1
|
Li X, Liu W, Jiang G, Lian J, Zhong Y, Zhou J, Li H, Xu X, Liu Y, Cao C, Tao J, Cheng J, Zhang JH, Chen G. Celastrol Ameliorates Neuronal Mitochondrial Dysfunction Induced by Intracerebral Hemorrhage via Targeting cAMP-Activated Exchange Protein-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307556. [PMID: 38482725 PMCID: PMC11109624 DOI: 10.1002/advs.202307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Indexed: 05/23/2024]
Abstract
Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University168 Xianlin AvenueNanjing210023China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Xingshun Xu
- Department of NeurologyThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhou215123China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - John H Zhang
- Department of Physiology and PharmacologySchool of MedicineLoma Linda UniversityLoma LindaCA92350USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| |
Collapse
|
2
|
Baker TS, Zannou AL, Cruz D, Khadka N, Kellner C, Tyc R, Bikson M, Costa A. Development and Clinical Validation of a Finite Element Method Model Mapping Focal Intracranial Cooling. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2168-2174. [PMID: 35316187 PMCID: PMC9533256 DOI: 10.1109/tnsre.2022.3161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic hypothermia (TH) is a common and effective technique to reduce inflammation and induce neuroprotection across a variety of diseases. Focal TH of the brain can avoid the side effects of systemic cooling. The degree and extent of focal TH are a function of cooling probe design and local brain thermoregulation processes. To refine focal TH probe design, with application-specific optimization, we develop precise computational models of brain thermodynamics under intense local cooling. Here, we present a novel multiphysics in silico model that can accurately predict brain response to focal cooling. The model was parameterized from previously described values of metabolic activity, thermal conductivity, and temperature-dependent cerebral perfusion. The model was validated experimentally using data from clinical cases where local cooling was induced intracranially and brain temperatures monitored in real-time with MR thermometry. The validated model was then used to identify optimal design probe parameters to maximize volumetric TH, including considering three stratifications of cooling (mild, moderate, and profound) to produce Volume of Tissue Cooled (VOTC) maps. We report cooling radius increases in a nearly linear fashion with probe length and decreasing probe surface temperature.
Collapse
|
3
|
Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Front Cell Neurosci 2022; 16:853589. [PMID: 35813506 PMCID: PMC9262401 DOI: 10.3389/fncel.2022.853589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a clinical syndrome in which blood accumulates in the brain parenchyma because of a nontraumatic rupture of a blood vessel. Because of its high morbidity and mortality rate and the lack of effective therapy, the treatment of ICH has become a hot research topic. Meanwhile, Oxidative stress is one of the main causes of secondary brain injury(SBI) after ICH. Therefore, there is a need for an in-depth study of oxidative stress after ICH. This review will discuss the pathway and effects of oxidative stress after ICH and its relationship with inflammation and autophagy, as well as the current antioxidant therapy for ICH with a view to deriving better therapeutic tools or targets for ICH.
