1
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Numan M, Sun Y, Li G. Exploring the emerging role of long non-coding RNAs (lncRNAs) in plant biology: Functions, mechanisms of action, and future directions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108797. [PMID: 38850732 DOI: 10.1016/j.plaphy.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Mian Numan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuge Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
3
|
Jin X, Wang Z, Li X, Ai Q, Wong DCJ, Zhang F, Yang J, Zhang N, Si H. Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1334620. [PMID: 38259924 PMCID: PMC10800568 DOI: 10.3389/fpls.2023.1334620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qianyi Ai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia
| | - Feiyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
6
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
7
|
Xie X, Jin J, Wang C, Lu P, Li Z, Tao J, Cao P, Xu Y. Investigating nicotine pathway-related long non-coding RNAs in tobacco. Front Genet 2023; 13:1102183. [PMID: 36744176 PMCID: PMC9892058 DOI: 10.3389/fgene.2022.1102183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with low or no protein-coding ability, which play essential roles in various biological processes in plants. Tobacco is an ideal model plant for studying nicotine biosynthesis and metabolism, and there is little research on lncRNAs in this field. Therefore, how to take advantage of the mature tobacco system to profoundly investigate the lncRNAs involved in the nicotine pathway is intriguing. By exploiting 549 public RNA-Seq datasets of tobacco, 30,212 lncRNA candidates were identified, including 24,084 large intervening non-coding RNAs (lincRNAs), 5,778 natural antisense transcripts (NATs) and 350 intronic non-coding RNAs (incRNAs). Compared with protein-coding genes, lncRNAs have distinct properties in terms of exon number, sequence length, A/U content, and tissue-specific expression pattern. lincRNAs showed an asymmetric evolutionary pattern, with a higher proportion (68.71%) expressed from the Nicotiana sylvestris (S) subgenome. We predicted the potential cis/trans-regulatory effects on protein-coding genes. One hundred four lncRNAs were detected as precursors of 30 known microRNA (miRNA) family members, and 110 lncRNAs were expected to be the potential endogenous target mimics for 39 miRNAs. By combining the results of weighted gene co-expression network analysis with the differentially expressed gene analysis of topping RNA-seq data, we constructed a sub-network containing eight lncRNAs and 25 nicotine-related coding genes. We confirmed that the expression of seven lncRNAs could be affected by MeJA treatment and may be controlled by the transcription factor NtMYC2 using a quantitative PCR assay and gene editing. The results suggested that lncRNAs are involved in the nicotine pathway. Our findings further deepened the understanding of the features and functions of lncRNAs and provided new candidates for regulating nicotine biosynthesis in tobacco.
Collapse
|
8
|
Xing M, Peng Z, Guan C, Guan M. Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. PLoS One 2023; 18:e0284287. [PMID: 37053132 PMCID: PMC10101420 DOI: 10.1371/journal.pone.0284287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.
Collapse
Affiliation(s)
- Man Xing
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Zechuan Peng
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Chunyun Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Mei Guan
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
9
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Yang HW, Ju SP, Tseng TF. Design the RNA aptamer of PCA3 long non-coding ribonucleic acid by the coarse-grained molecular mechanics. J Biomol Struct Dyn 2022; 40:13833-13847. [PMID: 34693888 DOI: 10.1080/07391102.2021.1994881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The stochastic tunneling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method was applied to predict the tertiary structure of the prostate cancer marker PCA3 using two respective secondary structures predicted by the Vienna RNA package and Mathews lab package. The RNA CG force field with the geometrical restraints for maintaining PCA3 secondary structures is used. For each secondary structure, 5000 PCA3 structures were predicted by using 5000 independent initial structures. These structures were then evaluated by a scoring function, considering the contributions from the radius of gyration, contact energy, and surface fraction of complementary nucleotides to ASO683 and ASO735 used in the related experiment. For each secondary structure, the PCA3 structures with the highest three scores were selected for aptamer design and further adsorption simulation. The ASOs complementary to PCA3 surface segments possessing relatively higher RMSF values are selected to be the potential PCA3 aptamers. After the adsorption simulation, the adsorption energies of ASO961, ASO3181, ASO3533, and ASO3595 are higher than or comparable to those of ASO683 and ASO735 used in the experiment. The NEB method was used to obtain MEPs for the adsorption process of all predicted ASOs onto PCA3. The adsorption barriers range between 29 ∼ 39 kcal/mol, while the desorption barriers range between 112 ∼ 352 kcal/mol, indicating these aptamer/PCA3 complexes are very stable. Using PCA3 surface segments with relatively higher RMSF values, longer ASOs can be also obtained and most longer ASOs possess lower binding energy, ranging between -486.1 and -618.2 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Feng Tseng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
12
|
Lin J, Gu XL, Li CL, Wang ZM, Wang ZF, Wu RP, Song Y, Wu Y, Liu HB. Analysis of M6A associated lncRNAs in prognosis and immune response of NSCLC patients. Am J Transl Res 2022; 14:8457-8472. [PMID: 36628246 PMCID: PMC9827342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/13/2022] [Indexed: 01/12/2023]
Abstract
Distinguishing between N6-methyladenosine (m6A)-associated long noncoding RNAs (lncRNAs) is crucial in non-small-cell lung cancer (NSCLC) patients. In this research, the prognosis and immunotherapeutic response of lncRNAs and m6A in NSCLC were examined. lncRNAs related to m6A were identified using co-expression analyses, and their prognostic impact on patients with NSCLC was assessed using univariate Cox regression analysis. Sixty-three m6A-associated lncRNAs were determined as prognostic lncRNAs, and on this basis, 25 m6A-associated lncRNAs were screened by least absolute shrinkage and selection operator (lasso) Cox regression. Multivariable Cox analysis obtained 14 m6A-associated lncRNAs for the construction of risk model. The NSCLC patients were grouped into different risk subgroups in accordance with the median of the risk fraction in each data, and we evaluated the differences of potential immunotherapeutic characteristics and drug sensitivity prediction between the two subgroups. By using this model to recombine patients, they can be effectively distinguished in terms of the immunotherapy response. Furthermore, candidate compounds for the differentiation of NSCLC subtypes were identified. The model based on 14 m6A-associated lncRNAs is a promising prognostic biomarker, which may help to predict the efficacy of immunotherapy in NSCLC patients and provide a theoretical basis for improving the outcome of patients.
