1
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
2
|
Long noncoding RNA TTTY15 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging microRNA-337-3p to upregulate the expression of JAK2. Anticancer Drugs 2021; 31:1038-1045. [PMID: 32868648 DOI: 10.1097/cad.0000000000000960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long noncoding RNA (lncRNA) testis-specific transcript, Y-linked 15 (TTTY15) plays an important regulatory role in prostate cancer, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to explore the expression pattern, biological function and underlying mechanism of TTTY15 in ESCC. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of TTTY15 and microRNA (miR)-337-3p in ESCC tissues and cell lines. Cell counting kit-8 method was used to detect the proliferation of ESCC cells. Transwell method was used to determine the migration and invasion of ESCC cells. Luciferase reporter assay was used to verify the interaction between TTTY15 and miR-337-3p. Western blot was used to analyze the effects of TTTY15 and miR-337-3p on Janus kinase 2 (JAK2) expression. In the present study, we demonstrated that the expression level of TTTY15 was significantly upregulated in ESCC tissues, while the expression of miR-337-3p was downregulated. In ESCC samples, the expression levels of TTTY15 and miR-337-3p were negatively correlated. TTTY15 knockdown could significantly reduce the proliferation, migration and invasion of ESCC cells, and miR-337-3p mimics had similar effects. In addition, overexpression of TTTY15 inhibited miR-337-3p by binding with it. TTTY15 could indirectly modulate JAK2, and overexpression of TTTY15 could reverse the inhibitory effects of miR-337-3p on malignant phenotypes of ESCC cells. In conclusion, TTTY15 plays an oncogenic role in ESCC by targeting miR-337-3p/JAK2 axis.
Collapse
|
3
|
Zhang P, Meng X, Liu L, Li S, Li Y, Ali S, Li S, Xiong J, Liu X, Li S, Xia Q, Dong L. Identification of the Prognostic Signatures of Glioma With Different PTEN Status. Front Oncol 2021; 11:633357. [PMID: 34336645 PMCID: PMC8317988 DOI: 10.3389/fonc.2021.633357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
The high-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. The deletions and mutations of the tumor suppressor gene PTEN (5%-40%) in glioma patients are associated with worse survival and therapeutic resistance. Characterization of unique prognosis molecular signatures by PTEN status in glioma is still unclear. This study established a novel risk model, screened optimal prognostic signatures, and calculated the risk score for the individual glioma patients with different PTEN status. Screening results revealed fourteen independent prognostic gene signatures in PTEN-wt and three in the -50PTEN-mut subgroup. Moreover, we verified risk score as an independent prognostic factor significantly correlated with tumor malignancy. Due to the higher malignancy of the PTEN-mut gliomas, we explored the independent prognostic signatures (CLCF1, AEBP1, and OS9) for a potential therapeutic target in PTEN-mut glioma. We further separated IDH wild-type glioma patients into GBM and LGG to verify the therapeutic target along with PTEN status, notably, the above screened therapeutic targets are also significant prognostic genes in both IDH-wt/PTEN-mut GBM and LGG patients. We further identified the small molecule compound (+)-JQ1 binds to all three targets, indicating a potential therapy for PTEN-mut glioma. In sum, gene signatures and risk scores in the novel risk model facilitate glioma diagnosis, prognosis prediction, and treatment.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shengzhen Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shouwei Li
- Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Zhan FL, Chen CF, Yao MZ. LncRNA TUG1 facilitates proliferation, invasion and stemness of ovarian cancer cell via miR-186-5p/ZEB1 axis. Cell Biochem Funct 2020; 38:1069-1078. [PMID: 32390141 DOI: 10.1002/cbf.3544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
Abstract
