1
|
Clonal evolution and expansion associated with therapy resistance and relapse of colorectal cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108445. [PMID: 36371022 DOI: 10.1016/j.mrrev.2022.108445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Colorectal cancer (CRC) arises by a continuous process of genetic diversification and clonal evolution. Multiple genes and pathways have a role in tumor initiation and progression. The gradual accumulation of genetic and epigenetic processes leads to the establishment of adenoma and cancer. The important 'driver' mutations in tumor suppressor genes (such as TP53, APC, and SMAD4) and oncogenes (such as KRAS, NRAS, MET, and PIK3CA) confer selective growth advantages and cause CRC advancement. Clonal evolution induced by therapeutic pressure, as well as intra-tumoral heterogeneity, has been a great challenge in the treatment of metastatic CRC. Tumors often develop resistance to treatments as a result of intra-tumor heterogeneity, clonal evolution, and selection. Hence, the development of a multidrug personalized approach should be prioritized to pave the way for therapeutics repurposing and combination therapy to arrest tumor progression. This review summarizes how selective drug pressure can impact tumor evolution, resulting in the formation of polyclonal resistance mechanisms, ultimately promoting cancer progression. Current strategies for targeting clonal evolution are described. By understanding sources and consequences of tumor heterogeneity, customized and effective treatment plans to combat drug resistance may be devised.
Collapse
|
2
|
Zolghadr F, Tse N, Loka D, Joun G, Meppat S, Wan V, Zoellner H, Xaymardan M, Farah CS, Lyons JG, Hau E, Patrick E, Seyedasli N. A Wnt-mediated phenotype switch along the epithelial-mesenchymal axis defines resistance and invasion downstream of ionising radiation in oral squamous cell carcinoma. Br J Cancer 2021; 124:1921-1933. [PMID: 33785878 DOI: 10.1038/s41416-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic transitions of tumour cells along the epithelial-mesenchymal axis are important in tumorigenesis, metastasis and therapy resistance. METHODS In this study, we have used cell lines, 3D spheroids and tumour samples in a variety of cell biological and transcriptome analyses to highlight the cellular and molecular dynamics of OSCC response to ionising radiation. RESULTS Our study demonstrates a prominent hybrid epithelial-mesenchymal state in oral squamous cell carcinoma cells and tumour samples. We have further identified a key role for levels of E-cadherin in stratifying the hybrid cells to compartments with varying levels of radiation response and radiation-induced epithelial-mesenchymal transition. The response to radiation further entailed the generation of a new cell population with low expression levels of E-cadherin, and positive for Vimentin (ECADLow/Neg-VIMPos), a phenotypic signature that showed an enhanced capacity for radiation resistance and invasion. At the molecular level, transcriptome analysis of spheroids in response to radiation showed an initial burst of misregulation within the first 30 min that further declined, although still highlighting key alterations in gene signatures. Among others, pathway analysis showed an over-representation for the Wnt signalling pathway that was further confirmed to be functionally involved in the generation of ECADLow/Neg-VIMPos population, acting upstream of radiation resistance and tumour cell invasion. CONCLUSION This study highlights the functional significance and complexity of tumour cell remodelling in response to ionising radiation with links to resistance and invasive capacity. An area of less focus in conventional radiotherapy, with the potential to improve treatment outcomes and relapse-free survival.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Nigel Tse
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dikasya Loka
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - George Joun
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Sreelakshmi Meppat
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Victor Wan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Hans Zoellner
- Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Munira Xaymardan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia.,Maxillofacial, Oral and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Sydney Medical School and Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Hau
- Sydney West Radiation Oncology Network, Westmead, NSW, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Naisana Seyedasli
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
| |
Collapse
|
3
|