Collapse
Affiliation(s)
- Jing Lin
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiao-Ling Gu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Chu-Ling Li
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Zi-Mu Wang
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Zhao-Feng Wang
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Ran-Pu Wu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Ying Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjing, China,First College of Clinical Medicine, Nanjing University of Chinese MedicineNanjing, China
| | - Hong-Bing Liu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
13
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
14
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
LncPheDB: a genome-wide lncRNAs regulated phenotypes database in plants. ABIOTECH 2022; 3:169-177. [PMID: 36304839 PMCID: PMC9590470 DOI: 10.1007/s42994-022-00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022]
Abstract
LncPheDB (https://www.lncphedb.com/) is a systematic resource of genome-wide long non-coding RNAs (lncRNAs)-phenotypes associations for multiple species. It was established to display the genome-wide lncRNA annotations, target genes prediction, variant-trait associations, gene-phenotype correlations, lncRNA-phenotype correlations, and the similar non-coding regions of the queried sequence in multiple species. LncPheDB sorted out a total of 203,391 lncRNA sequences, 2000 phenotypes, and 120,271 variants of nine species (Zea mays L., Gossypium barbadense L., Triticum aestivum L., Lycopersicon esculentum Mille, Oryza sativa L., Hordeum vulgare L., Sorghum bicolor L., Glycine max L., and Cucumis sativus L.). By exploring the relationship between lncRNAs and the genomic position of variants in genome-wide association analysis, a total of 68,862 lncRNAs were found to be related to the diversity of agronomic traits. More importantly, to facilitate the study of the functions of lncRNAs, we analyzed the possible target genes of lncRNAs, constructed a blast tool for performing similar fragmentation studies in all species, linked the pages of phenotypic studies related to lncRNAs that possess similar fragments and constructed their regulatory networks. In addition, LncPheDB also provides a user-friendly interface, a genome visualization platform, and multi-level and multi-modal convenient data search engine. We believe that LncPheDB plays a crucial role in mining lncRNA-related plant data. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00084-3.
Collapse
|
16
|
Li X, Yang Q, Liao X, Tian Y, Zhang F, Zhang L, Liu Q. A natural antisense RNA improves chrysanthemum cold tolerance by regulating the transcription factor DgTCP1. PLANT PHYSIOLOGY 2022; 190:605-620. [PMID: 35728057 PMCID: PMC9434197 DOI: 10.1093/plphys/kiac267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely involved in the regulation of plant growth and development, but their mechanism of action in response to cold stress in plants remains unclear. Here, we found an lncRNA transcribed from the antisense strand of DgTCP1 (class I Teosinte branched1/Cycloidea/Proliferating [TCP] transcription factor) of chrysanthemum (Chrysanthemum morifolium Ramat.), named DglncTCP1. During the response of chrysanthemum to cold stress, overexpression of DgTCP1 improved the cold tolerance of chrysanthemum, while the DgTCP1 editing line (dgtcp1) showed decreased tolerance to cold stress. Overexpression of DglncTCP1 also increased the cold tolerance of chrysanthemum, while the DglncTCP1 amiRNA lines (DglncTCP1 amiR-18/38) also showed decreased tolerance to cold stress. Additionally, the overexpression of DglncTCP1 upregulated the expression of DgTCP1. This indicated that DglncTCP1 may play a cis-regulatory role in the regulatory process of DgTCP1 in cold tolerance. DglncTCP1 acts as a scaffold to recruit the histone modification protein DgATX (ARABIDOPSIS TRITHORAX from chrysanthemum) to DgTCP1 to enhance H3K4me3 levels, thereby activating DgTCP1 expression. Moreover, DgTCP1 can directly target DgPOD (peroxidase gene from chrysanthemum) to promote its expression and reduce reactive oxygen species accumulation, thereby improving the cold tolerance of chrysanthemum. In conclusion, these results suggest that natural antisense lncRNA plays a key role in improving the cold tolerance of chrysanthemum.
Collapse
Affiliation(s)
- Xin Li
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Qing Yang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Xiaoqin Liao
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Yuchen Tian
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| |
Collapse
|
17
|
Jian H, Sun H, Liu R, Zhang W, Shang L, Wang J, Khassanov V, Lyu D. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC PLANT BIOLOGY 2022; 22:381. [PMID: 35909124 PMCID: PMC9341072 DOI: 10.1186/s12870-022-03758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum) is the fourth most important food crop in the world and plays an important role in food security. Drought stress has a significantly negative impact on potato growth and production. There are several publications involved drought stress in potato, this research contributes to enrich the knowledge. RESULTS In this study, next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technology were used to study the transcription profiles in potato in response to 20%PEG6000 simulates drought stress. The leaves of the variety "Désirée" from in vitro plantlets after drought stress at six time points from 0 to 48 hours were used to perform NGS and SMRT sequencing. According to the sequencing data, a total of 12,798 differentially expressed genes (DEGs) were identified in six time points. The real-time (RT)-PCR results are significantly correlated with the sequencing data, confirming the accuracy of the sequencing data. Gene ontology and KEGG analysis show that these DEGs participate in response to drought stress through galactose metabolism, fatty acid metabolism, plant-pathogen interaction, glutathione metabolism and other pathways. Through the analysis of alternative splicing of 66,888 transcripts, the functional pathways of these transcripts were enriched, and 51,098 transcripts were newly discovered from alternative splicing events and 47,994 transcripts were functionally annotated. Moreover, 3445 lncRNAs were predicted and enrichment analysis of corresponding target genes was also performed. Additionally, Alternative polyadenylation was analyzed by TADIS, and 26,153 poly (A) sites from 13,010 genes were detected in the Iso-Seq data. CONCLUSION Our research greatly enhanced potato drought-induced gene annotations and provides transcriptome-wide insights into the molecular basis of potato drought resistance.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Haonan Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Vadim Khassanov
- S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Republic of Kazakhstan
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| |
Collapse
|
18
|
Zha W, Li S, Xu H, Chen J, Liu K, Li P, Liu K, Yang G, Chen Z, Shi S, Zhou L, You A. Genome-wide identification of long non-coding (lncRNA) in Nilaparvata lugens's adaptability to resistant rice. PeerJ 2022; 10:e13587. [PMID: 35910769 PMCID: PMC9332332 DOI: 10.7717/peerj.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens (Stål), is a very destructive pest that poses a major threat to rice plants worldwide. BPH and rice have developed complex feeding and defense strategies in the long-term co-evolution. Methods To explore the molecular mechanism of BPH's adaptation to resistant rice varieties, the lncRNA expression profiles of two virulent BPH populations were analyzed. The RNA-seq method was used to obtain the lncRNA expression data in TN1 and YHY15. Results In total, 3,112 highly reliable lncRNAs in TN1 and YHY15 were identified. Compared to the expression profiles between TN1 and YHY15, 157 differentially expressed lncRNAs, and 675 differentially expressed mRNAs were identified. Further analysis of the possible regulation relationships between differentially expressed lncRNAs and differentially expressed mRNAs, identified three pair antisense targets, nine pair cis-regulation targets, and 3,972 pair co-expressed targets. Function enriched found arginine and proline metabolism, glutathione metabolism, and carbon metabolism categories may significantly affect the adaptability in BPH when it is exposed to susceptible and resistant rice varieties. Altogether, it provided scientific data for the study of lncRNA regulation of brown planthopper resistance to rice. These results are helpful in the development of new control strategies for host defense against BPH and breeding rice for high yield.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