LncRNA TUG1 has been rarely studied in ovarian cancer (OC), our objective was to explore the role of TUG1 in the regulation of malignant phenotypes of OC. Vectors of sh-TUG1, miR-186-5p and pcDNA-ZEB1 were, respectively, constructed and used to infect OC cells. MTT and transwell assays were applied for representing cell proliferation and invasion, respectively. Sphere formation experiment was used to detect the stemness of OC cells. Western blotting and qRT-PCR were employed for detecting the expression of multiple biomarkers on protein and RNA levels, respectively. The luciferase assay was performed to reveal the interactions between miR-186-5p and TUG1 or ZEB1. The silencing of TUG1 and upregulation of miR-186-5p both suppressed the cell proliferation, invasion and cancer stem cell (CSC) properties. Additionally, luciferase assay verified that miR-186-5p directly binds TUG1 and ZEB1. Moreover, overexpression of ZEB1 rescued the impact on the proliferation, invasion and stemness of TUG1 silencing in OC. TUG1 sponges miR-186-5p to release ZEB1 and promotes the proliferation, invasion and stemness of OC cells, suggesting that TUG1 could be a potential therapeutic target for OC therapy. SIGNIFICANCE OF THE STUDY: LncRNA TUG1 could promote proliferation, invasion and stemness of ovarian cancer cells. Our study first discovered that TUG1 play a tumourigenic role in ovarian cancer by regulating stemness of cancer cells. Mechanism research exhibited the regulation role of TUG1 in ovarian cancer cells was miR-186-5p/ZEB1 axis depended. These results provided a new perspective to understand the pathogenesis and development of ovarian cancer; it will offer new evidence for better diagnosis and treatment therapy of ovarian cancer.
Collapse
Affiliation(s)
- Fu-Liang Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Fang Chen
- School of Mathematics and Information Science, Jiangxi Normal University, Nanchang, China
| | - Mei-Zhen Yao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Silencing of Long Noncoding RNA SNHG6 Inhibits Esophageal Squamous Cell Carcinoma Progression via miR-186-5p/HIF1α Axis. Dig Dis Sci 2020; 65:2844-2852. [PMID: 31853782 DOI: 10.1007/s10620-019-06012-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
AIMS Long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) has been shown to be upregulated in esophageal squamous cell carcinoma (ESCC). However, its detailed function in ESCC remains unknown. We investigated its specific roles in ESCC cell proliferation, invasion, and migration. METHODS Gene expression was evaluated by quantitative reverse transcriptase polymerase chain reaction and western blot. The subcellular localization of lncRNA SNHG6 was determined using subcellular location assay. Luciferase reporter assay and RNA pull-down assay were applied to determine the interaction between lncRNA SNHG6, miR-186-5p, and hypoxia-inducible factor 1α (HIF1α). The cell proliferation, migration, and invasion abilities were evaluated by using cell count kit-8, colony formation assay, and transwell migration and invasion assays. RESULTS LncRNA SNHG6 and HIF1α were upregulated, while miR-186-5p was downregulated in ESCC tissues and cell lines. Knockdown of lncRNA SNHG6 inhibits ESCC cell proliferation, migration, and invasion. A negative correlation between lncRNA SNHG6 and miR-186-5p expression was found in ESCC tissues. Similarly, there is a positive correlation between lncRNA SNHG6 and HIF1α expression in ESCC tissues. Conversely, miR-186-5p expression was negatively correlated with HIF1α expression in ESCC tissues. Furthermore, lncRNA SNHG6 was identified as a decoy for miR-186-5p, thereby promoting the expression of miR-186-5p target HIF1α. More significantly, restoration of SNHG6 or HIF1α could reverse the inhibitory effect of miR-186-5p on ESCC cell proliferation, migration, and invasion. CONCLUSIONS Downregulation of SNHG6 inhibited the proliferation, migration, and invasion of ESCC cells through regulating miR-186-5p/HIF1α axis, providing a novel therapeutic target for ESCC.
