1
|
Neha, Anwar S, Pinky, Hassan MI, Parvez S. Ropinirole reverses the effects of neuroinflammation, and cellular demise by downregulating the MARK4-NFκβ signaling system in Alzheimer's disease. Int J Biol Macromol 2024; 271:132425. [PMID: 38759860 DOI: 10.1016/j.ijbiomac.2024.132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Ropinirole (ROP) is a dopamine agonist that can cross the blood-brain barrier (BBB), which is crucial for drugs targeting neurological conditions like Alzheimer's disease (AD). The rationale for the current research is to investigate the potential of ROP as an inhibitor of Microtubule affinity regulating kinase 4 (MARK4)-NFκβ in neurodegenerative diseases, specifically AD. The interaction between ROP and MARK4-NFκβ holds significant promise in the realm of drug discovery and therapeutic interventions for diseases like AD. Molecular docking and biophysical characterization demonstrate how ROP effectively hinders MARK4 activity, offering detailed insights into their molecular interactions. The present research also investigates the biological aspect of MARK4 shows promise in treating AD, with neuroinflammation playing a crucial role in the disease's progression. Aβ42 and ROP were co-administered directly into the cells for the establishment of the AD model. We confirmed that ROP can inhibit the path of MARK4 activity, as evidenced by biophysical characterization, and can enhance the cell viability, lowers the expression of MARK4, decrease the rate of oxidative stress, and attenuate the expression of NFκβ, leading to reduced neuronal apoptosis in an in vitro-induced Aβ model. Overall, this research provides valuable mechanistic insights into the neuroprotective potential of ROP and its ability to target the MARK4-NFκβ pathway.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Saleha Anwar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Rishton GM, Look GC, Ni ZJ, Zhang J, Wang Y, Huang Y, Wu X, Izzo NJ, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Catalano SM. Discovery of Investigational Drug CT1812, an Antagonist of the Sigma-2 Receptor Complex for Alzheimer's Disease. ACS Med Chem Lett 2021; 12:1389-1395. [PMID: 34531947 DOI: 10.1021/acsmedchemlett.1c00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
An unbiased phenotypic neuronal assay was developed to measure the synaptotoxic effects of soluble Aβ oligomers. A collection of CNS druglike small molecules prepared by conditioned extraction was screened. Compounds that prevented and reversed synaptotoxic effects of Aβ oligomers in neurons were discovered to bind to the sigma-2 receptor complex. Select development compounds displaced receptor-bound Aβ oligomers, rescued synapses, and restored cognitive function in transgenic hAPP Swe/Ldn mice. Our first-in-class orally administered small molecule investigational drug 7 (CT1812) has been advanced to Phase II clinical studies for Alzheimer's disease.
Collapse
Affiliation(s)
- Gilbert M. Rishton
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Gary C. Look
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Zhi-Jie Ni
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Jason Zhang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Yingcai Wang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Yaodong Huang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Xiaodong Wu
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Nicholas J. Izzo
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Kelsie M LaBarbera
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Colleen S. Limegrover
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Courtney Rehak
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Raymond Yurko
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Susan M. Catalano
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| |
Collapse
|
3
|
Limegrover CS, LeVine H, Izzo NJ, Yurko R, Mozzoni K, Rehak C, Sadlek K, Safferstein H, Catalano SM. Alzheimer's protection effect of A673T mutation may be driven by lower Aβ oligomer binding affinity. J Neurochem 2021; 157:1316-1330. [PMID: 33025581 PMCID: PMC8246829 DOI: 10.1111/jnc.15212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Several mutations conferring protection against Alzheimer's disease (AD) have been described, none as profound as the A673T mutation, where carriers are four times less likely to get AD compared to noncarriers. This mutation results in reduced amyloid beta (Aβ) protein production in vitro and lower lifetime Aβ concentration in carriers. Better understanding of the protective mechanisms of the mutation may provide important insights into AD pathophysiology and identify productive therapeutic intervention strategies for disease modification. Aβ(1-42) protein forms oligomers that bind saturably to a single receptor site on neuronal synapses, initiating the downstream toxicities observed in AD. Decreased formation, toxicity, or stability of soluble Aβ oligomers, or reduction of synaptic binding of these oligomers, may combine with overall lower Aβ concentration to underlie A673T's disease protecting mechanism. To investigate these possibilities, we compared the formation rate of soluble oligomers made from Icelandic A673T mutant and wild type (wt) Aβ(1-42) synthetic protein, the amount and intensity of oligomer bound to mature primary rat hippocampal/cortical neuronal synapses, and the potency of bound oligomers to impact trafficking rate in neurons in vitro using a physiologically relevant oligomer preparation method. At equal protein concentrations, mutant protein forms approximately 50% or fewer oligomers of high molecular weight (>50 kDa) compared to wt protein. Mutant oligomers are twice as potent at altering the cellular vesicle trafficking rate as wt at equivalent concentrations, however, mutant oligomers have a >4-fold lower binding affinity to synaptic receptors (Kd = 1,950 vs. 442 nM). The net effect of these differences is a lower overall toxicity at a given concentration. This study demonstrates for the first time that mutant A673T Aβ oligomers prepared with this method have fundamentally different assembly characteristics and biological impact from wt protein and indicates that its disease protecting mechanism may result primarily from the mutant protein's much lower binding affinity to synaptic receptors. This suggests that therapeutics that effectively reduce oligomer binding to synapses in the brain may be beneficial in AD.