19
|
Li N, Wang Z, Wang B, Wang J, Xu R, Yang T, Huang S, Wang H, Yu Q. Identification and Characterization of Long Non-coding RNA in Tomato Roots Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:834027. [PMID: 35865296 PMCID: PMC9295719 DOI: 10.3389/fpls.2022.834027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important vegetable crops in the world, the production of tomatoes was restricted by salt stress. Therefore, it is of great interest to analyze the salt stress tolerance genes. As the non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides, long non-coding RNAs (lncRNAs) lack the ability of protein-coding, but they can play crucial roles in plant development and response to abiotic stresses by regulating gene expression. Nevertheless, there are few studies on the roles of salt-induced lncRNAs in tomatoes. Therefore, we selected wild tomato Solanum pennellii (S. pennellii) and cultivated tomato M82 to be materials. By high-throughput sequencing, 1,044 putative lncRNAs were identified here. Among them, 154 and 137 lncRNAs were differentially expressed in M82 and S. pennellii, respectively. Through functional analysis of target genes of differentially expressed lncRNAs (DE-lncRNAs), some genes were found to respond positively to salt stress by participating in abscisic acid (ABA) signaling pathway, brassinosteroid (BR) signaling pathway, ethylene (ETH) signaling pathway, and anti-oxidation process. We also construct a salt-induced lncRNA-mRNA co-expression network to dissect the putative mechanisms of high salt tolerance in S. pennellii. We analyze the function of salt-induced lncRNAs in tomato roots at the genome-wide levels for the first time. These results will contribute to understanding the molecular mechanisms of salt tolerance in tomatoes from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Shaoyong Huang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
20
|
Shin WJ, Nam AH, Kim JY, Kwak JS, Song JT, Seo HS. Intronic long noncoding RNA, RICE FLOWERING ASSOCIATED (RIFLA), regulates OsMADS56-mediated flowering in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111278. [PMID: 35643617 DOI: 10.1016/j.plantsci.2022.111278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/20/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are known to play important roles in several plant processes such as flowering, organ development and stress response. However, studies exploring the diversity and complexity of lncRNAs and their mechanism of action in plants are far fewer that those in animals. Here, we show that an intronic lncRNA in rice (Oryza sativa L.), RICE FLOWERING ASSOCIATED (RIFLA), is required for the inhibition of OsMADS56 expression. RIFLA is produced from the first intron of the OsMADS56 gene. Overexpression of RIFLA in rice repressed OsMADS56 expression but activated the expression of flowering inducers Hd3a and RFT1. Additionally, RIFLA-overexpressing transgenic rice plants flowered earlier than the wild type. Under normal conditions, the transcript level of the rice enhancer of zeste gene OsiEZ1, a homolog of Arabidopsis histone H3K27-specific methyltransferase genes SWINGER (SWN) and CURLY LEAF (CLF), was as low as that of RIFLA, whereas the transcript level of OsMADS56 was relatively high. In the osiez1 mutant, OsMADS56 expression was upregulated, whereas RIFLA expression was downregulated. Additionally, RIFLA formed a complex with OsiEZ1. Together, these results suggest that the floral repressor activity of OsMADS56 is epigenetically regulated by RIFLA and OsiEZ1.
Collapse
Affiliation(s)
- Won Joo Shin
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ae Hyeon Nam
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Joo Yong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
21
|
Choi MR, Cho S, Kim DJ, Choi JS, Jin YB, Kim M, Chang HJ, Jeon SH, Yang YD, Lee SR. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int J Mol Sci 2022; 23:ijms23137294. [PMID: 35806296 PMCID: PMC9267046 DOI: 10.3390/ijms23137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive use of alcohol can induce neurobiological and neuropathological alterations in the brain, including the hippocampus and forebrain, through changes in neurotransmitter systems, hormonal systems, and neuroimmune processes. We aimed to investigate the effects of ethanol on the expression of coding and noncoding RNAs in a brain-derived cell line exposed to ethanol. After exposing Neuro2a cells, a neuroblastoma cell line, to ethanol for 24 and 72 h, we observed cell proliferation and analyzed up- and downregulated mRNAs and long noncoding RNAs (lncRNAs) using total RNA-Seq technology. We validated the differential expression of some mRNAs and lncRNAs by RT-qPCR and analyzed the expression of Cebpd and Rnu3a through knock-down of Cebpd. Cell proliferation was significantly reduced in cells exposed to 100 mM ethanol for 72 h, with 1773 transcripts up- or downregulated by greater than three-fold in ethanol-treated cells compared to controls. Of these, 514 were identified as lncRNAs. Differentially expressed mRNAs and lncRNAs were mainly observed in cells exposed to ethanol for 72 h, in which Atm and Cnr1 decreased, but Trib3, Cebpd, and Spdef increased. On the other hand, lncRNAs Kcnq1ot1, Tug1, and Xist were changed by ethanol, and Rnu3a in particular was greatly increased by chronic ethanol treatment through inhibition of Cebpd. Our results increase the understanding of cellular and molecular mechanisms related to coding and noncoding RNAs in an in vitro model of acute and chronic exposure to ethanol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sinyoung Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Seoul 06351, Korea;
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| |
Collapse
|
22
|
Ludwig-Müller J. What Can We Learn from -Omics Approaches to Understand Clubroot Disease? Int J Mol Sci 2022; 23:ijms23116293. [PMID: 35682976 PMCID: PMC9180986 DOI: 10.3390/ijms23116293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Clubroot is one of the most economically significant diseases worldwide. As a result, many investigations focus on both curing the disease and in-depth molecular studies. Although the first transcriptome dataset for the clubroot disease describing the clubroot disease was published in 2006, many different pathogen-host plant combinations have only recently been investigated and published. Articles presenting -omics data and the clubroot pathogen Plasmodiophora brassicae as well as different host plants were analyzed to summarize the findings in the richness of these datasets. Although genome data for the protist have only recently become available, many effector candidates have been identified, but their functional characterization is incomplete. A better understanding of the life cycle is clearly required to comprehend its function. While only a few proteome studies and metabolome analyses were performed, the majority of studies used microarrays and RNAseq approaches to study transcriptomes. Metabolites, comprising chemical groups like hormones were generally studied in a more targeted manner. Furthermore, functional approaches based on such datasets have been carried out employing mutants, transgenic lines, or ecotypes/cultivars of either Arabidopsis thaliana or other economically important host plants of the Brassica family. This has led to new discoveries of potential genes involved in disease development or in (partial) resistance or tolerance to P. brassicae. The overall contribution of individual experimental setups to a larger picture will be discussed in this review.