Collapse
|
6
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ahn JW, Park Y, Kang SJ, Hwang SJ, Cho KG, Lim J, Kwack K. CeRNA Network Analysis Representing Characteristics of Different Tumor Environments Based on 1p/19q Codeletion in Oligodendrogliomas. Cancers (Basel) 2020; 12:cancers12092543. [PMID: 32906679 PMCID: PMC7564449 DOI: 10.3390/cancers12092543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS). The long non-coding RNAs (lncRNAs) protects the mRNA from degradation by binding with the same miRNA by acting as a competitive endogenous RNA (ceRNA). Recently, although there is an increasing interest in lncRNAs on glioma studies, however, studies regarding their effects on OD and the 1p/19q codeletion remain limited. In our study, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. We constructed 16 coding RNA–miRNA–lncRNA networks and the ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, our results can provide insights into the possibility in the different tumor microenvironments and OS following 1p/19q codeletion through changes in the ceRNA network. Abstract Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS); however, the exact underlying mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis and constructed 16 coding RNA–miRNA–lncRNA networks. The ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments via potassium ion channels and ECM composition changes; furthermore, differences in OS may occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences of identical gene expression, indicating the possibility of tracking different biological processes in different subtypes of glioma.
Collapse
Affiliation(s)
- Ju Won Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - Su Jung Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - Kyung Gi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
| | - JaeJoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam 13496, Korea; (S.J.H.); (K.G.C.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (J.W.A.); (Y.P.); (S.J.K.)
- Correspondence: (J.L.); (K.K.); Tel.: +82-031-780-5688 (J.L.); +82-031-725-7141 (K.K.)
| |
Collapse
|
8
|
Du C, Zhang JL, Wang Y, Zhang YY, Zhang JH, Zhang LF, Li JR. The Long Non-coding RNA LINC01705 Regulates the Development of Breast Cancer by Sponging miR-186-5p to Mediate TPR Expression as a Competitive Endogenous RNA. Front Genet 2020; 11:779. [PMID: 32849791 PMCID: PMC7412980 DOI: 10.3389/fgene.2020.00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may be a regulatory factor of tumorigenesis. However, it is unclear what its biomechanisms are in breast cancer. In this study, different lncRNAs were detected in breast cancer through microarray analysis (GSE119233) and LINC01705 was selected for further study. qRT-PCR was then utilized for the detection of LINC01705 expression in breast cancer cells. A transwell assay, flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), a cell counting Kit-8 (CCK-8), and a wound-healing assay were performed to determine cell migration, invasion, apoptosis, and proliferation in breast cancer, respectively. For the identification of potential targets of LINC01705, dual-luciferase reporter gene and bioinformatics assays were conducted. Moreover, for the clarification of their interaction and roles in the regulation of the occurrence of breast cancer, Western blotting and RIP assays were conducted. Our findings revealed high LINC01705 expression in breast cancer tissues relative to adjacent non-cancerous tissues (n = 40, P < 0.001). Overexpression of LINC01705 notably enhanced cell migration and proliferation in breast cancer. In addition, LINC01705 positively regulated the translocated promoter region, nuclear basket protein (TPR) through competition with miR-186-5p. In conclusion, our results suggest that LINC01705 is implicated in the progression of breast cancer via competitively binding to miR-186-5p as a competing endogenous RNA (ceRNA), thereby regulating TPR expression.