Collapse
Affiliation(s)
| | - Harry LeVine
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
LaBarbera KM, Limegrover C, Rehak C, Yurko R, Izzo NJ, Knezovich N, Watto E, Waybright L, Catalano SM. Modeling the mature CNS: A predictive screening platform for neurodegenerative disease drug discovery. J Neurosci Methods 2021; 358:109180. [PMID: 33836174 PMCID: PMC8217273 DOI: 10.1016/j.jneumeth.2021.109180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Background: Mature primary neuronal cultures are an important model of the nervous system, but limited scalability has been a major challenge in their use for drug discovery of neurodegenerative diseases. This work describes a method for improving scalability through the use of larger format microtiter plates while preserving culture quality. New Method: Here we describe a method and quality control procedures for growing embryonic day 18 rat hippocampal/cortical neuronal cultures in 384-well microtiter plates for three weeks in vitro. Results: We use these cultures in two assays measuring intracellular lipid vesicle trafficking and synapse density for routine screening of small molecule libraries. Together this culture system and screening platform have successfully identified therapeutics capable of improving cognitive function in transgenic models of Alzheimer’s disease that have advanced to clinical trials, validating their translational applicability. Comparison with Existing Methods: Our method enables the growth of healthy, mature neurons in larger format microtiter plates than in traditional primary neuronal culturing protocols, making it ideal for drug screening and mechanism of action studies. Conclusion: The predictive capacity of this culture system and screening platform provides a method for rapidly identifying novel disease-modifying neurodegenerative therapeutics.
Collapse
Affiliation(s)
| | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | | | - Nicole Knezovich
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Emily Watto
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States.
| |
Collapse
|
5
|
Limegrover CS, Yurko R, Izzo NJ, LaBarbera KM, Rehak C, Look G, Rishton G, Safferstein H, Catalano SM. Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson's patient brain-derived α-synuclein. J Neurosci Res 2021; 99:1161-1176. [PMID: 33480104 PMCID: PMC7986605 DOI: 10.1002/jnr.24782] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
α‐Synuclein oligomers are thought to have a pivotal role in sporadic and familial Parkinson's disease (PD) and related α‐synucleinopathies, causing dysregulation of protein trafficking, autophagy/lysosomal function, and protein clearance, as well as synaptic function impairment underlying motor and cognitive symptoms of PD. Moreover, trans‐synaptic spread of α‐synuclein oligomers is hypothesized to mediate disease progression. Therapeutic approaches that effectively block α‐synuclein oligomer‐induced pathogenesis are urgently needed. Here, we show for the first time that α‐synuclein species isolated from human PD patient brain and recombinant α‐synuclein oligomers caused similar deficits in lipid vesicle trafficking rates in cultured rat neurons and glia, while α‐synuclein species isolated from non‐PD human control brain samples did not. Recombinant α‐synuclein oligomers also increased neuronal expression of lysosomal‐associated membrane protein‐2A (LAMP‐2A), the lysosomal receptor that has a critical role in chaperone‐mediated autophagy. Unbiased screening of several small molecule libraries (including the NIH Clinical Collection) identified sigma‐2 receptor antagonists as the most effective at blocking α‐synuclein oligomer‐induced trafficking deficits and LAMP‐2A upregulation in a dose‐dependent manner. These results indicate that antagonists of the sigma‐2 receptor complex may alleviate α‐synuclein oligomer‐induced neurotoxicity and are a novel therapeutic approach for disease modification in PD and related α‐synucleinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
6
|
Esculetin as a Bifunctional Antioxidant Prevents and Counteracts the Oxidative Stress and Neuronal Death Induced by Amyloid Protein in SH-SY5Y Cells. Antioxidants (Basel) 2020; 9:antiox9060551. [PMID: 32630394 PMCID: PMC7346165 DOI: 10.3390/antiox9060551] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) appears to be an important determinant during the different stages of progression of Alzheimer’s Disease (AD). In particular, impaired antioxidant defense mechanisms, such as the decrease of glutathione (GSH) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), a master regulator of antioxidant genes, including those for GSH, are associated with OS in the human AD brain. Among the neuropathological hallmarks of AD, the soluble oligomers of amyloid beta (Aβ) peptides seem to promote neuronal death through mitochondrial dysfunction and OS. In this regard, bifunctional antioxidants can exert a dual neuroprotective role by scavenging reactive oxygen species (ROS) directly and