1
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
2
|
Roy A, Segond von Banchet G, Gimeno-Ferrer F, König C, Eitner A, Ebersberger A, Ebbinghaus M, Leuchtweis J, Schaible HG. Impact of Interleukin-6 Activation and Arthritis on Epidermal Growth Factor Receptor (EGFR) Activation in Sensory Neurons and the Spinal Cord. Int J Mol Sci 2024; 25:7168. [PMID: 39000275 PMCID: PMC11241234 DOI: 10.3390/ijms25137168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.
Collapse
Affiliation(s)
- Anutosh Roy
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Gisela Segond von Banchet
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Fátima Gimeno-Ferrer
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Annett Eitner
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany;
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Matthias Ebbinghaus
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Johannes Leuchtweis
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| |
Collapse
|
3
|
Yu Z, Ding R, Yan Q, Cheng M, Li T, Zheng F, Zhu L, Wang Y, Tang T, Hu E. A Novel Network Pharmacology Strategy Based on the Universal Effectiveness-Common Mechanism of Medical Herbs Uncovers Therapeutic Targets in Traumatic Brain Injury. Drug Des Devel Ther 2024; 18:1175-1188. [PMID: 38645986 PMCID: PMC11032138 DOI: 10.2147/dddt.s450895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ruoqi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410008, People’s Republic of China
| | - Lin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
4
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li C, Li J, Tao H, Shan J, Liu F, Deng X, Lin Y, Lin X, Fu L, Wang B, Bi Y. Differential hippocampal protein expression between normal mice and mice with the perioperative neurocognitive disorder: a proteomic analysis. Eur J Med Res 2021; 26:130. [PMID: 34732255 PMCID: PMC8565051 DOI: 10.1186/s40001-021-00599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To compare differential expression protein in hippocampal tissues from mice of perioperative neurocognitive disorder (PND) and normal control mice and to explore the possible mechanism of PND. METHODS Mice were randomly divided into a PND group (n = 9) and a control group (n = 9).The mice in the PND group were treated with open tibial fracture with intramedullary fixation under isoflurane anesthesia, while the mice in the control group received pure oxygen without surgery. The cognitive functions of the two groups were examined using Morris water maze experiment, Open field test and Fear conditioning test. The protein expression of the hippocampus of mice was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore the principal functions of dysregulated proteins. RESULTS A total of 21 proteins were differentially expressed between PND and control mice on days 1, 3, and 7 after the operation. These proteins were involved in many pathological processes, such as neuroinflammatory responses, mitochondrial oxidative stress, impaired synaptic plasticity, and neuronal cell apoptosis. Also, the dysregulated proteins were involved in MAPK, AMPK, and ErbB signaling pathways. CONCLUSION The occurrence of PND could be attributed to multiple mechanisms.
Collapse
Affiliation(s)
- Chuan Li
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Jingzhu Li
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - He Tao
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Jinghua Shan
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Fanghao Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Xiyuan Deng
- Department of Anesthesiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yanan Lin
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Li Fu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, 5 Donghai Middle Road, Qingdao, Shandong, 266071, People's Republic of China.
