1
|
Kubickova S, Kopecna O, Cernohorska H, Rubes J, Vozdova M. X Chromosome-Specific Repeats in Non-Domestic Bovidae. Genes (Basel) 2024; 15:159. [PMID: 38397149 PMCID: PMC10887555 DOI: 10.3390/genes15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Repetitive sequences form a substantial and still enigmatic part of the mammalian genome. We isolated repetitive DNA blocks of the X chromosomes of three species of the family Bovidae: Kobus defassa (KDEXr sequence), Bos taurus (BTAXr sequence) and Antilope cervicapra (ACEXr sequence). The copy numbers of the isolated sequences were assessed using qPCR, and their chromosomal localisations were analysed using FISH in ten bovid tribes and in outgroup species. Besides their localisation on the X chromosome, their presence was also revealed on the Y chromosome and autosomes in several species. The KDEXr sequence abundant in most Bovidae species also occurs in distant taxa (Perissodactyla and Carnivora) and seems to be evolutionarily older than BTAXr and ACEXr. The ACEXr sequence, visible only in several Antilopini species using FISH, is probably the youngest, and arised in an ancestor common to Bovidae and Cervidae. All three repetitive sequences analysed in this study are interspersed among gene-rich regions on the X chromosomes, apparently preventing the crossing-over in their close vicinity. This study demonstrates that repetitive sequences on the X chromosomes have undergone a fast evolution, and their variation among related species can be beneficial for evolutionary studies.
Collapse
Affiliation(s)
| | | | | | | | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.R.)
| |
Collapse
|
2
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
3
|
Cernohorska H, Kubickova S, Musilova P, Vozdova M, Vodicka R, Rubes J. Supernumerary Marker Chromosome Identified in Asian Elephant ( Elephas maximus). Animals (Basel) 2023; 13:ani13040701. [PMID: 36830488 PMCID: PMC9952010 DOI: 10.3390/ani13040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future.
Collapse
Affiliation(s)
- Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-533331425
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | | | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
4
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
5
|
Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule. Sci Rep 2021; 11:3152. [PMID: 33542477 PMCID: PMC7862234 DOI: 10.1038/s41598-021-82859-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 01/17/2023] Open
Abstract
Chromosome structural change has long been considered important in the evolution of post-zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene flow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplification and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post-zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane’s rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network’s surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility.
Collapse
|
6
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|
7
|
Sena RS, Heringer P, Valeri MP, Pereira VS, Kuhn GCS, Svartman M. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra). Sci Rep 2020; 10:19202. [PMID: 33154538 PMCID: PMC7644632 DOI: 10.1038/s41598-020-76199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.
Collapse
Affiliation(s)
- Radarane Santos Sena
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mirela Pelizaro Valeri
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gustavo C S Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Martínková N, Rubes J. Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae. Genes (Basel) 2020; 11:genes11050584. [PMID: 32456268 PMCID: PMC7288315 DOI: 10.3390/genes11050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Centromeric and pericentromeric chromosome regions are occupied by satellite DNA. Satellite DNAs play essential roles in chromosome segregation, and, thanks to their extensive sequence variability, to some extent, they can also be used as phylogenetic markers. In this paper, we isolated and sequenced satellite DNA I-IV in 11 species of Cervidae. The obtained satellite DNA sequences and their chromosomal distribution were compared among the analysed representatives of cervid subfamilies Cervinae and Capreolinae. Only satI and satII sequences are probably present in all analysed species with high abundance. On the other hand, fluorescence in situ hybridisation (FISH) with satIII and satIV probes showed signals only in a part of the analysed species, indicating interspecies copy number variations. Several indices, including FISH patterns, the high guanine and cytosine (GC) content, and the presence of centromere protein B (CENP-B) binding motif, suggest that the satII DNA may represent the most important satellite DNA family that might be involved in the centromeric function in Cervidae. The absence or low intensity of satellite DNA FISH signals on biarmed chromosomes probably reflects the evolutionary reduction of heterochromatin following the formation of chromosome fusions. The phylogenetic trees constructed on the basis of the satellite I-IV DNA relationships generally support the present cervid taxonomy.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
- Correspondence: ; Tel.: +420-533-331-422
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Halina Cernohorska