Collapse
|
23
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
24
|
Li X, Yang Y, Liang L, Fan M, Li X, Feng N, Pan Y, Tan Q, Xu Q, Xie Y, Guo F. Effect Of XBP1 Deficiency In Cartilage On The Regulatory Network Of LncRNA/circRNA-miRNA-mRNA. Int J Biol Sci 2022; 18:315-330. [PMID: 34975335 PMCID: PMC8692151 DOI: 10.7150/ijbs.64054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
X-box binding protein 1(XBP1) is a critical component for unfolded protein response (UPR) in ER stress. According to previous studies performed with different XBP1-deficient mice, the XBP1 gene affects mouse cartilage development and causes other related diseases. However, how the complete transcriptome, including mRNA and ncRNAs, affects the function of cartilage and other tissues when XBP1 is deficient in chondrocytes is unclear. In this study, we aimed to screen the differentially expressed (DE) mRNAs, circRNAs, lncRNAs and miRNAs in XBP1 cartilage-specific knockout (CKO) mice using high throughput sequencing and construct the circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks. DE LncRNAs (DE-LncRNAs), circRNAs (DE-circRNAs), miRNAs (DE-miRNAs), and mRNAs [differentially expressed genes (DEGs)] between the cartilage tissue of XBP1 CKO mice and controls were identified, including 441 DE-LncRNAs, 15 DE-circRNAs, 6 DE-miRNAs, and 477 DEGs. Further, 253,235 lncRNA-miRNA-mRNA networks and 1,822 circRNA-miRNA-mRNA networks were constructed based on the correlation between lncRNAs/circRNAs, miRNAs, mRNAs. The whole transcriptome analysis revealed that XBP1 deficiency in cartilage affects the function of cartilage and other different tissues, as well as associated diseases. Overall, our findings may provide potential biomarkers and mechanisms for the diagnosis and treatment of cartilage and other related diseases.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Yang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Li Liang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Mengtian Fan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Naibo Feng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yiming Pan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, United Kingdom
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Zhang J, Li J, Saeed S, Batchelor WD, Alariqi M, Meng Q, Zhu F, Zou J, Xu Z, Si H, Wang Q, Zhang X, Zhu H, Jin S, Yuan D. Identification and Functional Analysis of lncRNA by CRISPR/Cas9 During the Cotton Response to Sap-Sucking Insect Infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:784511. [PMID: 35283887 PMCID: PMC8905227 DOI: 10.3389/fpls.2022.784511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
Sap-sucking insects cause severe damage to cotton production. Long non-coding RNAs (lncRNAs) play vital regulatory roles in various development processes and stress response, however, the function of lncRNAs during sap-sucking insect infection in cotton is largely unknown. In this study, the transcriptome profiles between resistant (HR) and susceptible (ZS) cotton cultivars under whitefly infestation at different time points (0, 4, 12, 24, and 48 h) were compared. A total of 6,651 lncRNAs transcript and 606 differentially expressed lncRNAs were identified from the RNA-seq data. A co-expression network indicated that lncA07 and lncD09 were potential hub genes that play a regulatory role in cotton defense against aphid infestation. Furthermore, CRISPR/Cas9 knock-out mutant of lncD09 and lncA07 showed a decrease of jasmonic acid (JA) content, which potentially lead to increased susceptibility toward insect infestation. Differentially expressed genes between wild type and lncRNA knock-out plants are enriched in modulating development and resistance to stimulus. Additionally, some candidate genes such as Ghir_A01G022270, Ghir_D04G014430, and Ghir_A01G022270 are involved in the regulation of the JA-mediated signaling pathway. This result provides a novel insight of the lncRNA role in the cotton defense system against pests.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuhui Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Shuangxia Jin,
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Daojun Yuan,
| |
Collapse
|
26
|
Gong Y, Zhu W, Sun M, Shi L. Bioinformatics Analysis of Long Non-coding RNA and Related Diseases: An Overview. Front Genet 2021; 12:813873. [PMID: 34956340 PMCID: PMC8692768 DOI: 10.3389/fgene.2021.813873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are usually located in the nucleus and cytoplasm of cells. The transcripts of lncRNAs are >200 nucleotides in length and do not encode proteins. Compared with small RNAs, lncRNAs have longer sequences, more complex spatial structures, and more diverse and complex mechanisms involved in the regulation of gene expression. LncRNAs are widely involved in the biological processes of cells, and in the occurrence and development of many human diseases. Many studies have shown that lncRNAs can induce the occurrence of diseases, and some lncRNAs undergo specific changes in tumor cells. Research into the roles of lncRNAs has covered the diagnosis of, for example, cardiovascular, cerebrovascular, and central nervous system diseases. The bioinformatics of lncRNAs has gradually become a research hotspot and has led to the discovery of a large number of lncRNAs and associated biological functions, and lncRNA databases and recognition models have been developed. In this review, the research progress of lncRNAs is discussed, and lncRNA-related databases and the mechanisms and modes of action of lncRNAs are described. In addition, disease-related lncRNA methods and the relationships between lncRNAs and human lung adenocarcinoma, rectal cancer, colon cancer, heart disease, and diabetes are discussed. Finally, the significance and existing problems of lncRNA research are considered.
Collapse
Affiliation(s)
- Yuxin Gong
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Wen Zhu
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Meili Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Schweizer G, Wagner A. Both Binding Strength and Evolutionary Accessibility Affect the Population Frequency of Transcription Factor Binding Sequences in Arabidopsis thaliana. Genome Biol Evol 2021; 13:6459646. [PMID: 34894231 PMCID: PMC8712246 DOI: 10.1093/gbe/evab273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in DNA sequences that bind transcription factors and thus modulate gene expression are a source of adaptive variation in gene expression. To understand how transcription factor binding sequences evolve in natural populations of the thale cress Arabidopsis thaliana, we integrated genomic polymorphism data for loci bound by transcription factors with in vitro data on binding affinity for these transcription factors. Specifically, we studied 19 different transcription factors, and the allele frequencies of 8,333 genomic loci bound in vivo by these transcription factors in 1,135 A. thaliana accessions. We find that transcription factor binding sequences show very low genetic diversity, suggesting that they are subject to purifying selection. High frequency alleles of such binding sequences tend to bind transcription factors strongly. Conversely, alleles that are absent from the population tend to bind them weakly. In addition, alleles with high frequencies also tend to be the endpoints of many accessible evolutionary paths leading to these alleles. We show that both high affinity and high evolutionary accessibility contribute to high allele frequency for at least some transcription factors. Although binding sequences with stronger affinity are more frequent, we did not find them to be associated with higher gene expression levels. Epistatic interactions among individual mutations that alter binding affinity are pervasive and can help explain variation in accessibility among binding sequences. In summary, combining in vitro binding affinity data with in vivo binding sequence data can help understand the forces that affect the evolution of transcription factor binding sequences in natural populations.