| |
Collapse
|
6
|
Li ZW, Zhao JJ, Li SY, Cao TT, Wang Y, Guo Y, Xi GJ. Blocking the EGFR/p38/NF-κB signaling pathway alleviates disruption of BSCB and subsequent inflammation after spinal cord injury. Neurochem Int 2021; 150:105190. [PMID: 34537318 DOI: 10.1016/j.neuint.2021.105190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation is involved in blood spinal cord barrier (BSCB) disruption and secondary injury after spinal cord injury (SCI). However, the underlying mechanisms of EGFR activation mediating BSCB disruption and secondary injury after SCI remain unclear. An in vitro model of oxygen and glucose deprivation/reoxygenation (OGD/R) induced BSCB damage and in vivo rat SCI model were employed to define the role of EGFR/p38/NF-κB signal pathway activation and its induced inflammatory injury in main cellular components of BSCB. Genetic regulation (lentivirus delivered shRNA and overexpression system) or chemical intervention (agonist or inhibitor) were applied to activate or inactivate EGFR and p38 in astrocytes and microvascular endothelial cells (MEC) under which conditions, the expression of pro-inflammatory factors (TNF-α, iNOS, COX-2, and IL-1β), tight junction (TJ) protein (ZO-1 and occludin), nuclear translocation of NF-κB and permeability of BSCB were analyzed. The pEGFR was increased in astrocytes and MEC which induced the activation of EGFR and p38 and NF-κB nuclear translocation. The activation of EGFR and p38 increased the TNF-α, iNOS, COX-2, and IL-1β responsible for the inflammatory injury and reduced the ZO-1 and occludin which caused BSCB disruption. While EGFR or p38 inactivation inhibited NF-κB nuclear translocation, and markedly attenuated the production of pro-inflammatory factors and the loss of TJ protein. This study suggests that the EGFR activation in main cellular components of BSCB after SCI mediates BSCB disruption and secondary inflammatory injury via the EGFR/p38/NF-κB pathway.
Collapse
Affiliation(s)
- Zai-Wang Li
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, PR China.
| | - Jing-Jing Zhao
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Su-Ya Li
- Department of Neurology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Ting-Ting Cao
- Department of Neurology, Yancheng First People's Hospital, Yancheng, 224001, PR China
| | - Yi Wang
- University of Traditional Chinese Medicine, Kunming, 650500, PR China; Otolaryngological Department, Yunnan Province Traditional Chinese Medicine, Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650500, PR China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, PR China
| | - Guang-Jun Xi
- Department of Neurology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China.
| |
Collapse
|
7
|
Liu J, Li R, Huang Z, Lin J, Ji W, Huang Z, Liu Q, Wu X, Wu X, Jiang H, Ye Y, Zhu Q. Rapamycin Preserves Neural Tissue, Promotes Schwann Cell Myelination and Reduces Glial Scar Formation After Hemi-Contusion Spinal Cord Injury in Mice. Front Mol Neurosci 2021; 13:574041. [PMID: 33551740 PMCID: PMC7862581 DOI: 10.3389/fnmol.2020.574041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Protecting white matter is one of the key treatment strategies for spinal cord injury (SCI), including alleviation of myelin loss and promotion of remyelination. Rapamycin has been shown neuroprotective effects against SCI and cardiotoxic effects while enhancing autophagy. However, specific neuroprotection of rapamycin for the white matter after cervical SCI has not been reported. Therefore, we aim to evaluate the role of rapamycin in neuroprotection after hemi-contusion SCI in mice. Forty-six 8-week-old mice were randomly assigned into the rapamycin group (n = 16), vehicle group (n = 16), and sham group (n = 10). All mice of the rapamycin and vehicle groups received a unilateral contusion with 1.2-mm displacement at C5 followed by daily intraperitoneal injection of rapamycin or dimethyl sulfoxide solution (1.5 mg⋅kg-1⋅day-1). The behavioral assessment was conducted before the injury, 3 days and every 2 weeks post-injury (WPI). The autophagy-related proteins, the area of spared white matter, the number of oligodendrocytes (OLs) and axons were evaluated at 12 WPI, as well as the glial scar and the myelin sheaths formed by Schwann cells at the epicenter. The 1.2 mm contusion led to a consistent moderate-severe SCI in terms of motor function and tissue damage. Rapamycin administration promoted autophagy in spinal cord tissue after injury and reduced the glial scar at the epicenter. Additionally, rapamycin increased the number of OLs and improved motor function significantly than in the vehicle group. Furthermore, the rapamycin injection resulted in an increase of Schwann cell-mediated remyelination and weight loss. Our results suggest that rapamycin can enhance autophagy, promote Schwann cell myelination and motor function recovery by preserved neural tissue, and reduce glial scar after hemi-contusive cervical SCI, indicating a potential strategy for SCI treatment.
