1
|
Liu Z, Wang J, Jin X, Gao P, Zhao Y, Yin M, Ma X, Xin Z, Zhao Y, Zhou X, Gao W. 1,8-Cineole Alleviates OGD/R-Induced Oxidative Damage and Restores Mitochondrial Function by Promoting the Nrf2 Pathway. Biol Pharm Bull 2023; 46:1371-1384. [PMID: 37532524 DOI: 10.1248/bpb.b23-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Zhenyi Liu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Jing Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ping Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Meijuan Yin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xian Ma
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Ziyuan Xin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Yuemou Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Xiaohong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine
| |
Collapse
|
2
|
Xu A, Li W, Cai J, Wen Z, Wang K, Chen Y, Li X, Guan D, Duan C. Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation. BMC Complement Med Ther 2023; 23:178. [PMID: 37264383 DOI: 10.1186/s12906-023-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Taohong Siwu Decoction (THSWD) is a widely used traditional Chinese medicine (TCM) prescription in the treatment of ischemic stroke. There are thousands of chemical components in THSWD. However, the key functional components are still poorly understood. This study aimed to construct a mathematical model for screening of active ingredients in TCM prescriptions and apply it to THSWD on ischemic stroke. METHODS Botanical drugs and compounds in THSWD were acquired from multiple public TCM databases. All compounds were initially screened by ADMET properties. SEA, HitPick, and Swiss Target Prediction were used for target prediction of the filtered compounds. Ischemic stroke pathological genes were acquired from the DisGeNet database. The compound-target-pathogenic gene (C-T-P) network of THSWD was constructed and then optimized using the multiobjective optimization (MOO) algorithm. We calculated the cumulative target coverage score of each compound and screened the top compounds with 90% coverage. Finally, verification of the neuroprotective effect of these compounds was performed with the oxygen-glucose deprivation and reoxygenation (OGD/R) model. RESULTS The optimized C-T-P network contains 167 compounds, 1,467 predicted targets, and 1,758 stroke pathological genes. And the MOO model showed better optimization performance than the degree model, closeness model, and betweenness model. Then, we calculated the cumulative target coverage score of the above compounds, and the cumulative effect of 39 compounds on pathogenic genes reached 90% of all compounds. Furthermore, the experimental results showed that decanoic acid, butylphthalide, chrysophanol, and sinapic acid significantly increased cell viability. Finally, the docking results showed the binding modes of these four compounds and their target proteins. CONCLUSION This study provides a methodological reference for the screening of potential therapeutic compounds of TCM. In addition, decanoic acid and sinapic acid screened from THSWD were found having potential neuroprotective effects first and verified with cell experiments, however, further in vitro and in vivo studies are needed to explore the precise mechanisms involved.
Collapse
Affiliation(s)
- Anqi Xu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Wenxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuohua Wen
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Kexin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xifeng Li
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Chuanzhi Duan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
3
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
4
|
Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion. Int J Mol Sci 2022; 23:ijms231810394. [PMID: 36142301 PMCID: PMC9498989 DOI: 10.3390/ijms231810394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.
Collapse
|
5
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
6
|
Dai Y, Yan M, Wan J, Xiao T. Maf1 mitigates sevoflurane-induced microglial inflammatory damage and attenuates microglia-mediated neurotoxicity in HT-22 cells by activating the AMPK/Nrf2 signaling. Neurotoxicology 2022; 90:237-245. [PMID: 35430185 DOI: 10.1016/j.neuro.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maf1 has been found to play protective function against neuroinflammation and neuroapoptosis. This study seeks to explore whether and how Maf1 is involved in sevoflurane (Sev)-induced neuroinflammation and microglia-mediated neurotoxicity. METHODS qRT-PCR and western blot were used to detect the gene expression. ELISA was used to detect inflammatory factors. Cell viability was evaluated by using the Cell Counting Kit-8 kit. Neuroapoptosis was assessed with trhe Caspase-3 Assay Kit and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) technique. RESULTS Maf1 expression was downregulated in Sev-stimulated BV2 microglial cells. Maf1 overexpression down-regulates the expression of pro-inflammatory M1-type markers (CD86, iNOS, IFN-γ) and up-regulates the expression of anti-inflammatory M2-type markers (CD206, TGF-β, Arg-1), and Maf1 reduces the Sev-induced inflammatory response in BV2 cells. After Maf1 overexpression, the relative expression of p-AMPK/AMPK and nucleus-Nrf2 increased significantly in BV2 cells treated with Sev. Inhibition of AMPK/Nrf2 pathway by compound C reverses anti-inflammatory effect of Maf1 in Sev-stimulated BV2 cells. Compound C reverses the effect of Maf1 on microglia-mediated neurotoxicity in HT-22 hippocampal neuronal cells. CONCLUSIONS Maf1 mitigates Sev-induced microglial inflammatory damage and attenuates microglia-mediated neurotoxicity by activating the AMPK/Nrf2 signaling.