Collapse
Affiliation(s)
- Gabriel Schweizer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,Santa Fe Institute, Santa Fe, New Mexico, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, South Africa
| |
Collapse
|
28
|
Zhang M, Sun Y, Huang CP, Luo J, Zhang L, Meng J, Liang C, Chang C. Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death Dis 2021; 12:855. [PMID: 34545067 PMCID: PMC8452728 DOI: 10.1038/s41419-021-03966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been found to play critical roles in regulating gene expression, but their function in translational control is poorly understood. We found lnc-OPHN1-5, which lies close to the androgen receptor (AR) gene on chromosome X, increased prostate cancer (PCa) Enzalutamide (Enz) sensitivity via decreasing AR protein expression and associated activity. Mechanism dissection revealed that lnc-OPHN1-5 interacted with AR-mRNA to minimize its interaction with the RNA binding protein (RBP) hnRNPA1. Suppressing lnc-OPHN1-5 expression promoted the interaction between AR-mRNA and hnRNPA1, followed by an increase of ribosome association with AR-mRNA and translation. This effect was reversed by increasing lnc-OPHN1-5 expression. Consistently, the in vivo mice model confirmed that knocking down lnc-OPHN1-5 expression in tumors significantly increased the tumor formation rate and AR protein expression compared with the control group. Furthermore, knocking down hnRNPA1 blocked/reversed shlnc-OPHN1-5-increased AR protein expression and re-sensitized cells to Enz treatment efficacy. Evidence from Enz-resistant cell lines, patient-derived xenograft (PDX) models, clinical samples, and a human PCa study accordantly suggested that patients with low expression of lnc-OPHN1-5 likely have unfavorable prognoses and probably are less sensitive to Enz treatment. In summary, targeting this newly identified lnc-OPHN1-5/AR/hnRNPA1 complex may help develop novel therapies to increase Enz treatment sensitivity for suppressing the PCa at an advanced stage.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Institute of Urology, Shenzhen University, Shenzhen, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University, Taichung, Taiwan
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Urology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Zhang M, He P, Bian Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front Mol Neurosci 2021; 14:685143. [PMID: 34421536 PMCID: PMC8371338 DOI: 10.3389/fnmol.2021.685143] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are progressive and ultimately fatal. NDD onset is influenced by several factors including heredity and environmental cues. Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules with: (i) lengths greater than 200 nucleotides, (ii) diverse biological functions, and (iii) highly conserved structures. They directly interact with molecules such as proteins and microRNAs and subsequently regulate the expression of their targets at the genetic, transcriptional, and post-transcriptional levels. Emerging studies indicate the important roles of lncRNAs in the progression of neurological diseases including NDDs. Additionally, improvements in detection technologies have enabled quantitative lncRNA detection and application to circulating fluids in clinical settings. Here, we review current research on lncRNAs in animal models and patients with NDDs. We also discuss the potential applicability of circulating lncRNAs as biomarkers in NDD diagnostics and prognostics. In the future, a better understanding of the roles of lncRNAs in NDDs will be essential to exploit these new therapeutic targets and improve noninvasive diagnostic methods for diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Li Y, Li J, Chen L, Xu L. The Roles of Long Non-coding RNA in Osteoporosis. Curr Stem Cell Res Ther 2021; 15:639-645. [PMID: 32357819 DOI: 10.2174/1574888x15666200501235735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.
Collapse
Affiliation(s)
- Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leilei Chen
- Department of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Chen W, Liu S, Wang F. Potential impact and mechanism of Long Non-coding RNAs on cancer and associated T cells. J Cancer 2021; 12:4873-4882. [PMID: 34234857 PMCID: PMC8247393 DOI: 10.7150/jca.58859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
The discovery of many aberrant expressions of long non-coding RNAs (lncRNAs) in various cancers has focused attention on the effects of lncRNA on cancer cells themselves, including cell proliferation, growth inhibition, cell migration, cell immortality, vascular regeneration and cell viability. But with the increasing role of immunotherapy in cancer therapy, a large number of studies have revealed that the regulatory role of lncRNAs in immunity such as differentiation of immune cells can also influence the development and progression of cancer. In particular, recent publications have suggested that lncRNAs play critical roles in T-lymphocyte activation, proliferation, differentiation, function, apoptosis and metabolism. To elucidate the actual functions of lncRNAs at the molecular level of cancer pathogenesis, we summarize some of the current lncRNA regulatory mechanisms associated with T cell to discuss their effects in cancer in the hope of providing potential cancer therapeutic targets or cancer biomarkers. However, we all know that the differentiation and function of T cells is an extremely complex process that involves the expression and regulation of multiple lncRNAs. As a result, more regulatory mechanisms of lncRNAs need to be further studied.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.,National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
32
|
Yuan W, Xiong X, Du J, Fan Q, Wang R, Zhang X. LncRNA PVT1 accelerates LPS-induced septic acute kidney injury through targeting miR-17-5p and regulating NF-κB pathway. Int Urol Nephrol 2021; 53:2409-2419. [PMID: 34089461 DOI: 10.1007/s11255-021-02905-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Long noncoding RNA PVT1 is associated with diverse human diseases, including acute kidney injury (AKI). However, our understandings of PVT1 on septic AKI are limited. METHODS The septic AKI model was constructed through lipopolysaccharide (LPS) treatment. PVT1 and miR-17-5p levels were measured using qRT-PCR analysis. The concentrations of inflammatory cytokines were determined with ELISA kits. Cell viability and apoptosis were assessed using CCK-8 assay and flow-cytometric analysis, respectively. Protein levels were examined using western blot assay. The targeting association between miR-17-5p and PVT1 was verified by dual-luciferase reporter, RIP and RNA pull-down assays. RESULTS PVT1 level was elevated and miR-17-5p level was declined in septic AKI patients' serum and LPS-stimulated HK-2 cells. Cell viability was suppressed and cell apoptosis and inflammation were promoted after LPS treatment. PVT1 knockdown or miR-17-5p elevation restored LPS-mediated HK-2 cell injury. MiR-17-5p was sponged by PVT1, and its inhibition weakened the impact of PVT1 deficiency on LPS-mediated injury of HK-2 cells. In addition, PVT1 knockdown inactivated NF-κB pathway mediated by LPS treatment, but miR-17-5p inhibition further reversed this effect. CONCLUSION PVT1 knockdown promoted cell viability, suppressed inflammatory response and apoptosis by regulating miR-17-5p expression and NF-κB pathway in LPS-stimulated HK-2 cells.
