1
|
GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat Commun 2022; 13:7260. [PMID: 36434066 PMCID: PMC9700814 DOI: 10.1038/s41467-022-34998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.
Collapse
|
2
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
3
|
Yip JLK, Lee MMK, Leung CCY, Tse MK, Cheung AST, Wong YH. AGS3 and Gα i3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules 2020; 25:molecules25215169. [PMID: 33172018 PMCID: PMC7664263 DOI: 10.3390/molecules25215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Adult neurogenesis is modulated by many Gi-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation. Several components of the spindle orientation complex, but not those of the polarity complex, were upregulated upon differentiation of ENStem-A and ReNcell VM neural progenitor cells. Increased expression of nuclear mitotic apparatus (NuMA), Gαi subunit, and activators of G protein signaling (AGS3 and LGN) coincided with the appearance of a neuronal marker (β-III tubulin) and the concomitant loss of neural progenitor cell markers (nestin and Sox-2). Co-immunoprecipitation assays demonstrated that both Gαi3 and NuMA were associated with AGS3 in differentiated ENStem-A cells. Interestingly, AGS3 appeared to preferentially interact with Gαi3 in ENStem-A cells, and this specificity for Gαi3 was recapitulated in co-immunoprecipitation experiments using HEK293 cells transiently overexpressing GST-tagged AGS3 and different Gαi subunits. Moreover, the binding of Gαi3 to AGS3 was suppressed by GTPγS and pertussis toxin. Disruption of AGS3/Gαi3 interaction by pertussis toxin indicates that AGS3 may recognize the same site on the Gα subunit as G protein-coupled receptors. Regulatory mechanisms controlling the formation of spindle orientation complex may provide novel means to manipulate ACD which in turn may have an impact on neurogenesis.
Collapse
Affiliation(s)
- Jackson L. K. Yip
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Maggie M. K. Lee
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Crystal C. Y. Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Man K. Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Annie S. T. Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
| | - Yung H. Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; (J.L.K.Y.); (M.M.K.L.); (C.C.Y.L.); (M.K.T.); (A.S.T.C.)
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7328; Fax: +852-2358-1552
| |
Collapse
|
4
|
Ding Z, Ejendal KFK, Soto-Velasquez M, Hayes MP, Santoro N, Larsen MJ, Watts VJ. Genome-Wide Small Interfering RNA Screening Reveals a Role for Cullin3-Really Interesting New Gene Ligase Signaling in Heterologous Sensitization of Adenylyl Cyclase. J Pharmacol Exp Ther 2019; 372:267-276. [PMID: 31857349 DOI: 10.1124/jpet.119.261255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Heterologous sensitization of adenylyl cyclase (AC) is revealed as enhanced or exaggerated AC/cAMP signaling that occurs following persistent activation of Gα i/o-coupled receptors. This paradoxical phenomenon was discovered more than 40 years ago and was proposed as a cellular mechanism to explain the adaptive changes that occur following chronic exposure to drugs of abuse. However, the underlying molecular mechanisms of heterologous sensitization of AC remain largely unknown. In the present study, we performed a genome-wide cell-based RNA interference screen as an unbiased approach to identify genes associated with heterologous sensitization of AC. Following a series of validation and confirmation assays, three genes that form an E3 ligase complex, cullin3 (CUL3), neural precursor-cell-expressed and developmentally downregulated 8 (NEDD8), and really interesting new gene (RING)-box protein 1 (RBX1), were identified as specific modulators of heterologous sensitization of AC. Furthermore, based on the downstream actions of these genes, we evaluated the activity of proteasome inhibitors as well as the specific NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat), in AC sensitization. We demonstrate that MG-132 and bortezomib treatments could mimic the inhibitory effects observed with gene knockdown, and MLN4924 was potent and efficacious in blocking the development of heterologous sensitization of endogenous and recombinant AC isoforms, including AC1, AC2, AC5, and AC6. Together, by using genetic and pharmacological approaches, we identified, for the first time, cullin3-RING ligases and the protein degradation pathway as essential modulators for heterologous sensitization of AC. SIGNIFICANCE STATEMENT: Through a genome-wide cell-based RNA interference screening, we identified three genes that form an E3 ligase complex, cullin3, neural precursor-cell-expressed and developmentally downregulated 8 (NEDD8), and really interesting new gene-box protein 1, as specific modulators of heterologous sensitization of AC. The effect of cullin3, NEDD8, or really interesting new gene-box protein 1 small interfering RNAs on heterologous sensitization was recapitulated by proteasome inhibitors, MG132 and bortezomib, and the specific NEDD8-activating enzyme inhibitor, MLN4924. These results suggest a novel hypothesis in which protein degradation is involved in the sensitization of AC signaling that occurs following chronic activation of Gαi/o-coupled receptors.