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Jan Fröhlich
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - Jiri Rubes
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| |
Collapse
|
9
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Vodicka R, Rubes J. Comparative Study of the Bush Dog (Speothos venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet Genome Res 2019; 159:88-96. [DOI: 10.1159/000503082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
The bush dog (Speothos venaticus, 2n = 74) is a near threatened species taxonomically classified among South American canids. We revised the bush dog karyotype and performed a comparative sequence analysis of satellite and satellite-like DNAs in 6 canids: the bush dog, domestic dog (Canis familiaris, 2n = 78), grey wolf (C. lupus, 2n = 78), Chinese raccoon dog (Nyctereutes procyonoides procyonoides, 2n = 54+B), red fox (Vulpes vulpes, 2n = 34+B), and arctic fox (V. lagopus, 2n = 48-50) to specify the species position among Canidae. Using FISH with painting and BAC probes, we found that the distribution of canid evolutionarily conserved chromosome segments in the bush dog karyotype is similar to that of the domestic dog and grey wolf. The bush dog karyotype differs by 2 acrocentric chromosome pairs formed by tandem fusions of the canine (29;34) and (26;35) orthologues. An interstitial signal of the telomeric probe was observed in the (26;35) fusion site in the bush dog indicating a recent evolutionary origin of this rearrangement. Sequences and hybridisation patterns of satellite DNAs were compared, and a phylogenetic tree of the 6 canid species was constructed which confirmed the bush dog position close to the wolf-like canids, and apart from the raccoon dog and foxes.
Collapse
|
10
|
Escudeiro A, Adega F, Robinson TJ, Heslop-Harrison JS, Chaves R. Conservation, Divergence, and Functions of Centromeric Satellite DNA Families in the Bovidae. Genome Biol Evol 2019; 11:1152-1165. [PMID: 30888421 PMCID: PMC6475130 DOI: 10.1093/gbe/evz061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Repetitive satellite DNA (satDNA) sequences are abundant in eukaryote genomes, with a structural and functional role in centromeric function. We analyzed the nucleotide sequence and chromosomal location of the five known cattle (Bos taurus) satDNA families in seven species from the tribe Tragelaphini (Bovinae subfamily). One of the families (SAT1.723) was present at the chromosomes’ centromeres of the Tragelaphini species, as well in two more distantly related bovid species, Ovis aries and Capra hircus. Analysis of the interaction of SAT1.723 with centromeric proteins revealed that this satDNA sequence is involved in the centromeric activity in all the species analyzed and that it is preserved for at least 15–20 Myr across Bovidae species. The satDNA sequence similarity among the analyzed species reflected different stages of homogeneity/heterogeneity, revealing the evolutionary history of each satDNA family. The SAT1.723 monomer-flanking regions showed the presence of transposable elements, explaining the extensive shuffling of this satDNA between different genomic regions.
Collapse
Affiliation(s)
- Ana Escudeiro
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | | | | | - Raquel Chaves
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
11
|
Whole Genome Sequencing and Re-sequencing of the Sable Antelope ( Hippotragus niger): A Resource for Monitoring Diversity in ex Situ and in Situ Populations. G3-GENES GENOMES GENETICS 2019; 9:1785-1793. [PMID: 31000506 PMCID: PMC6553546 DOI: 10.1534/g3.119.400084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genome-wide assessment of genetic diversity has the potential to increase the ability to understand admixture, inbreeding, kinship and erosion of genetic diversity affecting both captive (ex situ) and wild (in situ) populations of threatened species. The sable antelope (Hippotragus niger), native to the savannah woodlands of sub-Saharan Africa, is a species that is being managed ex situ in both public (zoo) and private (ranch) collections in the United States. Our objective was to develop whole genome sequence resources that will serve as a foundation for characterizing the genetic status of ex situ populations of sable antelope relative to populations in the wild. Here we report the draft genome assembly of a male sable antelope, a member of the subfamily Hippotraginae (Bovidae, Cetartiodactyla, Mammalia). The 2.596 Gb draft genome consists of 136,528 contigs with an N50 of 45.5 Kbp and 16,927 scaffolds with an N50 of 4.59 Mbp. De novo annotation identified 18,828 protein-coding genes and repetitive sequences encompassing 46.97% of the genome. The discovery of single nucleotide variants (SNVs) was assisted by the re-sequencing of seven additional captive and wild individuals, representing two different subspecies, leading to the identification of 1,987,710 bi-allelic SNVs. Assembly of the mitochondrial genomes revealed that each individual was defined by a unique haplotype and these data were used to infer the mitochondrial gene tree relative to other hippotragine species. The sable antelope genome constitutes a valuable resource for assessing genome-wide diversity and evolutionary potential, thereby facilitating long-term conservation of this charismatic species.