Collapse
Affiliation(s)
- Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruoyao Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Ji
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Pharmaceutical Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Gaojian T, Dingfei Q, Linwei L, Xiaowei W, Zheng Z, Wei L, Tong Z, Benxiang N, Yanning Q, Wei Z, Jian C. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov 2020; 6:97. [PMID: 33083018 PMCID: PMC7538575 DOI: 10.1038/s41420-020-00333-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disease; however, there is no effective treatment for spinal cord injury. Neuroinflammation involves the activation of resident microglia and the infiltration of macrophages is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Parthenolide (PN) has been reported to exert anti-inflammatory effects in fever, migraines, arthritis, and superficial inflammation; however, the role of PN in SCI therapeutics has not been clarified. In this study, we showed that PN could improve the functional recovery of spinal cord in mice as revealed by increased BMS scores and decreased cavity of spinal cord injury in vivo. Immunofluorescence staining experiments confirmed that PN could promote axonal regeneration, increase myelin reconstitution, reduce chondroitin sulfate formation, inhibit scar hyperplasia, suppress the activation of A1 neurotoxic reactive astrocytes and facilitate shift from M1 to M2 polarization of microglia/macrophages. To verify how PN exerts its effects on microglia/macrophages polarization, we performed the mechanism study in vitro in microglia cell line BV-2. PN could significantly reduce M1 polarization in BV2 cells and partially rescue the decrease in the expression of M2 phenotype markers of microglia/macrophage induced by LPS, but no significant effect on M2 polarization stimulated with IL-4 was observed. Further study demonstrated PN inhibited NF-κB signal pathway directly or indirectly, and suppressed activation of signal transducer and activator of transcription 1 or 3 (STAT1/3) via reducing the expression of HDAC1 and subsequently increasing the levels of STAT1/3 acetylation. Overall, our study illustrated that PN may be a promising strategy for traumatic SCI.
Collapse
Affiliation(s)
- Tao Gaojian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Qian Dingfei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Li Linwei
- Department of Orthopedic, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 China
| | - Wang Xiaowei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhou Zheng
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Liu Wei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhu Tong
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Ning Benxiang
- Department of Pain Management, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 China
| | - Qian Yanning
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhou Wei
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chen Jian
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
9
|
Romano R, Bucci C. Role of EGFR in the Nervous System. Cells 2020; 9:E1887. [PMID: 32806510 PMCID: PMC7464966 DOI: 10.3390/cells9081887] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues, being involved in growth, differentiation, maintenance and repair of various tissues and organs. The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous system, other growth factors, and thus other receptors, are important for growth, differentiation and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a long time, the role of EGFR in the nervous system has been underestimated and poorly investigated. However, EGFR is expressed both in the central and peripheral nervous systems and it has been demonstrated to have specific important neurotrophic functions, in particular in the central nervous system. This review discusses the role of EGFR in regulating differentiation and functions of neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.