Collapse
Affiliation(s)
- Yunyi Dai
- Department of Neurology, The First People's Hospital of Shangqiu, China
| | - Mingguang Yan
- Department of Laboratory Medicine, The First People's Hospital of Shangqiu, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, China
| | - Tao Xiao
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, China.
| |
Collapse
|
7
|
Xue DJ, Zhen Z, Wang KX, Zhao JL, Gao Y, Chen YP, Shen YB, Peng ZZ, Guan DG, Huang T. Uncovering the potential mechanism of Xue Fu Zhu Yu Decoction in the treatment of intracerebral hemorrhage. BMC Complement Med Ther 2022; 22:103. [PMID: 35413898 PMCID: PMC9004081 DOI: 10.1186/s12906-022-03577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Chinese herbal medicine (CHM) is characterized by “multi- compounds, multi-targets and multi-pathway”, which has advanced benefits for preventing and treating complex diseases, but there still exists unsolved issues, mainly include unclear material basis and underlying mechanism of prescription. Integrated pharmacology is a hot cross research area based on system biology, mathematics and poly-pharmacology. It can systematically and comprehensively investigate the therapeutic reaction of compounds or drugs on pathogenic genes network, and is especially suitable for the study of complex CHM systems. Intracerebral Hemorrhage (ICH) is one of the main causes of death among Chinese residents, which is characterized with high mortality and high disability rate. In recent years, the treatment of ICH by CHM has been deeply researched. Xue Fu Zhu Yu Decoction (XFZYD), one of the commonly used prescriptions in treating ICH at clinic level, has not been clear about its mechanism. Methods Here, we established a strategy, which based on compounds-targets, pathogenetic genes, network analysis and node importance calculation. Using this strategy, the core compounds group (CCG) of XFZYD was predicted and validated by in vitro experiments. The molecular mechanism of XFZYD in treating ICH was deduced based on CCG and their targets. Results The results show that the CCG with 43 compounds predicted by this model is highly consistent with the corresponding Compound-Target (C-T) network in terms of gene coverage, enriched pathway coverage and accumulated contribution of key nodes at 89.49%, 88.72% and 90.11%, respectively, which confirmed the reliability and accuracy of the effective compound group optimization and mechanism speculation strategy proposed by us. Conclusions Our strategy of optimizing the effective compound groups and inferring the mechanism provides a strategic reference for explaining the optimization and inferring the molecular mechanism of prescriptions in treating complex diseases of CHM.
Collapse
Affiliation(s)
- Dao-Jin Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zheng Zhen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ke-Xin Wang
- Neurosurgery Center, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jia-Lin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangdong Province, Guangzhou, 510000, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangdong Province, Guangzhou, 510000, China
| | - You-Bi Shen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zi-Zhuang Peng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangdong Province, Guangzhou, 510000, China. .,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Tao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Xu A, Wen ZH, Su SX, Chen YP, Liu WC, Guo SQ, Li XF, Zhang X, Li R, Xu NB, Wang KX, Li WX, Guan DG, Duan CZ. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front Pharmacol 2022; 13:784242. [PMID: 35355727 PMCID: PMC8959705 DOI: 10.3389/fphar.2022.784242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.