Collapse
Affiliation(s)
- Zhong Ding
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Karin F K Ejendal
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Monica Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Michael P Hayes
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Nicholas Santoro
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Martha J Larsen
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology (Z.D., K.F.K.E., M.S.-V., M.P.H., V.J.W.), Purdue Institute for Drug Discovery (V.J.W.), and Purdue Institute for Integrative Neuroscience (V.J.W.), Purdue University, West Lafayette, Indiana; and Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (N.S., M.J.L.)
| |
Collapse
|
5
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
6
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Branham-O'Connor M, Robichaux WG, Zhang XK, Cho H, Kehrl JH, Lanier SM, Blumer JB. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3). J Biol Chem 2014; 289:10738-10747. [PMID: 24573680 DOI: 10.1074/jbc.m113.515031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.
Collapse
Affiliation(s)
- Melissa Branham-O'Connor
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - William G Robichaux
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Xian-Kui Zhang
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hyeseon Cho
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - John H Kehrl
- B-cell Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen M Lanier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
8
|
Singh V, Raghuwanshi SK, Smith N, Rivers EJ, Richardson RM. G Protein-coupled receptor kinase-6 interacts with activator of G protein signaling-3 to regulate CXCR2-mediated cellular functions. THE JOURNAL OF IMMUNOLOGY 2014; 192:2186-94. [PMID: 24510965 DOI: 10.4049/jimmunol.1301875] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The IL-8 (CXCL8) receptors CXCR1 and CXCR2 couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. We recently showed that CXCR1 couples predominantly to the G protein-coupled receptor kinase (GRK)2, whereas CXCR2 interacts with GRK6 to regulate cellular responses. In addition to G protein-coupled receptors, GRKs displayed a more diverse protein/protein interaction in cells. In this study, we sought to identify GRK6 binding partner(s) that may influence CXCL8 activities, using RBL-2H3 cells stably expressing CXCR1 (RBL-CXCR1) or CXCR2 (RBL-CXCR2), as well as human and murine neutrophils. Our data demonstrated that, upon CXCR2 activation, GRK6 interacts with activator of G protein signaling (AGS)3 and Gαi2 to form a GRK6/AGS3/Gαi2 complex. This complex is time dependent and peaked at 2-3 min postactivation. GTPγS pretreatment blocked GRK6/AGS3/Gαi2 formation, suggesting that this assembly depends on G protein activation. Surprisingly, CXCR2 activation induced AGS3 phosphorylation in a PKC-dependent, but GRK6-independent, fashion. Overexpression of AGS3 in RBL-CXCR2 significantly inhibited CXCL8-induced Ca(2+) mobilization, phosphoinositide hydrolysis, and chemotaxis. In contrast, short hairpin RNA inhibition of AGS3 enhanced CXCL8-induced Ca(2+) mobilization, receptor resistance to desensitization, and recycling to the cell surface, with no effect on receptor internalization. Interestingly, RBL-CXCR2-AGS3(-/-) cells displayed a significant increase in CXCR2 expression on the cell surface but decreased ERK1/2 and P38 MAPK activation. Taken together, these results indicate that GRK6 complexes with AGS3-Gαi2 to regulate CXCR2-mediated leukocyte functions at different levels, including downstream effector activation, receptor trafficking, and expression at the cell membrane.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| | | | | | | | | |
Collapse
|
9
|
Jiang X, Konkalmatt P, Yang Y, Gildea J, Jones JE, Cuevas S, Felder RA, Jose PA, Armando I. Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension 2013; 63:e74-80. [PMID: 24379187 DOI: 10.1161/hypertensionaha.113.02569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dopamine D2 receptor (D2R) negatively regulates inflammation in mouse renal proximal tubule cells (RPTCs), and lack or downregulation of the receptor in mice increases the vulnerability to renal inflammation independent of blood pressure. Some common single-nucleotide polymorphisms (SNPs; rs6276, rs6277, and rs1800497) in the human DRD2 gene are associated with decreased D2R expression and function, as well as high blood pressure. We tested the hypothesis that human RPTCs (hRPTCs) expressing these SNPs have increased expression of inflammatory and injury markers. We studied immortalized hRPTCs carrying D2R SNPs and compared them with cells carrying no D2R SNPs. RPTCs with D2R SNPs had decreased D2R expression and function. The expressions of the proinflammatory tumor necrosis factor-α and the profibrotic transforming growth factor-β1 and its signaling targets Smad3 and Snail1 were increased in hRPTC with D2R SNPs. These cells also showed induction of epithelial mesenchymal transition and production of extracellular matrix proteins, assessed by increased vimentin, fibronectin 1, and collagen I a1. To test the specificity of these D2R SNP effects, hRPTC with D2R SNPs were transfected with a plasmid encoding wild-type DRD2. The expression of D2R was increased and that of transforming growth factor-β1, Smad3, Snail1, vimentin, fibronectin 1, and collagen I a1 was decreased in hRPTC with D2R SNPs transfected with wild-type DRD2 compared with hRPTC-D2R SNP transfected with empty vector. These data support the hypothesis that D2R function has protective effects in hRPTCs and suggest that carriers of these SNPs may be prone to chronic renal disease and high blood pressure.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- University of Maryland School of Medicine, Department of Medicine, Division of Nephrology, 20 Penn St- HSFII Suite S003C, Baltimore, MD 21201.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2013; 85:388-96. [PMID: 24302560 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|