Collapse
Affiliation(s)
- Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Ling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Hua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Feng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Ruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Zhang C, Zhang X, Wang J, Di F, Xue Y, Lin X, Zhang Y, Zhang H, Zhang Z, Gu Y. Lnc00462717 regulates the permeability of the blood-brain tumor barrier through interaction with PTBP1 to inhibit the miR-186-5p/Occludin signaling pathway. FASEB J 2020; 34:9941-9958. [PMID: 32623796 DOI: 10.1096/fj.202000045r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023]
Abstract
Blood-brain tumor barrier (BTB) severely restricts the efficient delivery of chemotherapeutic drugs into brain tumor tissue, which is a critical obstacle for glioma treatment. Recently, long noncoding RNAs (lncRNAs) have shown as regulation factors of numerous biological processes. In this study, we identified that Lnc00462717 was upregulated in glioma endothelial cells (GECs), and that knockdown of Lnc00462717 significantly increased the BTB permeability. Both bioinformatics and RNA immunoprecipitation (RIP) results revealed that Lnc00462717 interacts with polypyrimidine tract binding protein (PTBP1). Moreover, overexpression of PTBP1 significantly reversed the increase in BTB permeability caused by siLnc00462717. Furthermore, the binding sites between miR-186 and PTBP1 as well as between miR-186 and 3'UTR of Occludin mRNA were confirmed by RIP and luciferase assays, respectively. And the interaction of Lnc00462717 and PTBP1 significantly facilitated the binding of PTBP1 to 3'UTR of Occludin mRNA and then blocked the miR-186-5p-induced downregulation of Occludin. In addition, we identified that knockdown of Lnc00462717 or overexpression of miR-186-5p increased the accumulation of doxorubicin (Dox) in brain glioma via the ultrafast liquid chromatography-mass spectrometry system (UFLC-MS/MS system) and decreased the intracranial glioma volume in BALB/c nude mice. Taken together, these results show a novel molecular pathway in BTB that may provide a potential innovative strategy for glioma therapy.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Xiaoyi Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Jiahong Wang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Fan Di
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Yixue Xue
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, P.R. China
| | - Xiangdan Lin
- Graduate School of Jinzhou Medical University, Jinzhou, P.R. China
| | - Ying Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Hong Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhou Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yanting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
10
|
Xiang Y, Tian Q, Guan L, Niu SS. The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA. Front Oncol 2020; 10:233. [PMID: 32195180 PMCID: PMC7066114 DOI: 10.3389/fonc.2020.00233] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Li Guan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Shuai-Shuai Niu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Hubei, China
| |
Collapse
|
11
|
Wang Z, Sha HH, Li HJ. Functions and mechanisms of miR-186 in human cancer. Biomed Pharmacother 2019; 119:109428. [PMID: 31525641 DOI: 10.1016/j.biopha.2019.109428] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Mounting evidence suggests the involvement of miRNAs in carcinogenesis and the development of human cancer. Among the miRNAs, miR-186 has been extensively studied in various cancers. The expression of miR-186 in tissues varies depending on the type of cancer and miR-186 in tissues and body fluids may serve as a marker for the diagnosis and prognosis of cancers. Various biological processes in human cancer are affected by miR-186. Additionally, miR-186 itself is regulated by several factors. Thus, this evidence highlights the potential value of miR-186 in the diagnosis, prognosis and treatment of human cancer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Huan-Huan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Hai-Jun Li
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
12
|
Yang Q, Wang R, Wei B, Peng C, Wang L, Hu G, Kong D, Du C. Gene and microRNA Signatures Are Associated with the Development and Survival of Glioblastoma Patients. DNA Cell Biol 2019; 38:688-699. [PMID: 31188028 DOI: 10.1089/dna.2018.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Yang
- Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Rui Wang
- Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chuangang Peng
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, P.R. China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Guozhang Hu
- Department of Emergency Medicine and China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
13
|
Kang X, Lin Z, Xu M, Pan J, Wang ZW. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif 2019; 52:e12605. [PMID: 30945363 PMCID: PMC6536421 DOI: 10.1111/cpr.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.