Collapse
Affiliation(s)
- Anqi Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Hua Wen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Xing Su
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi-Feng Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning-Bo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-Zhi Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Xiao T, Qu H, Zeng Z, Li C, Wan J. Interleukin-35 from Interleukin-4-Stimulated Macrophages Alleviates Oxygen Glucose Deprivation/Re-oxygenation-Induced Neuronal Cell Death via the Wnt/β-Catenin Signaling Pathway. Neurotox Res 2022; 40:420-431. [PMID: 35150397 DOI: 10.1007/s12640-022-00478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Currently, brain stroke is one of the leading causes of death and disabilities. It results in depletion of oxygen and glucose in certain areas of the brain, leading to neuronal death. Re-oxygenation has been proven to attenuate neuronal damage; however, sudden oxygen supply may also cause oxidative stress and subsequent inflammation. Hence, therapies to suppress re-oxygenation-induced oxidative damage are urgently needed. Interleukin (IL)-35, an immunomodulator secreted by regulatory T cells and regulatory B cells, is proven to be a strong immune-repressive cytokine. Here, we investigated the potential role of IL-35 in a disease model of oxygen glucose deprivation/re-oxygenation (OGD/R) and found that M2 macrophage-derived IL-35 significantly alleviated inflammatory response induced by oxidative stress. Our results also showed that IL-35 treatment decreased OGD/R-induced neuronal cell death and inflammatory response. Additionally, we demonstrated that IL-35 suppresses inflammatory response via the Wnt/β-catenin signaling pathway. Hence, our findings indicate that IL-35 therapy has great potential in the treatment of OGD/R-induced oxidative damage and related inflammatory diseases.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongtao Qu
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiqing Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chuanghua Li
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province, China.
| |
Collapse
|
10
|
Zhu F, Luo E, Yi F, Xiong J, Huang C, Li R. LncRNA ITSN1-2 knockdown inhibits OGD/R-induced inflammation and apoptosis in mouse hippocampal neurons via sponging miR-195-5p. Neuroreport 2021; 32:1325-1334. [PMID: 34554938 DOI: 10.1097/wnr.0000000000001732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The upregulation of long noncoding RNA intersectin 1-2 (lnc ITSN1-2) is associated with poor prognosis in acute ischemic stroke (AIS) patients, but the role and mechanism of lnc ITSN1-2 in AIS are rarely reported, which, thus, are highlighted in this study. METHODS AIS cell model was constructed by oxygen glucose deprivation and reoxygenation (OGD/R). The quantitative real-time PCR was used to detect the expression of lnc ITSN1-2 in HT22 cells. The effects of lnc ITSN1-2 overexpression or knockdown on viability, LDH release, apoptosis, inflammatory and apoptotic factor expressions in OGD/R-induced HT22 cells were measured by cell counting kit-8 assay, LDH release kit, flow cytometry, ELISA and western blot, respectively. Starbase was used to screen the target genes of lnc ITSN1-2. The targeting relationship between lnc ITSN1-2 and miR-195-5p was predicted by starbase and verified by dual-luciferase report assay. The above assays were conducted again to study the function of miR-195-5p. Lastly, the levels of activated mitogen-activated protein kinases (MAPK) pathway-related proteins were determined by western blot. RESULTS OGD/R treatment reduced the HT22 cell viability and enhanced LDH release rate and lnc ITSN1-2 expression. Lnc ITSN1-2 overexpression promoted the cell injury, apoptosis and inflammation in OGD/R-induced HT22 cells, while lnc ITSN1-2 knockdown generated the opposite effect and deactivated the MAPK pathways. However, the effect of lnc ITSN1-2 knockdown in OGD/R-induced HT22 cells was reversed by miR-195-5p inhibitor. CONCLUSION Lnc ITSN1-2 knockdown suppressed the inflammation and apoptosis in OGD/R-induced HT22 cells by regulating the miR-195-5p-mediated MAPK pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Runying Li
- Department of Stomatology, PingXiang People's Hospital, Pingxiang, China
| |
Collapse
|
11
|