concomitant induction of antioxidant genes. In this study, among natural coumarins (esculetin, scopoletin, fraxetin and daphnetin), we demonstrated the ability of esculetin (ESC) to prevent and counteract ROS formation in neuronal SH-SY5Y cells, suggesting its profile as a bifunctional antioxidant. In particular, ESC increased the resistance of the SH-SY5Y cells against OS through the activation of Nrf2 and increase of GSH. In similar experimental conditions, ESC could also protect the SH-SY5Y cells from the OS and neuronal death evoked by oligomers of Aβ1–42 peptides. Further, the use of the inhibitors PD98059 and LY294002 also showed that Erk1/2 and Akt signaling pathways were involved in the neuroprotection mediated by ESC. These results encourage further research in AD models to explore the efficacy and safety profile of ESC as a novel neuroprotective agent.
Collapse
|
7
|
Izzo NJ, Staniszewski A, To L, Fa M, Teich AF, Saeed F, Wostein H, Walko T, Vaswani A, Wardius M, Syed Z, Ravenscroft J, Mozzoni K, Silky C, Rehak C, Yurko R, Finn P, Look G, Rishton G, Safferstein H, Miller M, Johanson C, Stopa E, Windisch M, Hutter-Paier B, Shamloo M, Arancio O, LeVine H, Catalano SM. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits. PLoS One 2014; 9:e111898. [PMID: 25390368 PMCID: PMC4229098 DOI: 10.1371/journal.pone.0111898] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/02/2014] [Indexed: 01/09/2023] Open
Abstract
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Izzo
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Agnes Staniszewski
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Lillian To
- Stanford University Medical School Behavioral and Functional Neuroscience Laboratory, Palo Alto, California, United States of America
| | - Mauro Fa
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Andrew F. Teich
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Faisal Saeed
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Harrison Wostein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Thomas Walko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Anisha Vaswani
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Meghan Wardius
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Zanobia Syed
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Jessica Ravenscroft
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Kelsie Mozzoni
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Colleen Silky
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Patricia Finn
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Rishton
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Hank Safferstein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Miles Miller
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Conrad Johanson
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Edward Stopa
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | | | | | - Mehrdad Shamloo
- Stanford University Medical School Behavioral and Functional Neuroscience Laboratory, Palo Alto, California, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Susan M. Catalano
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Cytoprotective activity of minocycline includes improvement of mitochondrial coupling: the importance of minocycline concentration and the presence of VDAC. J Bioenerg Biomembr 2012; 44:297-307. [PMID: 22576350 DOI: 10.1007/s10863-012-9441-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022]
Abstract
Available data indicate that minocycline, an antibiotic of the tetracycline family, has cytoprotective properties due to a direct interaction with mitochondria. Yet, the data in the case of isolated mitochondria suggest discrepant or even detrimental effect(s) of the interaction. We have studied the cytoprotective activity displayed by minocycline in the case of the yeast Saccharomyces cerevisiae cells pretreated with H₂O₂. We demonstrated that the activity of minocycline required the presence of VDAC (voltage-dependent anion-selective channel) and provided distinct improvement of mitochondrial coupling. In the case of isolated mitochondria, we verified that minocycline exhibited uncoupler activity when applied in micromolar concentrations. However, when added in nanomolar concentrations, minocycline was able to improve the level of coupling for isolated mitochondria. The coupling improvement effect was observed in mitochondria containing VDAC but not in Δpor1 mitochondria (depleted of VDAC1, termed here VDAC) and in both types of mitoplasts. Thus, properly low concentrations of minocycline within the cell in the vicinity of VDAC-containing mitochondria enable the improvement of energy coupling of mitochondria that contributes to cytoprotective activity of minocycline.
Collapse
|
9
|
Di Francesco L, Correani V, Fabrizi C, Fumagalli L, Mazzanti M, Maras B, Schininà ME. 14-3-3ε marks the amyloid-stimulated microglia long-term activation. Proteomics 2011; 12:124-34. [DOI: 10.1002/pmic.201100113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022]
|