Collapse
|
4
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
5
|
Liddle LJ, Kalisvaart ACJ, Abrahart AH, Almekhlafi M, Demchuk A, Colbourne F. Targeting focal ischemic and hemorrhagic stroke neuroprotection: Current prospects for local hypothermia. J Neurochem 2021; 160:128-144. [PMID: 34496050 DOI: 10.1111/jnc.15508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Xie B, Qiao M, Xuan J. lncRNA MEG3 Downregulation Relieves Intracerebral Hemorrhage by Inhibiting Oxidative Stress and Inflammation in an miR-181b-Dependent Manner. Med Sci Monit 2021; 27:e929435. [PMID: 34267173 PMCID: PMC8290977 DOI: 10.12659/msm.929435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study was designed to illustrate the effects and latent mechanism of lncRNA maternally expressed gene 3 (MEG3) on intracerebral hemorrhage (ICH)-induced brain injury. MATERIAL AND METHODS An ICH rat model was generated to determine the role of lncRNA MEG3 in ICH. The interaction between lncRNA MEG3 and microRNA (miR)-181b were confirmed by Starbase and dual-luciferase reporter assay. One hour (h) or 3 days after ICH stimulation, rat neurological injury was evaluated by modified Neurological Severity Score (mNSS). Brain water content and cell apoptosis were assessed using brain edema assessment and flow cytometry (FCM), respectively. Caspase3 activity was also determined. Enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the levels of pro-inflammatory cytokines. Moreover, the representative biomarkers of oxidative stress were evidenced using detection kits. RESULTS The lncRNA MEG3 level in ICH rat brain tissues was higher than that in the sham group. miR-181b was a direct target of lncRNA MEG3 and it was downregulated in brain tissues of ICH rats. Notably, we found that neurobehavioral scores, brain water content, and neuronal apoptosis were decreased and caspase3 activity was reduced in MEG3-shRNA-treated ICH rats, while we observed the opposite result in ICH+MEG3-shRNA+miR-181b inhibitor rats. Further analyses revealed that MEG3-shRNA inhibited inflammatory cytokines release and reduced oxidative stress. All these results were reversed by miR-181b inhibitor. In addition, MEG3-shRNA activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, which was reversed by miR-181b inhibitor. CONCLUSIONS MEG3-shRNA restrained oxidative stress and inflammation following ICH in an miR-181b-dependent manner.
Collapse
Affiliation(s)
- Bo Xie
- Department of Neurosurgery, Rongcheng Shidao People's Hospital, Weihai, Shandong, China (mainland)
| | - Mingliang Qiao
- Department of Neurosurgery, Rongcheng Shidao People's Hospital, Weihai, Shandong, China (mainland)
| | - Jialong Xuan
- Department of Neurosurgery, Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China (mainland)
| |
Collapse
|
7
|
Withers SE, Parry-Jones AR, Allan SM, Kasher PR. A Multi-Model Pipeline for Translational Intracerebral Haemorrhage Research. Transl Stroke Res 2020; 11:1229-1242. [PMID: 32632777 PMCID: PMC7575484 DOI: 10.1007/s12975-020-00830-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Apart from acute and chronic blood pressure lowering, we have no specific medications to prevent intracerebral haemorrhage (ICH) or improve outcomes once bleeding has occurred. One reason for this may be related to particular limitations associated with the current pre-clinical models of ICH, leading to a failure to translate into the clinic. It would seem that a breakdown in the 'drug development pipeline' currently exists for translational ICH research which needs to be urgently addressed. Here, we review the most commonly used pre-clinical models of ICH and discuss their advantages and disadvantages in the context of translational studies. We propose that to increase our chances of successfully identifying new therapeutics for ICH, a bi-directional, 2- or 3-pronged approach using more than one model species/system could be useful for confirming key pre-clinical observations. Furthermore, we highlight that post-mortem/ex-vivo ICH patient material is a precious and underused resource which could play an essential role in the verification of experimental results prior to consideration for further clinical investigation. Embracing multidisciplinary collaboration between pre-clinical and clinical ICH research groups will be essential to ensure the success of this type of approach in the future.
Collapse
Affiliation(s)
- Sarah E Withers
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Stott Lane, Salford, M6 8HD, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Xie J, Hong E, Ding B, Jiang W, Zheng S, Xie Z, Tian D, Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front Cell Neurosci 2020; 14:578060. [PMID: 33281556 PMCID: PMC7691600 DOI: 10.3389/fncel.2020.578060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common and severe neurological disorder that can effectively induce oxidative stress responses. NADPH oxidase 4 (NOX4) is a member of the NOX family of oxidases. It is expressed in the brain normally and involved in cell signal transduction and the removal of harmful substances. In some pathological conditions, it mediates inflammation and the aging of cells. However, few studies have focused on whether NOX4 is involved in brain injury caused by ICH. Therefore, this study aimed to clarify the role of NOX4 in the pathological process that occurs after ICH and the potential mechanism underlying its role. A rat model of ICH was established by the injection of collagenase type IV, and the expression of NOX4 was then determined. Further, siRNA-mediated protein expression knockdown technology was used for NOX4 knockdown, and western immunoblotting, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and other molecular biological techniques were performed to assess the effects of NOX4 knockdown. Neurobiological scoring, brain water content determination, and other brain injury detection methods were also performed to assess the role of NOX4 following ICH. We found that the expression of NOX4 increased in the brains of rats after ICH, and that it was mainly expressed in neurons, astrocytes, vascular endothelial cells and microglia. Following NOX4 knockdown, the level of oxidative stress in the brain decreased considerably, the neurobehavioral scores improved, the levels of neuronal apoptosis reduced markedly, and the impairment of blood-brain barrier function was significantly ameliorated in rats with ICH. In conclusion, this study suggests that NOX4 expression is upregulated after ICH, which may cause an imbalance in the oxidative stress of relevant cells in the brain, leading to subsequent apoptosis of neurons and damage to the blood-brain barrier due to secondary brain injury following ICH.