Overexpression of miR-149-5p Attenuates Cerebral Ischemia/Reperfusion (I/R) Injury by Targeting Notch2. Neuromolecular Med 2021; 24:279-289. [PMID: 34581980 DOI: 10.1007/s12017-021-08685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Although miR-149-5p downregulation is observed in rats after ischemia/reperfusion (I/R) injury, its function and role in ischemic stroke remain unclear. This study aimed to investigate the roles of miR-149-5p in I/R injury. The results showed that miR-149-5p was significantly downregulated in brain tissues of rats subjected to middle cerebral artery occlusion (MCAO) and primary cortical neurons subject to oxygen and glucose deprivation (OGD). MiR-149-5p overexpression effectively reduced MCAO/R-induced infarct volume, neurological score, and brain water content as well as OGD/R-induced cortical neurons apoptosis and OGD/R-induced expression of TNF-α, IL-4, IL-6, IL-1β, and COX-2. Moreover, Notch2 was identified as a target of miR-149-5p and Notch2 overexpression significantly attenuated the inhibitory effects of miR-149-5p mimics on inflammation and apoptosis. Taken together, our study revealed that miR-149-5p overexpression protects the rat brain against I/R injury by regulating Notch2-mediated inflammation and apoptosis pathway.
Collapse
|
12
|
Cimicifuga racemosa Extract Ze 450 Re-Balances Energy Metabolism and Promotes Longevity. Antioxidants (Basel) 2021; 10:antiox10091432. [PMID: 34573064 PMCID: PMC8466145 DOI: 10.3390/antiox10091432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/31/2023] Open
Abstract
Recently, we reported that the Cimicifuga racemosa extract Ze 450 mediated protection from oxidative cell damage through a metabolic shift from oxidative phosphorylation to glycolysis. Here, we investigated the molecular mechanisms underlying the effects of Ze 450 against ferroptosis in neuronal cells, with a particular focus on mitochondria. The effects of Ze 450 on respiratory complex activity and hallmarks of ferroptosis were studied in isolated mitochondria and in cultured neuronal cells, respectively. In addition, Caenorhabditis elegans served as a model organism to study mitochondrial damage and longevity in vivo. We found that Ze 450 directly inhibited complex I activity in mitochondria and enhanced the metabolic shift towards glycolysis via cMyc and HIF1α regulation. The protective effects against ferroptosis were mediated independently of estrogen receptor activation and were distinct from effects exerted by metformin. In vivo, Ze 450 protected C. elegans from the mitochondrial toxin paraquat and promoted longevity in a dose-dependent manner. In conclusion, Ze 450 mediated a metabolic shift to glycolysis via direct effects on mitochondria and altered cell signaling, thereby promoting sustained cellular resilience to oxidative stress in vitro and in vivo.
Collapse
|
13
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
14
|
Amirzargar N, Heidari-Soureshjani S, Yang Q, Abbaszadeh S, Khaksarian M. Neuroprotective Effects of Medicinal Plants in Cerebral Hypoxia and Anoxia: A Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210315509666190820103658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Hypoxia and anoxia are dangerous and sometimes irreversible complications
in the central nervous system (CNS), which in some cases lead to death.
Objective:
The aim of this review was to investigate the neuroprotective effects of medicinal plants
in cerebral hypoxia and anoxia.
Methods:
The word hypox*, in combination with some herbal terms such as medicinal plant, phyto*
and herb*, was used to search for relevant publications indexed in the Institute for Scientific Information
(ISI) and PubMed from 2000-2019.
Results:
Certain medicinal plants and herbal derivatives can exert their protective effects in several
ways. The most important mechanisms are the inhibition of inducible nitric oxide synthase (iNOS),
production of NO, inhibition of both hypoxia-inducible factor 1α and tumor necrosis factor-alpha activation,
and reduction of extracellular glutamate, N-Methyl-D-aspartic and intracellular Ca (2+). In
addition, they have an antioxidant activity and can adjust the expression of genes related to oxidant
generation or antioxidant capacity. These plants can also inhibit lipid peroxidation, up-regulate superoxide
dismutase activity and inhibit the content of malondialdehyde and lactate dehydrogenase.