Collapse
Affiliation(s)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
10
|
Tavassoly O, Sato T, Tavassoly I. Inhibition of Brain Epidermal Growth Factor Receptor Activation: A Novel Target in Neurodegenerative Diseases and Brain Injuries. Mol Pharmacol 2020; 98:13-22. [PMID: 32350120 DOI: 10.1124/mol.120.119909] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/10/2020] [Indexed: 02/14/2025] Open
Abstract
Several reports have been published recently demonstrating a beneficial effect of epidermal growth factor receptor (EGFR) inhibitors in improving pathologic and behavioral conditions in neurodegenerative diseases (NDDs) such as Alzheimer's disease and Amyotrophic Lateral Sclerosis (ALS) as well as the brain and spinal cord injuries (SCI). Despite successful therapeutic effects of EGFR inhibition in these pathologic conditions, there is still no report of proof-of-concept studies in well-characterized animal models using recently developed blood-brain barrier (BBB)-penetrating EGFR inhibitors, which is due to previous conflicting reports concerning the level of EGFR or activated EGFR in normal and pathologic conditions that caused target engagement to be a concern in any future EGFR inhibition therapy. In this review, the level of EGFR expression and activation in the developing central nervous system (CNS) compared with the adult CNS will be explained as well as how neuronal injury or pathologic conditions, especially inflammation and amyloid fibrils, induce reactive astrocytes leading to an increase in the expression and activation of EGFR and, finally, neurodegeneration. Furthermore, in this review, we will discuss two main molecular mechanisms that can be proposed as the neuroprotective effects of EGFR inhibition in these pathologic conditions. We will also review the recent advances in the development of BBB-penetrating EGFR inhibitors in cancer therapy, which may eventually be repositioned for NDDs and SCI therapy in the future. SIGNIFICANCE STATEMENT: Based on the lessons from the applications of EGFR inhibitors in oncology, it is concluded that EGFR inhibitors can be beneficial in treatment of neurodegenerative diseases and spinal cord injuries. They carry their therapeutic potentials through induction of autophagy and attenuation of reactive astrocytes.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Takashi Sato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Iman Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| |
Collapse
|
11
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
12
|
MicroRNA-219 Inhibits Proliferation and Induces Differentiation of Oligodendrocyte Precursor Cells after Contusion Spinal Cord Injury in Rats. Neural Plast 2019; 2019:9610687. [PMID: 30911293 PMCID: PMC6398016 DOI: 10.1155/2019/9610687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-219 (miR-219) regulates the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) during central nervous system (CNS) development. OPCs only differentiate into oligodendrocytes (OLs) in the healthy CNS, but can generate astrocytes (As) after injury. We hypothesized that miR-219 may modulate OPC proliferation and differentiation in a cervical C5 contusion spinal cord injury (SCI) model. After injury, we observed a decrease in the miR-219 level and quantity of OLs and an increase in the number of OPCs and As. Silencing of miR-219 by its antagomir in vivo produced similar results, but of greater magnitude. Overexpression of miR-219 by its agomir in vivo increased the number of OLs and suppressed generation of OPCs and As. Luxol fast blue staining confirmed that SCI caused demyelination and that the extent of demyelination was attenuated by miR-219 overexpression, but aggravated by miR-219 reduction. Monocarboxylate transporter 1 (MCT-1) may be implicated in the regulation of OPC proliferation and differentiation mediated by miR-219 following contusion SCI. Collectively, our data suggest that miR-219 may mediate SCI-induced OPC proliferation and differentiation, and MCT-1 may participate in this process as a target of miR-219.
Collapse
|
13
|
Ozturk AM, Sozbilen MC, Sevgili E, Dagci T, Özyalcin H, Armagan G. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury. Injury 2018; 49:1038-1045. [PMID: 29602490 DOI: 10.1016/j.injury.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
Abstract
Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system.
Collapse
Affiliation(s)
- Anil Murat Ozturk
- Department of Orthopaedic Surgery, School of Medicine Hospital, Ege University, Bornova, Izmir, Turkey.
| | - Murat Celal Sozbilen
- Department of Orthopaedics and Traumatology, Dr Behcet Uz Child Diseases and Surgery Research and Training Hospital, Konak, Izmir, Turkey
| | - Elvin Sevgili
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Taner Dagci
- Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey; Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| | - Halit Özyalcin
- Department of Orthopaedic Surgery, School of Medicine Hospital, Ege University, Bornova, Izmir, Turkey
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Yang HJ, Ma SP, Ju F, Zhang YP, Li ZC, Zhang BB, Lian JJ, Wang L, Cheng BF, Wang M, Feng ZW. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway. J Mol Neurosci 2016; 60:517-524. [DOI: 10.1007/s12031-016-0845-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|