Collapse
Affiliation(s)
- Wensheng Yuan
- Emergency Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, No. 1 Renmin Road, Jingzhou, 433000, Hubei, China.
| | - Xiaoqing Xiong
- Emergency Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, No. 1 Renmin Road, Jingzhou, 433000, Hubei, China
| | - Jinlong Du
- ICU Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Qi Fan
- ICU Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Rong Wang
- ICU Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Xia Zhang
- ICU Department, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
33
|
Meng X, Li A, Yu B, Li S. Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol J 2021; 19:2567-2574. [PMID: 34025943 PMCID: PMC8114054 DOI: 10.1016/j.csbj.2021.04.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022] Open
Abstract
Plants employ sophisticated mechanisms to control developmental processes and to cope with environmental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stresses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and computational predication methods of the interplay between miRNAs and lncRNAs in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
34
|
Zhang B, Su T, Li P, Xin X, Cao Y, Wang W, Zhao X, Zhang D, Yu Y, Li D, Yu S, Zhang F. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. HORTICULTURE RESEARCH 2021; 8:44. [PMID: 33642586 PMCID: PMC7917106 DOI: 10.1038/s41438-021-00479-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 05/07/2023]
Abstract
Brassica downy mildew, a severe disease caused by Hyaloperonospora brassicae, can cause enormous economic losses in Chinese cabbage (Brassica rapa L. ssp. pekinensis) production. Although some research has been reported recently concerning the underlying resistance to this disease, no studies have identified or characterized long noncoding RNAs involved in this defense response. In this study, using high-throughput RNA sequencing, we analyzed the disease-responding mRNAs and long noncoding RNAs in two resistant lines (T12-19 and 12-85) and one susceptible line (91-112). Clustering and Gene Ontology analysis of differentially expressed genes (DEGs) showed that more DEGs were involved in the defense response in the two resistant lines than in the susceptible line. Different expression patterns and proposed functions of differentially expressed long noncoding RNAs among T12-19, 12-85, and 91-112 indicated that each has a distinct disease response mechanism. There were significantly more cis- and trans-functional long noncoding RNAs in the resistant lines than in the susceptible line, and the genes regulated by these RNAs mostly participated in the disease defense response. Furthermore, we identified a candidate resistance-related long noncoding RNA, MSTRG.19915, which is a long noncoding natural antisense transcript of a MAPK gene, BrMAPK15. Via an agroinfiltration-mediated transient overexpression system and virus-induced gene silencing technology, BrMAPK15 was indicated to have a greater ability to defend against pathogens. MSTRG.19915-silenced seedlings showed enhanced resistance to downy mildew, probably because of the upregulated expression of BrMAPK15. This research identified and characterized long noncoding RNAs involved in resistance to downy mildew, laying a foundation for future in-depth studies of disease resistance mechanisms in Chinese cabbage.
Collapse
Affiliation(s)
- Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Yunyun Cao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 100097, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, 100097, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, 100097, Beijing, China.
| |
Collapse
|
35
|
Fargeot L, Loot G, Prunier JG, Rey O, Veyssière C, Blanchet S. Patterns of Epigenetic Diversity in Two Sympatric Fish Species: Genetic vs. Environmental Determinants. Genes (Basel) 2021; 12:107. [PMID: 33467145 PMCID: PMC7830833 DOI: 10.3390/genes12010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic components are hypothesized to be sensitive to the environment, which should permit species to adapt to environmental changes. In wild populations, epigenetic variation should therefore be mainly driven by environmental variation. Here, we tested whether epigenetic variation (DNA methylation) observed in wild populations is related to their genetic background, and/or to the local environment. Focusing on two sympatric freshwater fish species (Gobio occitaniae and Phoxinus phoxinus), we tested the relationships between epigenetic differentiation, genetic differentiation (using microsatellite and single nucleotide polymorphism (SNP) markers), and environmental distances between sites. We identify positive relationships between pairwise genetic and epigenetic distances in both species. Moreover, epigenetic marks better discriminated populations than genetic markers, especially in G. occitaniae. In G. occitaniae, both pairwise epigenetic and genetic distances were significantly associated to environmental distances between sites. Nonetheless, when controlling for genetic differentiation, the link between epigenetic differentiation and environmental distances was not significant anymore, indicating a noncausal relationship. Our results suggest that fish epigenetic variation is mainly genetically determined and that the environment weakly contributed to epigenetic variation. We advocate the need to control for the genetic background of populations when inferring causal links between epigenetic variation and environmental heterogeneity in wild populations.
Collapse
Affiliation(s)
- Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Géraldine Loot
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
- Université Paul Sabatier (UPS), Institut Universitaire de France (IUF), F-75231 Paris CEDEX 05, France
| | - Jérôme G. Prunier
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Olivier Rey
- CNRS, Interaction Hôtes-Parasites-Environnements (IHPE), UMR 5244, F-66860 Perpignan, France;
| | - Charlotte Veyssière
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| |
Collapse
|
36
|
Wang W, Cheng X, Zhu J. Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171. Oncol Lett 2021; 21:193. [PMID: 33574932 PMCID: PMC7816294 DOI: 10.3892/ol.2021.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| | - Xia Cheng
- Graduate School, Dalian Medical University, Dalian, Liaoning 116000, P.R. China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Zhu
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| |
Collapse
|
37
|
Vivek AT, Kumar S. Computational methods for annotation of plant regulatory non-coding RNAs using RNA-seq. Brief Bioinform 2020; 22:6041165. [PMID: 33333550 DOI: 10.1093/bib/bbaa322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.
Collapse
Affiliation(s)
- A T Vivek
- National Institute of Plant Genome Research in New Delhi, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research in New Delhi
| |
Collapse
|
38
|
Batra R, Gautam T, Pal S, Chaturvedi D, Rakhi, Jan I, Balyan HS, Gupta PK. Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.). Sci Rep 2020; 10:14624. [PMID: 32884064 PMCID: PMC7471321 DOI: 10.1038/s41598-020-71526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). These genes were generally downregulated in response to the three stresses examined.
Collapse
Affiliation(s)
- Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Sunita Pal
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Deepti Chaturvedi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Rakhi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
39
|
Thapliyal G, Vemanna RS, Pawar PM, Barthwal S, Meena RK, Pandey S, Bhandari MS. First record of off-season flowering in Populus deltoides from India: paradigm of climate change indicator. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1629-1634. [PMID: 32415620 DOI: 10.1007/s00484-020-01915-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Populus deltoides is a fast-growing woody species possessing plethora of industrial applications. This species evolutionarily developed unisexual male and female catkin inflorescence on separate trees. Flowering usually occurs during early spring before the development of foliage, where buds appear near axils or at the extending shoots. In 2019, surveys were undertaken to study the flowering pattern of P. deltoides in the states of Punjab, Haryana, Uttar Pradesh and Uttarakhand in northern India. Interestingly, an anomalous flowering behaviour (appearance of off-season male catkins during autumn, i.e. October) was observed in a plantation trial at Kapurthala, Punjab. The male catkins were 2.7-3.1 ± 0.07 cm long and 0.3-0.5 ± 0.03 cm wide, which is significant for flowering and liberation of pollen grains. Preliminary results suggested that climatic factors, such as episodes of high or low temperature and the precipitation variation forcing the tree species to behave differently. Unearthing the climate-driven off-season flowering in other tree species alluded the stimulation of phytohormones, such as gibberellic and salicylic acid concentrations influencing the flowering time, therefore, needs further investigation in case of P. deltoides. Overall, this work provides early clues of changing climatic scenario altering the flowering pattern of a tropical forestry tree species.