Hu KL, Fan X, Hu WT, Li HL, Tang QH, Sun XH. Effect of chromodomain helicase/ATPase DNA binding protein 1-like gene on the invasion and metastasis of tongue squamous cell carcinoma CAL27 cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:81-87. [PMID: 33723941 DOI: 10.7518/hxkq.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES A study was conducted to investigate the molecular mechanism of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) influencing the invasion and metastasis of tongue squamous cell carcinoma and to provide a new target for clinical inhibition of invasion and metastasis of tongue squamous cell carcinoma. METHODS Ualcan website was used to analyze the expression of CHD1L in normal epithelial tissue and primary head and neck squamous cell carcinoma and to analyze the effect of lymph node metastasis on the expression of CHD1L in tissues with head and neck squamous cell carcinoma. The relationship between CHD1L expression and the survival rate of patients with head and neck squamous cell carcinoma was tested by the GEPIA website. Western blot was used to quantify the levels of CHD1L protein in human tongue squamous cell carcinoma CAL27 and immortalized human skin keratinocyte cell HaCaT. After knocking down CAL27 in human tongue squamous cell carcinoma cells with an RNA interference plasmid, the cells were designated as SiCHD1L/CAL27 and Scr/CAL27. Western blot was utilized to detect the expression of CHD1L in each group of cells. The change in CAL27 cell proliferation ability was tested by EdU proliferation test after CHD1L knockdown. The change of cell migration ability of each group cells was tested through the wound healing assay. Western blot was used to detect epithelial-mesenchymal transition (EMT) marker E-cadherin and Vimentin protein expression levels. RESULTS Ualcan database showed that the expression of CHD1L in primary head and neck squamous cell carcinoma tissues was higher than in normal epithelial tissues and in head and neck squamous cell carcinoma tissues with lymph node metastasis. GEPIA website analysis showed that the overall survival rate of patients with head and neck squamous cell carcinoma with high expression of CHD1L was significantly lower than that of patients with low expression. Western blot results showed that CHD1L expression in human tongue squamous carcinoma cells CAL27 was higher than that of human normal skin cells HaCaT. CHD1L expression in SiCHD1L/CAL27 cells was much lower than that in Scr/CAL27 cells. Results of EdU proliferation experiments showed the significant reduction in the cell proliferation ability of the SiCHD1L/CAL27 cells. Results of the wound healing experiments showed the reduction in the migration capacity of the SiCHD1L/CAL27 cells. The expression of E-cadherin increased, whereas that of Vimentin decreased, in SiCHD1L/CAL27 cells. CONCLUSIONS CHD1L promoted the EMT, proliferation, migration, and invasion ability of tongue squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Kai-Li Hu
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Xin Fan
- Dept. of Dentistry, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Wen-Ting Hu
- Dept. of Oral and Maxillofacial Surgery, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Hong-Li Li
- Medicine Research Center, Weifang Medical University, Weifang 261053, China
| | - Qing-Hua Tang
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Xue-Hui Sun
- Dept. of Oral and Maxillofacial Surgery, The Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| |
Collapse
|
4
|
Li G, Zhang H, Ma H, Qu S, Xing Q, Wang G. MiR-221-5p is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting IL-1β. Int J Rheum Dis 2020; 24:335-340. [PMID: 33201565 DOI: 10.1111/1756-185x.14028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
AIM Gout is caused by the accumulation of deposited monosodium urate (MSU) crystals in the joints. Recent studies have shown that interleukin-1β (IL-1β) is a key inflammatory mediator of acute gouty arthritis (AGA), and its level is regulated by microRNAs (miRNAs). The purpose of this study was to study the role of miR-221-5p in the pathogenesis of AGA. METHODS One hundred patients with AGA and 94 healthy individuals were recruited. The expression of serum miR-221-5p was determined by quantitative real-time polymerase chain reaction. The receiver operating curve (ROC) was applied for diagnostic value analysis. A luciferase reporter assay was performed to confirm the interaction of miRNA and the 3'-untranslated region (UTR) of IL-1β. Enzyme-linked immunosorbent assay was used to detect serum and proinflammatory factors. RESULTS miR-221-5p had lower expression in the serum of AGA patients. The area under the curve was 0.884, the sensitivity was 82.0%, and the specificity was 80.9%. Serum miR-221-5p was negatively correlated with the expression levels of visual analog scale and IL-1β. Cell experiments showed that overexpression of miR-221-5p significantly inhibited the expression of inflammatory factors tumor necrosis factor-α, IL-8, and IL-1β, while down-regulation of miR-221-5p was the opposite. Luciferase analysis showed that IL-1β was the target gene of miR-221-5p. CONCLUSIONS This study confirmed that miR-221-5p regulates the production of inflammatory cytokines during the pathogenesis of AGA. These results suggested that miR-221-5p could be used as a potential therapeutic target for the treatment of AGA.
Collapse
Affiliation(s)
- Guangwen Li
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| | - Huihui Zhang
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| | - Hong Ma
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| | - Shiping Qu
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| | - Qian Xing
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| | - Ge Wang
- Department of Rheumatology and Immunology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
5
|
Abstract
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10-5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.