Collapse
Affiliation(s)
- Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Baiyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shizhong Zheng
- Department of Neurosurgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhichong Xie
- Department of Neurosurgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Tian
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhao W, Wu C, Stone C, Ding Y, Ji X. Treatment of intracerebral hemorrhage: Current approaches and future directions. J Neurol Sci 2020; 416:117020. [PMID: 32711191 DOI: 10.1016/j.jns.2020.117020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) stands out among strokes, both for the severely morbid outcomes it routinely produces, and for the striking deficiency of defenses possessed against the same. The brain damage caused by ICH proceeds through multiple pathophysiological mechanisms, broadly differentiated into those considered primary, arising from the hematoma itself, and the secondary consequences of hematoma presence and expansion thereof. A number of interventions against ICH and its sequelae have been investigated (e.g., hemostatic therapies, blood pressure control, hematoma evacuation, and a variety of neuroprotective strategies), but conclusive demonstrations of clinical benefit have remained largely elusive. In this review, we begin with a description of these interventions and the trials in which they have been implemented, coupled with an attempt to account for their failure. Possible causes discussed include iatrogenic injury during hematoma evacuation, secondary injury initiated by hematoma persistence after evacuation, and inadequate therapeutic power arising from an excessively narrow focus on a single component of the complex pathophysiology of ICH injury. To conclude, we propose several strategies, such as enhancing endogenous hematoma resolution, hematoma evacuation-based neuroprotection, and multi-targeted therapy, that hold promise as prospects for the extension of anti-ICH therapy into the domain of clinical significance.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
10
|
Gastrodin Attenuates Neuronal Apoptosis and Neurological Deficits after Experimental Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2019; 29:104483. [PMID: 31727597 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Gastrodin, a glucoside of gastrodigenin, inhibits cerebral oxidant stress and apoptosis in multiple central nervous system injury, but its effect in intracerebral hemorrhage (ICH) remains unclear. This study investigated the effect of gastrodin on neuronal apoptosis and neurological deficits in rat ICH model. METHODS In vitro experiments were performed using hematoma lysate-induced cell damage model in primary cortical neurons. Rat ICH model was produced by a caudatum injection of collagenase. Gastrodin was intraperitoneal injected after 2 hours following ICH. Cell viability, brain water content, neurological score, western blot, and immunofluorescence experiments were performed. RESULTS Gastrodin significantly decreased hematoma lysate-induced reduction of cell viability and cell apoptosis in primary cortical neurons. Gastrodin significantly improved brain edema and neurological deficits post-ICH. Moreover, gastrodin administration significantly reduced levels of ROS, 8-OHDG, 3-Nitrotyrosine and MDA, while increased GSH-Px and SOD activity, and stimulated the upregulation of Keap1, Nrf2, and HO-1 signaling at 72 hours post-ICH. Furthermore, gastrodin significantly increased Bcl-2 expression, while reduced level of Bax, active caspase-3 and active caspase-9, also reduced the number of active caspase-3 or TUNEL positive neurons at 72 hours post-ICH. CONCLUSION These results suggest that gastrodin is neuroprotective after ICH and the mechanism may be associated with the inhibition of oxidative stress and neuronal apoptosis.