Collapse
Affiliation(s)
- Xiaodiao Kang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minhui Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2018; 79:1151-1164. [PMID: 30541743 DOI: 10.1158/0008-5472.can-18-0779] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022]
Abstract
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFβ1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFβ1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFβ-dependent immune escape mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Paolo Neviani
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Petra M Wise
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mariam Murtadha
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cathy W Liu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Hua Wu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ambrose Y Jong
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
15
|
Liu Y, Zheng W, Pan Y, Hu J. Low expression of miR-186-5p regulates cell apoptosis by targeting toll-like receptor 3 in high glucose-induced cardiomyocytes. J Cell Biochem 2018; 120:9532-9538. [PMID: 30506923 DOI: 10.1002/jcb.28229] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
To investigate the effect and mechanism of microRNA-186-5p (miR-186-5p) on the apoptosis in high glucose (HG)-treated cardiomyocytes. Diabetic cardiomyopathy model was established in cardiomyocytes by stimulating with HG. The expressions of miR-186-5p and toll-like receptor 3 (TLR3) were detected by quantitative polymerase chain reaction or Western blot analysis, respectively. Apoptosis was detected in HG-treated cardiomyocytes by flow cytometry and Western blot analysis. The interaction between miR-186-5p and TLR3 was explored by bioinformatics analysis and luciferase activity assay. Results showed that miR-186-5p expression was downregulated in HG-treated cardiomyocytes and its overexpression reversed HG-induced apoptosis and cleaved caspase-3 protein expression. Moreover, TLR3 was indicated as a target of miR-186-5p and regulated by miR-186-5p. Knockdown of TLR3 suppressed HG-induced apoptosis and cleaved caspase-3 protein expression. Besides, restoration of TLR3 ablated the effect of miR-186-5p on cell apoptosis. Collectively, miR-186-5p attenuated HG-induced apoptosis by regulating TLR3 in cardiomyocytes, providing novel biomarker for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ye Liu
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Zheng
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yue Pan
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Hu
- Electrocardial Center of the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
16
|
Li J, Song J, Guo F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int J Mol Med 2018; 43:517-524. [PMID: 30365062 DOI: 10.3892/ijmm.2018.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is among the most devastating types of cancer, with a median survival of <1 year. Despite the development of new surgical and radiation techniques, and the use of multiple anti‑neoplastic drugs, effective treatment strategies for malignant gliomas have not yet been developed. The limited efficacy of current treatments reflects the resistance of glioblastoma cells to cytotoxic agents. In this study, using western blot analysis, we found that Yin Yang 1 (YY1) expression was increased in cisplatin‑resistant glioblastoma U87MG cells (U87MG‑CR). We observed that the silencing of YY1 sensitized the U87MG‑CR cells to cisplatin and that the overexpression of YY1 promoted the resistance of LN‑229 glioblastoma cells to cisplatin, as shown by MTT assay. Using sphere formation assay, we also found that the silencing of YY1 inhibited the formation of the glioblastoma‑initiating cell (GIC) phenotype in the U87MG‑CR cells. In addition, the results of RT‑qPCR revealed that miR‑186 expression was decreased in U87MG‑CR cells. Using RT‑PCR and western blot analysis, we observed that overexpression of miR‑186 inhibited YY1 expression in U87MG‑CR cells. The overexpression of miR‑186 also reversed cisplatin resistance and the formation of the GIC phenotype in glioblastoma cells. On the whole, the findings of this study demonstrate that miR‑186 reverses cisplatin resistance and inhibits the formation of the GIC phenotype by degrading YY1 in glioblastoma.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Jie Song
- Department of Neurosurgery, Yishui Central Hospital, Yishui, Shandong 276400, P.R. China
| | - Feng Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
17
|
MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep 2018; 38:BSR20180150. [PMID: 29752344 PMCID: PMC6147913 DOI: 10.1042/bsr20180150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Aberrant vascular smooth muscle cell (VSMC) migration has been implicated in a variety of vascular disorders, while the signal pathways governing this process remain unclear. Here, we investigated whether miRNAs, which are strong post-transcriptional regulators of gene expression, could alter VSMC migration. We detected the expression of miR-4463 in the plasma of patients with atherosclerosis and in human aortic smooth muscle cells under hypoxia–ischemia condition, and investigated the migration effect and its downstream pathways. The results have shown that whether in clinical AS patients or hypoxic cells, the expression of miR-4463 was lower than that of normal group, then the number of migrating cells in the miR-4463 mimic intervention group was significantly decreased compared with the normal group and miR-4463 inhibitor instead. Furthermore, the expression of angiomotin (AMOT) in gastrocnemius muscle and femoral artery of patients was significantly higher than that of the control group. The protein level of AMOT in miR-4463 mimic intervention group was significantly decreased, and its level was reversed by inhibiting miR-4463. In summary, these results indicate that miR-4463 is a novel modulator of VSMC migration by targetting AMOT expression. Regulating miR-4463 or its specific downstream target genes in VSMCs may represent an attractive approach for the treatment of vascular diseases.