Moreover, they also have protective effects against cytotoxicity through down-regulation of the proteins
that causes apoptosis, anti-excitatory activity, inhibition of apoptosis signaling pathway, reduction
of pro-apoptotic proteins, and endoplasmic reticulum stress that causes apoptosis during hypoxia,
increasing anti-apoptotic protein, inhibition of protein tyrosine kinase activation, decreasing
proteases activity and DNA fragmentation, and upregulation of mitochondrial cytochrome oxidase.
Conclusion:
The results indicated that medicinal plants and their compounds mainly exert their neuroprotective
effects in hypoxia via regulating proteins that are related to antioxidant, anti-apoptosis
and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nasibeh Amirzargar
- Department of Neurology, Rofeydeh Rehabilitation Hospital, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Qian Yang
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
15
|
Liu W, Zhao H, Su Y, Wang K, Li J, Xue S, Sun X, Qiu Z. Senescence marker protein 30 confers neuroprotection in oxygen-glucose deprivation/reoxygenation-injured neurons through modulation of Keap1/Nrf2 signaling: Role of SMP30 in OGD/R-induced neuronal injury. Hum Exp Toxicol 2020; 40:472-482. [PMID: 32909858 DOI: 10.1177/0960327120954243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Senescence marker protein 30 (SMP30) is a senescence marker molecule and identified as a calcium regulatory protein. Currently, SMP30 has emerged as a cytoprotective protein in a wide range of cell types. However, the role of SMP30 in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unclear. In the present study, we aimed to investigate the biological function and regulatory mechanism of SMP30 on neuronal survival using a cellular model induced by oxygen-glucose deprivation/reoxygenation (OGD/R). The results showed that SMP30 expression was significantly decreased by OGD/R exposure in neurons. Functional experiments demonstrated that SMP30 overexpression significantly rescued the decreased cell viability and attenuated the apoptosis and reactive oxygen species generation in OGD/R-exposed neurons. By contrast, SMP30 knockdown exhibited the opposite effect. Mechanism research revealed that SMP30 overexpression contributed to the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) signaling associated with downregulation of Kelch-like ECH-associated protein (Keap1). Keap1 overexpression or Nrf2 silencing significantly reversed SMP30-mediated neuroprotection against OGD/R-induced injury. Overall, these findings demonstrate that SMP30 overexpression protects neurons from OGD/R-induced apoptosis and oxidative stress by enhancing Nrf2/ARE antioxidant signaling via inhibition of Keap1. These data highlight the importance of the SMP30/Keap1/Nrf2/ARE signaling axis in regulating neuronal survival during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Wenxiong Liu
- Department of Anesthesiology, The Hospital of Xidian Group, Xi'an, Shaanxi, China.,* These authors contributed equally to this work and shared the first authorship
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.,* These authors contributed equally to this work and shared the first authorship
| | - Yuqiang Su
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Kefeng Wang
- Clinical Training Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Sha Xue
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiaopeng Sun
- Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
17
|
Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, Gao WJ. The Role of Astragaloside IV against Cerebral Ischemia/Reperfusion Injury: Suppression of Apoptosis via Promotion of P62-LC3-Autophagy. Molecules 2019; 24:molecules24091838. [PMID: 31086091 PMCID: PMC6539971 DOI: 10.3390/molecules24091838] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury, and autophagy plays a role in the pathology. Astragaloside IV is a potential neuroprotectant, but its underlying mechanism on cerebral I/R injury needs to be explored. The objective of this study is to investigate the neuroprotective mechanism of Astragaloside IV against cerebral I/R injury. Methods: Middle cerebral artery occlusion method (MCAO) and oxygen and glucose deprivation/reoxygenation (OGD/R) method were used to simulate cerebral I/R injury in Sprague-Dawley (SD) rats and HT22 cells, respectively. The neurological score, 2,3,5-Triphe-nyltetrazolium chloride (TTC) staining, and transmission electron microscope were used to detect cerebral damage in SD rats. Cell viability and cytotoxicity assay were tested in vitro. Fluorescent staining and flow cytometry were applied to detect the level of apoptosis. Western blotting was conducted to examine the expression of proteins associated with autophagy. Results: This study found that Astragaloside IV could decrease the neurological score, reduce the infarct volume in the brain, and alleviate cerebral I/R injury in MCAO rats. Astragaloside IV promoted cell viability and balanced Bcl-2 and Bax expression in vitro, reduced the rate of apoptosis, decreased the expression of P62, and increased the expression of LC3II/LC3I in HT22 cells after OGD/R. Conclusions: These data suggested that Astragaloside IV plays a neuroprotective role by down-regulating apoptosis by promoting the degree of autophagy.
