29 ± 0.36*; AVMC+LCZ696: 1.43 ± 0.08*#, *P < 0.05 vs. Sham, #P < 0.05 vs. AVMC). Some of the above results were repeated in CVB3-infected HL-1 cells and Mdivi-1. AAV increased Drp1 expression and mitochondrial fission, inflammatory, and apoptosis. Compared with the AVMC + AAV group, the LVEF increased from 24.44 ± 0.03% to 32.33 ± 0.05% in the AVMC + LCZ696 + AAV group(P < 0.05), p-Drp1/Drp1 decreased from 0.54 ± 0.12 to 0.42 ± 0.09*, and IL-6, c-IL-1β, and c-caspase-3/caspase-3 decreased from 1.07 ± 0.22 to 0.72 ± 0.08*, from 1.03 ± 0.14 to 0.79 ± 0.09*, and from 4.69 ± 0.29 to 0.92 ± 0.13*, respectively (*P < 0.05). CONCLUSIONS LCZ696 has a protective effect on AVMC by improving LVEF and reducing inflammation and apoptosis, which may be due to the inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Xu Jing
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Lian Hao
- Department of CardiologyThe first people's Hospital of WenlingWenlingChina
| | - Lin Yuan‐Nan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Liu Wei‐Ke
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jin Lu‐Shen
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ke Jin‐Yan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Chen Yi‐Lian
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Qiu Yi‐Xuan
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ge Li‐Sha
- Department of Pediatric EmergencyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Li Yue‐Chun
- Department of CardiologySecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
19
|
Yu H, Chen Y, Ma H, Wang Z, Zhang R, Jiao J. TRPC6 mediates high glucose-induced mitochondrial fission through activation of CDK5 in cultured human podocytes. Front Physiol 2022; 13:984760. [PMID: 36213244 PMCID: PMC9535336 DOI: 10.3389/fphys.2022.984760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial abnormalities contribute to the development of diabetic nephropathy (DN). However, the precise mechanisms of mitochondrial dysfunction in DN remain unclear. Transient receptor potential canonical channel-6 (TRPC6), a non-selective cation channel permeable to Ca2+, has been shown to regulate mitochondrial dynamics. This study was therefore aimed to explore the regulatory role and mechanisms of TRPC6 in high glucose (HG)-induced mitochondrial dysfunction in podocytes. Here we found that TRPC6 expression and TRPC6-induced Ca2+ influx were increased in HG-treated podocytes. Furthermore, the TRPC6 inhibitor and TRPC6 siRNA ameliorated mitochondrial dysfunction and apoptosis in HG-treated podocytes. BAPTA-AM, an intracellular calcium chelating agent, attenuated mitochondrial fission under HG conditions as well. Then, we found the activity of calpain and cyclin-dependent kinase 5 (CDK5) was markedly enhanced in HG-treated podocytes, which can be blocked by pretreatment with the TRPC6 inhibitor. Calpain-1 inhibition by calpeptin or by calpain-1 siRNA transfection not only attenuated HG-induced mitochondrial fission but also reduced the activity of CDK5. Additionally, the CDK5 inhibitor and its siRNA decreased mitochondrial fragmentation in HG-treated podocytes. Collectively, we revealed the essential role of TRPC6 in regulating HG-induced mitochondrial fission and apoptosis through the calpain-1/CDK5 pathway in human podocytes, which may provide new insights into the pathogenesis of DN.
Collapse
Affiliation(s)
- Haomiao Yu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yili Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Ma
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihan Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
- *Correspondence: Jundong Jiao,
| |
Collapse
|
20
|
Li L, Goel A, Wang X. Novel paradigms of mitochondrial biology and function: potential clinical significance in the era of precision medicine. Cell Biol Toxicol 2022; 38:371-375. [PMID: 35618927 DOI: 10.1007/s10565-022-09721-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA. .,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
21
|
Liu W, Su C, Qi Y, Liang J, Zhao L, Shi Y. Brain-targeted heptapeptide-loaded exosomes attenuated ischemia–reperfusion injury by promoting the transfer of healthy mitochondria from astrocytes to neurons. J Nanobiotechnology 2022; 20:242. [PMID: 35606779 PMCID: PMC9125840 DOI: 10.1186/s12951-022-01425-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The exchange of mitochondria reportedly plays an important role in cell–cell communication in the central nervous system (CNS). The transfer of fragmented and dysfunctional astrocytic mitochondria into neurons and subsequent mitochondrial fusion often cause serious neuronal damage and cerebral ischaemic injury. Methods In this study, we prepared macrophage-derived exosomes laden with heptapeptide (Hep) as a dynamin-related protein-1 (Drp1)–fission 1 (Fis1) peptide inhibitor P110 to alleviate cerebral ischemia–reperfusion injury by reducing mitochondrial Drp1/Fis1 interaction-mediated astrocytic mitochondrial disorder and promoting the transfer of astrocyte-derived healthy mitochondria into neurons. Results The results demonstrated that Hep-loaded macrophage-derived exosomes (EXO-Hep) reduced mitochondrial damage in astrocytes by inhibiting the Drp1/Fis1 interaction after ischemia–reperfusion, ensuring the release of heathy astrocytic mitochondria and their subsequent transmission to neurons, alleviating mitochondria-mediated neuronal damage. Conclusion EXO-Hep significantly mitigated ischemic injury in a model of transient middle cerebral artery occlusion (tMCAO) by reducing the infarct area and improving neurological performance during the process of cerebral ischemia–reperfusion. Graphical Abstract ![]()
Collapse
|
22
|
Mitochondrial calpain-1 activates NLRP3 inflammasome by cleaving ATP5A1 and inducing mitochondrial ROS in CVB3-induced myocarditis. Basic Res Cardiol 2022; 117:40. [PMID: 35997820 PMCID: PMC9399059 DOI: 10.1007/s00395-022-00948-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 (CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac troponin I, lactate dehydrogenase, interleukin-18, interleukin-1β, prevention of the infiltration of inflammatory cells, and improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapitalized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain appears as a promising target for the treatment of viral myocarditis.
Collapse
|