Collapse
|
11
|
Wowk S, Fagan KJ, Ma Y, Nichol H, Colbourne F. Examining potential side effects of therapeutic hypothermia in experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2017; 37:2975-2986. [PMID: 27899766 PMCID: PMC5536807 DOI: 10.1177/0271678x16681312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022]
Abstract
Studies treating intracerebral hemorrhage (ICH) with therapeutic hypothermia (TH) have shown inconsistent benefits. We hypothesized that TH's anti-inflammatory effects may be responsible as inflammatory cells are essential for removing degrading erythrocytes. Here, we subjected rats to a collagenase-induced striatal ICH followed by whole-body TH (∼33℃ for 11-72 h) or normothermia. We used X-ray fluorescence imaging to spatially quantify total and peri-hematoma iron three days post-injury. At three and seven days, we measured non-heme iron levels. Finally, hematoma volume was quantified on one, three, and seven days. In the injured hemisphere, total iron levels were elevated ( p < 0.001) with iron increasing in the peri-hematoma region ( p = 0.007). Non-heme iron increased from three to seven days (p < 0.001). TH had no effect on any measure of iron ( p ≥ 0.479). At one and three days, TH did not affect hematoma volume ( p ≥ 0.264); however, at seven days there was a four-fold increase in hematoma volume in 40% of treated animals ( p = 0.032). Thus, even when TH does not interfere with initial increases in total and non-heme iron or its containment, TH can cause re-bleeding post-treatment. This serious complication could partly account for the intermittent protection previously observed. This also raises serious concerns for clinical usage of TH for ICH.
Collapse
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly J Fagan
- Department of Biology, MacEwan University, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Babadjouni RM, Radwanski RE, Walcott BP, Patel A, Durazo R, Hodis DM, Emanuel BA, Mack WJ. Neuroprotective strategies following intraparenchymal hemorrhage. J Neurointerv Surg 2017; 9:1202-1207. [PMID: 28710084 DOI: 10.1136/neurintsurg-2017-013197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022]
Abstract
Intracerebral hemorrhage and, more specifically, intraparenchymal hemorrhage, are devastating disease processes with poor clinical outcomes. Primary injury to the brain results from initial hematoma expansion while secondary hemorrhagic injury occurs from blood-derived products such as hemoglobin, heme, iron, and coagulation factors that overwhelm the brains natural defenses. Novel neuroprotective treatments have emerged that target primary and secondary mechanisms of injury. Nonetheless, translational application of neuroprotectants from preclinical to clinical studies has yet to show beneficial clinical outcomes. This review summarizes therapeutic agents and neuroprotectants in ongoing clinical trials aimed at targeting primary and secondary mechanisms of injury after intraparenchymal hemorrhage.
Collapse
Affiliation(s)
- Robin Moshe Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ryan E Radwanski
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brian P Walcott
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ramon Durazo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Drew M Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Benjamin A Emanuel
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Xie RX, Li DW, Liu XC, Yang MF, Fang J, Sun BL, Zhang ZY, Yang XY. Carnosine Attenuates Brain Oxidative Stress and Apoptosis After Intracerebral Hemorrhage in Rats. Neurochem Res 2016; 42:541-551. [DOI: 10.1007/s11064-016-2104-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023]
|
14
|
Intraoperative Targeted Temperature Management in Acute Brain and Spinal Cord Injury. Curr Neurol Neurosci Rep 2016; 16:18. [PMID: 26759319 DOI: 10.1007/s11910-015-0619-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury.
Collapse
|
15
|
Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3215391. [PMID: 26843907 PMCID: PMC4710930 DOI: 10.1155/2016/3215391] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is associated with the highest mortality and morbidity despite only constituting approximately 10–15% of all strokes. Complex underlying mechanisms consisting of cytotoxic, excitotoxic, and inflammatory effects of intraparenchymal blood are responsible for its highly damaging effects. Oxidative stress (OS) also plays an important role in brain injury after ICH but attracts less attention than other factors. Increasing evidence has demonstrated that the metabolite axis of hemoglobin-heme-iron is the key contributor to oxidative brain damage after ICH, although other factors, such as neuroinflammation and prooxidases, are involved. This review will discuss the sources, possible molecular mechanisms, and potential therapeutic targets of OS in ICH.
Collapse
|