Collapse
|
18
|
Onset and Progression of Human Osteoarthritis-Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage? Int J Mol Sci 2018; 19:ijms19082282. [PMID: 30081513 PMCID: PMC6121276 DOI: 10.3390/ijms19082282] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative whole joint disease, for which no preventative or therapeutic biological interventions are available. This is likely due to the fact that OA pathogenesis includes several signaling pathways, whose interactions remain unclear, especially at disease onset. Early OA is characterized by three key events: a rarely considered early phase of proliferation of cartilage-resident cells, in contrast to well-established increased synthesis, and degradation of extracellular matrix components and inflammation, associated with OA progression. We focused on the question, which of these key events are regulated by growth factors, inflammatory cytokines, and/or miRNA abundance. Collectively, we elucidated a specific sequence of the OA key events that are described best as a very early phase of proliferation of human articular cartilage (AC) cells and concomitant anabolic/catabolic effects that are accompanied by incipient pro-inflammatory effects. Many of the reviewed factors appeared able to induce one or two key events. Only one factor, fibroblast growth factor 2 (FGF2), is capable of concomitantly inducing all key events. Moreover, AC cell proliferation cannot be induced and, in fact, is suppressed by inflammatory signaling, suggesting that inflammatory signaling cannot be the sole inductor of all early OA key events, especially at disease onset.
Collapse
|
19
|
Xiao L, Jiang L, Hu Q, Li Y. MiR-302e attenuates allergic inflammation in vitro model by targeting RelA. Biosci Rep 2018; 38:BSR20180025. [PMID: 29748238 PMCID: PMC6435536 DOI: 10.1042/bsr20180025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/01/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023] Open
Abstract
Allergic inflammation is the foundation of allergic rhinitis and asthma. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in allergic diseases is limited. Herein, we reported that microRNA-302e (miR-302e) serves as an important regulator of allergic inflammation in human mast cell line, HMC-1 cells. Our results showed that miR-302e is the dominant member of miR-302 family expressed in HMC-1 cells. Moreover, the expression of miR-302e was significantly decreased in response to phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187 or ovalbumin (OVA) stimulation. Overexpression of miR-302e blocked PMA/A23187 or OVA induced the increase in inflammatory cytokines levels, such as IL-1β, IL-6, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin, while miR-302 inhibition further promoted the release of these cytokines. Mechanistically, we found that miR-302e is a novel miRNA that targets RelA, a gene known to be involved in regulating inflammation, through binding to the 3'-UTR of RelA mRNA. Ectopic miR-302e remarkably suppressed the luciferase activity and expression of RelA, whereas down-regulation of miR-302e increased RelA luciferase activity and expression. Pharmacological inhibition of NF-κB reversed the augmented effect of miR-302e down-regulation on inflammatory cytokines level. Taken together, the present study demonstrates miR-302e limits allergic inflammation through inhibition of NF-κB activation, suggesting miR-302e may play an anti-inflammatory role in allergic diseases and function as a novel therapeutic target for the treatment of these diseases.