Collapse
Affiliation(s)
- Garima Thapliyal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Ramu S Vemanna
- Regional Center for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - Prashant Mohan Pawar
- Regional Center for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Rajendra K Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, Uttarakhand, 248 006, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, 248 195, India.
| |
Collapse
|
40
|
Hamid R, Jacob F, Marashi H, Rathod V, Tomar RS. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 2020; 112:3354-3364. [PMID: 32574832 DOI: 10.1016/j.ygeno.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023]
Abstract
Cytoplasmic male sterility is a well-proven mechanism for cotton hybrid production. Long non-coding RNAs belong to a class of transcriptional regulators that function in multiple biological processes. The cDNA libraries from the flower buds of the cotton CGMS, it's restorer (Rf) and maintainer lines were sequenced using high throughput NGS technique. A total of 1531 lncRNAs showed significant differential expression patterns between these three lines. Functional analysis of the co-expression network of lncRNA-mRNA using gene ontology vouchsafes that, lncRNAs play a crucial role in cytoplasmic male sterility and fertility restoration through pollen development, INO80 complex, development of anther wall tapetum, chromatin remodeling, and histone modification. Additionally, 94 lncRNAs were identified as putative precursors of 49 miRNAs. qRT-PCR affirms the concordance of expression pattern to RNA-seq data. These findings divulge the lncRNA driven miRNA-mediated regulation of gene expression profiling superintended for a better understanding of the CMS mechanisms of cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | - Feba Jacob
- Centre for plant biotechnology and molecular biology, Kerala agricultural university, Thrissur, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Visha Rathod
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
41
|
Cao L, Wang Y, Bi C, Ye Q, Yin T, Ye N. PreLnc: An Accurate Tool for Predicting lncRNAs Based on Multiple Features. Genes (Basel) 2020; 11:E981. [PMID: 32842486 PMCID: PMC7563287 DOI: 10.3390/genes11090981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have certain similarities with messenger RNAs (mRNAs) and are associated with numerous important biological processes, thereby demanding methods to distinguish them. Based on machine learning algorithms, a variety of methods are developed to identify lncRNAs, providing significant basic data support for subsequent studies. However, many tools lack certain scalability, versatility and balance, and some tools rely on genome sequence and annotation. In this paper, we propose a convenient and accurate tool "PreLnc", which uses high-confidence lncRNA and mRNA transcripts to build prediction models through feature selection and classifiers. The false discovery rate (FDR) adjusted P-value and Z-value were used for analyzing the tri-nucleotide composition of transcripts of different species. Conclusions can be drawn from the experiment that there were significant differences in RNA transcripts among plants, which may be related to evolutionary conservation and the fact that plants are under evolutionary pressure for a longer time than animals. Combining with the Pearson correlation coefficient, we use the incremental feature selection (IFS) method and the comparison of multiple classifiers to build the model. Finally, the balanced random forest was used to construct the classifier, and PreLnc obtained 91.09% accuracy for 349,186 transcripts of animals and plants. In addition, by comparing standard performance measurements, PreLnc performed better than other prediction tools.
Collapse
Affiliation(s)
- Lei Cao
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Y.W.); (Q.Y.)
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Y.W.); (Q.Y.)
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210037, China;
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Y.W.); (Q.Y.)
| | - Tongming Yin
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (L.C.); (Y.W.); (Q.Y.)
| |
Collapse
|
42
|
Zuo J, Grierson D, Courtney LT, Wang Y, Gao L, Zhao X, Zhu B, Luo Y, Wang Q, Giovannoni JJ. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:980-994. [PMID: 32314448 DOI: 10.1111/tpj.14778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 05/28/2023]
Abstract
Ripening of tomato fruit is a complex tightly orchestrated developmental process that involves multiple physiological and metabolic changes that render fruit attractive, palatable and nutritious. Ripening requires initiation, activation and coordination of key pathways at the transcriptional and post-transcriptional levels that lead to ethylene synthesis and downstream ripening events determining quality. We studied wild-type, Gr and r mutant fruits at the coding and non-coding transcriptomic, metabolomic and genome methylation levels. Numerous differentially expressed non-coding RNAs were identified and quantified and potential competing endogenous RNA regulation models were constructed. Multiple changes in gene methylation were linked to the ethylene pathway and ripening processes. A combined analysis of changes in genome methylation, long non-coding RNAs, circular RNAs, micro-RNAs and fruit metabolites revealed many differentially expressed genes (DEGs) with differentially methylated regions encoding transcription factors and key enzymes related to ethylene or carotenoid pathways potentially targeted by differentially expressed non-coding RNAs. These included ACO2 (targeted by MSTRG.59396.1 and miR396b), CTR1 (targeted by MSTRG.43594.1 and miR171b), ERF2 (targeted by MSTRG.183681.1), ERF5 (targeted by miR9470-3p), PSY1 (targeted by MSTRG.95226.7), ZISO (targeted by 12:66127788|66128276) and NCED (targeted by MSTRG.181568.2). Understanding the functioning of this intricate genetic regulatory network provides new insights into the underlying integration and relationships between the multiple events that collectively determine the ripe phenotype.
Collapse
Affiliation(s)
- Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Lance T Courtney
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - James J Giovannoni
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY, 14853, USA
| |
Collapse
|
43
|
The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. Int J Mol Sci 2020; 21:ijms21082659. [PMID: 32290420 PMCID: PMC7215362 DOI: 10.3390/ijms21082659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.
Collapse
|
44
|
Xie L, Teng K, Tan P, Chao Y, Li Y, Guo W, Han L. PacBio single-molecule long-read sequencing shed new light on the transcripts and splice isoforms of the perennial ryegrass. Mol Genet Genomics 2020; 295:475-489. [PMID: 31894400 DOI: 10.1007/s00438-019-01635-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Perennial ryegrass (Lolium perenne), one of the most widely used forage and cool-season turfgrass worldwide, has a breeding history of more than 100 years. However, the current draft genome annotation and transcriptome characterization are incomplete mainly because of the enormous difficulty in obtaining full-length transcripts. To explore the complete structure of the mRNA and improve the current draft genome, we performed PacBio single-molecule long-read sequencing for full-length transcriptome sequencing in perennial ryegrass. We generated 29,175 high-confidence non-redundant transcripts from 15,893 genetic loci, among which more than 66.88% of transcripts and 24.99% of genetic loci were not previously annotated in the current reference genome. The re-annotated 18,327 transcripts enriched the reference transcriptome. Particularly, 6709 alternative splicing events and 23,789 alternative polyadenylation sites were detected, providing a comprehensive landscape of the post-transcriptional regulation network. Furthermore, we identified 218 long non-coding RNAs and 478 fusion genes. Finally, the transcriptional regulation mechanism of perennial ryegrass in response to drought stress based on the newly updated reference transcriptome sequences was explored, providing new information on the underlying transcriptional regulation network. Taken together, we analyzed the full-length transcriptome of perennial ryegrass by PacBio single-molecule long-read sequencing. These results improve our understanding of the perennial ryegrass transcriptomes and refined the annotation of the reference genome.