Collapse
|
12
|
Escudeiro A, Ferreira D, Mendes-da-Silva A, Heslop-Harrison JS, Adega F, Chaves R. Bovine satellite DNAs – a history of the evolution of complexity and its impact in the Bovidae family. THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2018.1558294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- A. Escudeiro
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - D. Ferreira
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - A. Mendes-da-Silva
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | | | - F. Adega
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - R. Chaves
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
14
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox. Cytogenet Genome Res 2017; 150:118-127. [PMID: 28122375 DOI: 10.1159/000455081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox.
Collapse
Affiliation(s)
- Miluse Vozdova
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
15
|
Nieddu M, Mezzanotte R, Pichiri G, Coni PP, Dedola GL, Dettori ML, Pazzola M, Vacca GM, Robledo R. Evolution of satellite DNA sequences in two tribes of Bovidae: A cautionary tale. Genet Mol Biol 2015; 38:513-8. [PMID: 26692159 PMCID: PMC4763316 DOI: 10.1590/s1415-475738420150094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/17/2015] [Indexed: 01/13/2023] Open
Abstract
Two clones, Bt1 from Bos taurus and Om1 from Ovis orientalis
musimon, were used as probes for hybridization on genomic DNA and on
metaphase chromosomes in members of Bovini and Caprini tribes. Bt1 and Om1 are
sequences respectively belonging to the 1.715 and 1.714 DNA satellite I families.
Southern blots and fluorescence in situ hybridization experiments
showed completely coherent results: the Bovini probe Bt1 hybridized only to members
of the Bovini tribe and not to members of Caprini. Likewise, the Caprini probe Om1
hybridized only to members of the Caprini tribe and not to members of Bovini.
Hybridization signals were detected in the heterochromatic regions of every
acrocentric autosome, except for two pairs of autosomes from Capra
hircus that did not show hybridization to probe Om1. No signal was
detected on X and Y chromosomes or on bi-armed autosomes. Remarkably, probe Om1
showed almost 100% homology with a bacterial sequence reported in
Helicobacter pylori.
Collapse
Affiliation(s)
- Mariella Nieddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Mezzanotte
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppina Pichiri
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Pier Paolo Coni
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Gian Luca Dedola
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
16
|
Nanger, Eudorcas, Gazella, and Antilope form a well-supported chromosomal clade within Antilopini (Bovidae, Cetartiodactyla). Chromosoma 2014; 124:235-47. [PMID: 25416455 DOI: 10.1007/s00412-014-0494-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
The evolutionary clade comprising Nanger, Eudorcas, Gazella, and Antilope, defined by an X;BTA5 translocation, is noteworthy for the many autosomal Robertsonian fusions that have driven the chromosome number variation from 2n = 30 observed in Antilope cervicapra, to the 2n = 58 in present Eudorcas thomsoni and Eudorcas rufifrons. This work reports the phylogenetic relationships within the Antilopini using comprehensive cytogenetic data from A. cervicapra, Gazella leptoceros, Nanger dama ruficollis, and E. thomsoni together with corrected karyotypic data from an additional nine species previously reported in the literature. Fluorescence in situ hybridization using BAC and microdissected cattle painting probes, in conjunction with differential staining techniques, provide the following: (i) a detailed analysis of the E. thomsoni chromosomes, (ii) the identification and fine-scale analysis the BTA3 orthologue in species of Antilopini, and (iii) the location of the pseudoautosomal regions on sex chromosomes of the four species. Our phylogenetic analysis of the chromosomal data supports monophyly of Nanger and Eudorcas and suggests an affiliation between A. cervicapra and some of the Gazella species. This renders Gazella paraphyletic and emphasizes a closer relationship between Antilope and Gazella than what has previously been considered.
Collapse
|