Collapse
|
6
|
Zhang Z, He X, Xu J, Zhang G, Yang Y, Ma J, Sun Y, Ni H, Wang F. Advantages of Restoring miR-205-3p Expression for Better Prognosis of Gastric Cancer via Prevention of Epithelial-mesenchymal Transition. J Gastric Cancer 2020; 20:212-224. [PMID: 32596004 PMCID: PMC7311212 DOI: 10.5230/jgc.2020.20.e19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose miR-205 is a tumor suppressor and plays an important role in tumor invasiveness. However, the role of miR-205 in human gastric cancer (GC) epithelial-mesenchymal transition (EMT) remains unclear. The aim of this study was to investigate the molecular mechanism of miR-205 in the regulation of EMT in GC invasion. Materials and Methods Quantitative polymerase chain reaction (qPCR) was used to detect the expression of miR-205 in GC. Further, the correlation between the pathological parameters and prognosis of GC was statistically analyzed. A transwell model was used to evaluate the effect of miR-205-3p on the invasion and migration of GC cells. qPCR, western blotting, and luciferase assay were performed to analyze the relationship and target effects between miR-205-3p and the expression of zinc finger electron box binding homologous box 1 (ZEB1) and 2 (ZEB2). Results We found that the levels of miR-205-3p were significantly lower (P<0.05) in GC tissues than in matched normal tissues. Additionally, the expression of miR-205-3p was related to the tumor invasion depth, lymph node metastasis, lymph node invasion, and tumor, node, metastasis stage. Patients with lower miR-205-3p expression levels in the tumors had a poorer prognosis. The in vitro assays indicated that miR-205-3p could affect the invasion ability and EMT of GC cells by targeting the expression of both ZEB1 and ZEB2. Conclusions miR-205-3p promotes GC progression and affects the prognosis of patients by targeting both ZEB1 and ZEB2 to directly influence EMT.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji Xu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Genhua Zhang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yue Yang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanshui Sun
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haibin Ni
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fengyong Wang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Fan P, Li Z, Zuo C, Fang M. Promotion effects of mono-2-ethyhexyl phthalate (MEHP) on migration and invasion of human melanoma cells via activation of TGF-β signals. Cell Biochem Funct 2020; 38:38-46. [PMID: 31667872 DOI: 10.1002/cbf.3447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is one of the most leading forms of skin cancer associated with a low patient survival rate. There is an urgent need to illustrate risk factors that can trigger the motility of melanoma cancer cells. Our present study revealed that mono-(2-ethylhexyl)phthalate (MEHP) exposure can significantly increase the in vitro migration and invasion of WM983A and A375 cells. Among the tested cytokines, MEHP can increase the expression of transforming growth factor β (TGF-β). Inhibition of TGF-β via its neutralization antibody can attenuate MEHP-induced cell migration and invasion. Further, upregulation of TGF-β mediated MEHP-induced activation of Smad signals and upregulation of Snail in melanoma cells. Blocking the TGF-β/Smad signal pathway can attenuate MEHP-induced cell migration. Estrogen receptor α (ERα) was essential for MEHP-induced expression of TGF-β. In addition, MEHP can increase the expression of ERα in melanoma cells. Collectively, our study found that MEHP can stimulate the progression of melanoma via TGF-β signals. SIGNIFICANCE: Mono-(2-ethylhexyl)phthalate (MEHP) is the active and most toxic metabolite of di(2-ethylhexyl)phthalate (DEHP). Our present study revealed that MEHP can trigger the in vitro migration and invasion of melanoma cells via upregulation of TGF-β/Snail signals. It revealed that daily exposure to MEHP might be a risk factor for melanoma patients.