Collapse
Affiliation(s)
- Lijuan Xie
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Ke Teng
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China.,Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Penghui Tan
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinruizhi Li
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Weier Guo
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
45
|
Zhang P, Meng J, Luan Y, Liu C. Plant miRNA-lncRNA Interaction Prediction with the Ensemble of CNN and IndRNN. Interdiscip Sci 2019; 12:82-89. [PMID: 31811618 DOI: 10.1007/s12539-019-00351-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/11/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Non-coding RNA (ncRNA) plays an important role in regulating biological activities of animals and plants, and the representative ones are microRNA (miRNA) and long non-coding RNA (lncRNA). Recent research has found that predicting the interaction between miRNA and lncRNA is the primary task for elucidating their functional mechanisms. Due to the small scale of data, a large amount of noise, and the limitations of human factors, the prediction accuracy and reliability of traditional feature-based classification methods are often affected. Besides, the structure of plant ncRNA is complex. This paper proposes an ensemble deep-learning model based on convolutional neural network (CNN) and independently recurrent neural network (IndRNN) for predicting the interaction between miRNA and lncRNA of plants, namely, CIRNN. The model uses CNN to explore the functional features of gene sequences automatically, leverages IndRNN to obtain the representation of sequence features, and learns the dependencies among sequences; thus, it overcomes the inaccuracy caused by human factors in traditional feature engineering. The experiment results show that the proposed model is superior to shallow machine-learning and existing deep-learning models when dealing with large-scale data, especially for the long sequence.
Collapse
Affiliation(s)
- Peng Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Chanjuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
46
|
Zhu H, Li X, Xi D, Zhai W, Zhang Z, Zhu Y. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS One 2019; 14:e0224927. [PMID: 31805057 PMCID: PMC6894877 DOI: 10.1371/journal.pone.0224927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
The biotrophic protist Plasmodiophora brassicae causes serious damage to Brassicaceae crops grown worldwide. However, the molecular mechanism of the Brassica rapa response remains has not been determined. Long noncoding RNA and mRNA expression profiles in response to Plasmodiophora brassicae infection were investigated using RNA-seq on the Chinese cabbage inbred line C22 infected with P. brassicae. Approximately 5,193 mRNAs were significantly differentially expressed, among which 1,345 were upregulated and 3,848 were downregulated. The GO enrichment analysis shows that most of these mRNAs are related to the defense response. Meanwhile, 114 significantly differentially expressed lncRNAs were identified, including 31 upregulated and 83 downregulated. Furthermore, a total of 2,344 interaction relationships were detected between 1,725 mRNAs and 103 lncRNAs with a correlation coefficient greater than 0.8. We also found 15 P. brassicaerelated mRNAs and 16 lncRNA interactions within the correlation network. The functional annotation showed that 15 mRNAs belong to defense response proteins (66.67%), protein phosphorylation (13.33%), root hair cell differentiation (13.33%) and regulation of salicylic acid biosynthetic process (6.67%). KEGG annotation showed that the vast majority of these genes are involved in the biosynthesis of secondary metabolism pathways and plant-pathogen interactions. These results provide a new perspective on lncRNA-mRNA network function and help to elucidate the molecular mechanism of P. brassicae infection.
Collapse
Affiliation(s)
- Hongfang Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Xiaofeng Li
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Dandan Xi
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Wen Zhai
- East China University of Technology, Nanchang, China
| | - Zhaohui Zhang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Yuying Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
47
|
Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 2019; 20:ijms20225573. [PMID: 31717266 PMCID: PMC6888083 DOI: 10.3390/ijms20225573] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals. In this review, we summarize the functions and mechanisms of lncRNAs in plants, humans, and animals at different regulatory levels.
Collapse
|
48
|
Zhang W, Duan W, Mo Z, Wang J, Yang W, Wu W, Li X, Lin S, Tan Y, Wei W. Upregulation of SNHG14 suppresses cell proliferation and metastasis of colorectal cancer by targeting miR‐92b‐3p. J Cell Biochem 2019; 121:1998-2008. [PMID: 31692034 DOI: 10.1002/jcb.29434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Wenfei Duan
- Department of General Surgery The First Affiliated Hospital of Henan University Kaifeng China
| | - Zhifeng Mo
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Jianen Wang
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Wenbin Yang
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Wenrong Wu
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Xian Li
- Department of Obstetrics and Gynaecology The University of Hong Kong‐Shenzhen Hospital Shenzhen China
| | - Shuihua Lin
- Department of Medical Imaging The University of Hong Kong‐Shenzhen Hospital Shenzhen China
| | - Yuanfei Tan
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| | - Wei Wei
- Emergency and Disaster Medical Center The Seventh Affiliated Hospital of Sun Yat‐Sen University Shenzhen China
| |
Collapse
|
49
|
Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, Hu M, Shen J, Xu Q, Shen F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC PLANT BIOLOGY 2019; 19:459. [PMID: 31666019 PMCID: PMC6822370 DOI: 10.1186/s12870-019-2088-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. RESULTS In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. CONCLUSIONS LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.
Collapse
Affiliation(s)
- Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
50
|
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett 2019; 18:4393-4402. [PMID: 31611948 PMCID: PMC6781668 DOI: 10.3892/ol.2019.10848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences >200 nucleotides in length that have no protein-coding capacity. lncRNAs serve key roles in multiple biological processes, such as tumorigenesis and tumor progression. Taurine upregulated 1 (TUG1) is a novel lncRNA that has been associated with human cancer. TUG1 has attracted increasing attention in recent years and has been documented to be abnormally expressed in different types of cancer. Numerous studies indicate that TUG1 may be significantly associated with tumor development and cell metabolism by regulating cell proliferation, invasion, metastasis, apoptosis, differentiation and drug resistance. TUG1 exerts its function via recruiting specific RNA-binding proteins, promoting target gene expression, influencing tumor angiogenesis and by functioning as a competing endogenous RNA (ceRNA). An increasing number of studies have demonstrated that ceRNAs serve a role in cancer development. TUG1 is considered to be a biomarker or a novel therapeutic target for the diagnosis and prognosis of different cancer types. The present review focuses on recent developments in the major underlying molecular mechanisms of TUG1 in cancer, including its role in cell proliferation, apoptosis, migration, invasion and drug resistance. Also discussed in the present review is the current knowledge regarding the regulation of TUG1.
Collapse
Affiliation(s)
- Hui Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lina Sun
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|