Collapse
Affiliation(s)
- Yi Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Ying Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiao-Fei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiao-Hong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xian-Hui Dong
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Wen-Tao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
18
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
19
|
Khanna S, Stewart R, Gnyawali S, Harris H, Balch M, Spieldenner J, Sen CK, Rink C. Phytoestrogen isoflavone intervention to engage the neuroprotective effect of glutamate oxaloacetate transaminase against stroke. FASEB J 2017; 31:4533-4544. [PMID: 28655710 DOI: 10.1096/fj.201700353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
In the pathophysiologic setting of cerebral ischemia, excitotoxic levels of glutamate contribute to neuronal cell death. Our previous work demonstrated the ability of glutamate oxaloacetate transaminase (GOT) to metabolize neurotoxic glutamate in the stroke-affected brain. Here, we seek to identify small-molecule inducers of GOT expression to mitigate ischemic stroke injury. From a panel of phytoestrogen isoflavones, biochanin A (BCA) was identified as the most potent inducer of GOT gene expression in neural cells. BCA significantly increased GOT mRNA and protein expression at 24 h and protected against glutamate-induced cell death. Of note, this protection was lost when GOT was knocked down. To validate outcomes in vivo, C57BL/6 mice were intraperitoneally injected with BCA (5 and 10 mg/kg) for 4 wk and subjected to ischemic stroke. BCA levels were significantly increased in plasma and brain of mice. Immunohistochemistry demonstrated increased GOT protein expression in the brain. BCA attenuated stroke lesion volume as measured by 9.4T MRI and improved sensorimotor function-this protection was lost with GOT knockdown. BCA increased luciferase activity in cells that were transfected with the pERRE3tk-LUC plasmid, which demonstrated transactivation of GOT. This increase was lost when estrogen-related receptor response element sites were mutated. Taken together, BCA represents a natural phytoestrogen that mitigates stroke-induced injury by inducing GOT expression.-Khanna, S., Stewart, R., Gnyawali, S., Harris, H., Balch, M., Spieldenner, J., Sen, C. K., Rink, C. Phytoestrogen isoflavone intervention to engage the neuroprotective effect of glutamate oxaloacetate transaminase against stroke.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard Stewart
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Surya Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hallie Harris
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Maria Balch
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James Spieldenner
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Cameron Rink
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
20
|
Shao S, Xu M, Zhou J, Ge X, Chen G, Guo L, Luo L, Li K, Zhu Z, Zhang F. Atorvastatin Attenuates Ischemia/Reperfusion-Induced Hippocampal Neurons Injury Via Akt-nNOS-JNK Signaling Pathway. Cell Mol Neurobiol 2017; 37:753-762. [PMID: 27488855 DOI: 10.1007/s10571-016-0412-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022]
Abstract
Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.
Collapse
Affiliation(s)
- Sen Shao
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Mingwei Xu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jiajun Zhou
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Xiaoling Ge
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Guanfeng Chen
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lili Guo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lian Luo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Kun Li
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Zhou Zhu
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Fayong Zhang
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|