Collapse
Affiliation(s)
- Pengju Fan
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Li
- Department of Anaesthesia, The Maternity and Child Health Hospital of Hunan Province, Changsha, China
| | - Chenchen Zuo
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Man Fang
- Department of Plastic and Esthetic Surgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV, Perelmuter VM. Intravasation as a Key Step in Cancer Metastasis. BIOCHEMISTRY (MOSCOW) 2019; 84:762-772. [PMID: 31509727 DOI: 10.1134/s0006297919070071] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intravasation is a key step in cancer metastasis during which tumor cells penetrate the vessel wall and enter circulation, thereby becoming circulating tumor cells and potential metastatic seeds. Understanding the molecular mechanisms of intravasation is critically important for the development of therapeutic strategies to prevent metastasis. In this article, we review current data on the mechanisms of cancer cell intravasation into the blood and lymphatic vessels. The entry of mature thymocytes into the circulation and of dendritic cells into the regional lymph nodes is considered as example of intravasation under physiologically normal conditions. Intravasation in a pathophysiological state is illustrated by the reverse transendothelial migration of leukocytes into the bloodstream from the sites of inflammation mediated by the sphingosine 1-phosphate interaction with its receptors. Intravasation involves both invasion-dependent and independent mechanisms. In particular, mesenchymal and amoeboid cell invasion, as well as neoangiogenesis and vascular remodeling, are discussed to play a significant role in the entry of tumor cells to the circulation. Special attention is given to the contribution of macrophages to the intravasation via the CSF1/EGF (colony stimulating factor 1/epidermal growth factor) paracrine signaling pathway and the TMEM (tumor microenvironment of metastasis)-mediated mechanisms. Other mechanisms including intravasation of tumor cell clusters surrounded by the vessel wall elements, cooperative intravasation (entry of non-invasive tumor cells to the circulation following invasive tumor cells), and intravasation associated with the vasculogenic mimicry (formation of vascular channels by tumor cells) are also discussed. Novel intravasation-specific mechanisms that have not yet been described in the literature are suggested. The importance of targeted therapeutic strategies to prevent cancer intravasation is emphasized.
Collapse
Affiliation(s)
- M V Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - E V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - L A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.
| | - O E Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - E V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - N V Krakhmal
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - V M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| |
Collapse
|
9
|
He Y, He X. MicroRNA-370 Regulates Cellepithelial-Mesenchymal Transition, Migration, Invasion, and Prognosis of Hepatocellular Carcinoma by Targeting GUCD1. Yonsei Med J 2019; 60:267-276. [PMID: 30799589 PMCID: PMC6391526 DOI: 10.3349/ymj.2019.60.3.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor, the prognosis of which remains poor. Recently, microRNAs have been reported to play crucial functions in multiple tumors, including HCC. However, the molecular mechanisms of miR-370 in HCC still remain largely unknown. The present study focused on the effects of miR-370 on HCC migration, invasion, and epithelial-mesenchymal transition (EMT). MATERIALS AND METHODS We investigated the key roles and possible regulatory mechanism of miR-370 in regulating HCC metastasis with functional assays, such as transwell assay. Quantitative real-time PCR (qRT-PCR) was used to detect miR-370 and guanylylcyclase domain containing 1 (GUCD1) expression in HCC tissues and cells. Subsequently, we performed transwell assays to determine the functions of miR-370 in HCC cell invasion and migration. Western blot was used to determine protein expressions of relevant genes. Luciferase reporter assays were conducted to confirm the target gene of miR-370. RESULTS qRT-PCR analysis demonstrated that miR-370 was dramatically downregulated in HCC. Moreover, downregulated miR-370 was found to be associated with poor survival and adverse clinicopathologic characteristics of HCC patients. Transwell assays revealed that miR-370 overexpression dramatically suppressed HCC invasion and migration. Meanwhile, miR-370 restoration prominently inhibited EMT progression in HCC cells. Luciferase reporter assays confirmed GUCD1 as a downstream target gene of miR-370. GUCD1 expression in HCC tissues was prominently increased and inversely correlated with miR-370 expression. Furthermore, GUCD1 was verified as mediating the suppressive influence of miR-370 on cell metastasis and EMT in HCC. CONCLUSION Taken together, our study confirmed that miR-370 suppressed HCC cell metastasis and EMT via regulating GUCD1. Accordingly, the miR-370/GUCD1 axis may potentially acts as attractive therapeutic targets and novel biomarkers for HCC treatment.