Collapse
Affiliation(s)
- Lifeng Xiao
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Li Jiang
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Qi Hu
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuru Li
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
20
|
Jones DZ, Schmidt ML, Suman S, Hobbing KR, Barve SS, Gobejishvili L, Brock G, Klinge CM, Rai SN, Park J, Clark GJ, Agarwal R, Kidd LR. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer 2018; 18:421. [PMID: 29653561 PMCID: PMC5899400 DOI: 10.1186/s12885-018-4258-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Background Dysregulation of microRNA (miRNA) expression is associated with hallmarks of aggressive tumor phenotypes, e.g., enhanced cell growth, proliferation, invasion, and anchorage independent growth in prostate cancer (PCa). Methods Serum-based miRNA profiling involved 15 men diagnosed with non-metastatic (stage I, III) and metastatic (stage IV) PCa and five age-matched disease-free men using miRNA arrays with select targets confirmed by quantitative real-time PCR (qRT-PCR). The effect of miR-186-5p inhibition or ectopic expression on cellular behavior of PCa cells (i.e., PC-3, MDA-PCa-2b, and LNCaP) involved the use bromodeoxyuridine (BrdU) incorporation, invasion, and colony formation assays. Assessment of the impact of miR-186-5p inhibition or overexpression on selected targets entailed microarray analysis, qRT-PCR, and/or western blots. Statistical evaluation used the modified t-test and ANOVA analysis. Results MiR-186-5p was upregulated in serum from PCa patients and metastatic PCa cell lines (i.e., PC-3, MDA-PCa-2b, LNCaP) compared to serum from disease-free individuals or a normal prostate epithelial cell line (RWPE1), respectively. Inhibition of miR-186-5p reduced cell proliferation, invasion, and anchorage-independent growth of PC-3 and/or MDA-PCa-2b PCa cells. AKAP12, a tumor suppressor target of miR-186-5p, was upregulated in PC-3 and MDA-PCa-2b cells transfected with a miR-186-5p inhibitor. Conversely, ectopic miR-186-5p expression in HEK 293 T cells decreased AKAP12 expression by 30%. Both pAKT and β-catenin levels were down-regulated in miR-186-5p inhibited PCa cells. Conclusions Our findings suggest miR-186-5p plays an oncogenic role in PCa. Inhibition of miR-186-5p reduced PCa cell proliferation and invasion as well as increased AKAP12 expression. Future studies should explore whether miR-186-5p may serve as a candidate prognostic indicator and a therapeutic target for the treatment of aggressive prostate cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4258-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dominique Z Jones
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, USA
| | - M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Suman Suman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Katharine R Hobbing
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Shirish S Barve
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,Division of Gastroenterology and Hepatology, University of Louisville School of Medicine, Louisville, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,Division of Gastroenterology and Hepatology, University of Louisville School of Medicine, Louisville, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
| | - Carolyn M Klinge
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, USA
| | - Shesh N Rai
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.,Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Science, Louisville, USA
| | - Jong Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, USA
| | - LaCreis R Kidd
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA. .,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| |
Collapse
|
21
|
Han DX, Xiao Y, Wang CJ, Jiang H, Gao Y, Yuan B, Zhang JB. Regulation of FSH expression by differentially expressed miR-186-5p in rat anterior adenohypophyseal cells. PLoS One 2018. [PMID: 29534107 PMCID: PMC5849326 DOI: 10.1371/journal.pone.0194300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicle-stimulating hormone (FSH) has key roles in animal reproduction, including spermatogenesis and ovarian maturation. Many factors influence FSH secretion. However, despite the broad functions of microRNAs (miRNAs) via the regulation of target genes, little is known about their roles in FSH secretion. Our previous results suggested that miR-186-5p targets the 3′ UTR of FSHb; therefore, we examined whether miR-186-5p could regulate FSH secretion in rat anterior adenohypophyseal cells. miR-186-5p was transfected into rat anterior pituitary cells. The expression of FSHb and the secretion of FSH were examined by RT-qPCR and ELISA. A miR-186-5p mimic decreased the expression of FSHb compared with expression in the control group and decreased FSH secretion. In contrast, both the mRNA levels and secretion of FSH increased in response to miR-186-5p inhibitors. Our results demonstrate that miR-186-5p regulates FSH secretion by directly targeting the FSHb 3′ UTR, providing additional functional evidence for the importance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yue Xiao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| |
Collapse
|