Collapse
Affiliation(s)
- Yongkang He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China.
| | - Xiaofeng He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China
| |
Collapse
|
10
|
Cai WX, Yu RQ, Ma L, Huang HZ, Zheng LW, Zwahlen R. Differences between epithelial and mesenchymal human tongue cancer cell lines in experimental metastasis. Oncol Lett 2018; 15:9959-9964. [PMID: 29928368 DOI: 10.3892/ol.2018.8591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/08/2018] [Indexed: 12/26/2022] Open
Abstract
Distant metastasis represents the outcome with the worst prognosis for various types of malignant tumors, but little is known regarding the impact of interacting epithelial and mesenchymal phenotypic cancer cells within its etiopathogenesis. In a novel animal model, 48 male athymic Balb/c nude mice underwent subcutaneous and intravenous injection of human tongue cancer cell lines of green fluorescent mesenchymal and red fluorescent epithelial phenotypes, in order to visualize and monitor eventual phenotypic interaction in lung metastasis as well as experimental metastasis in in vivo, ex vivo and histopathological analyses. While the epithelial, but not the mesenchymal, phenotypic human tongue cancer cell line led to direct metastasis in the lungs when injected intravenously, neither of them, even when injected in combination, were able to establish distant metastasis. The results of the present study provide evidence regarding the role of epithelial phenotypic cancer cells in the release of experimental metastasis following tail vein injection in male athymic Balb/c nude mice, in addition to proving fluorescent human tongue cancer cells may be reliably detected under a fluorescence microscope even 8 weeks after the two injection types.
Collapse
Affiliation(s)
- Wei-Xin Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, SAR, P.R. China
| | - Ru Qing Yu
- Department of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Li Ma
- Department of Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Hong Zhang Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, SAR, P.R. China
| | - Li Wu Zheng
- Department of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| | - Roger Zwahlen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
11
|
Chen C, Yu G, Xiao W, Xing M, Ni J, Wan R, Hu G. Thalidomide inhibits proliferation and epithelial-mesenchymal transition by modulating CD133 expression in pancreatic cancer cells. Oncol Lett 2018; 14:8206-8212. [PMID: 29344263 DOI: 10.3892/ol.2017.7213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a solid malignancy with a high mortality rate, on account of the high incidence of metastasis at the time of detection. The aggressiveness of pancreatic cancer may be partly driven by cancer stem cells (CSCs), which are characterized by the ability to self-renew and recapitulate tumors in the ectopic setting. However, although a number of drugs targeting CSCs are currently under clinical investigation, few effective drugs have been developed. The present study demonstrated that thalidomide inhibited cell proliferation and metastasis in pancreatic cancer cell lines through the inhibition of epithelial mesenchymal transition. The effect of thalidomide was more pronounced in cluster of differentiation 133 (CD133)+ SW1990 cells than in Capan-2 cells, in which CD133 expression was almost undetectable. The results revealed that CD133 is likely to serve a role in the antitumor effect of thalidomide and indicated that thalidomide could be developed as a CSC-specific adjuvant chemotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Ge Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Miao Xing
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
12
|
Al-Hashimi F, J. Diaz-Cano S. Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Baysan M, Woolard K, Cam MC, Zhang W, Song H, Kotliarova S, Balamatsias D, Linkous A, Ahn S, Walling J, Belova GI, Fine HA. Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence. Int J Cancer 2017; 141:2002-2013. [PMID: 28710771 DOI: 10.1002/ijc.30887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intratumoral heterogeneity at the genetic, epigenetic, transcriptomic, and morphologic levels is a commonly observed phenomenon in many aggressive cancer types. Clonal evolution during tumor formation and in response to therapeutic intervention can be predicted utilizing reverse engineering approaches on detailed genomic snapshots of heterogeneous patient tumor samples. In this study, we developed an extensive dataset for a GBM case via the generation of polyclonal and monoclonal glioma stem cell lines from initial diagnosis, and from multiple sections of distant tumor locations of the deceased patient's brain following tumor recurrence. Our analyses revealed the tissue-wide expansion of a new clone in the recurrent tumor and chromosome 7 gain and chromosome 10 loss as repeated genomic events in primary and recurrent disease. Moreover, chromosome 7 gain and chromosome 10 loss produced similar alterations in mRNA expression profiles in primary and recurrent tumors despite possessing other highly heterogeneous and divergent genomic alterations between the tumors. We identified ETV1 and CDK6 as putative candidate genes, and NFKB (complex), IL1B, IL6, Akt and VEGF as potential signaling regulators, as potentially central downstream effectors of chr7 gain and chr10 loss. Finally, the differences caused by the transcriptomic shift following gain of chromosome 7 and loss of chromosome 10 were consistent with those generally seen in GBM samples compared to normal brain in large-scale patient-tumor data sets.
Collapse
Affiliation(s)
- Mehmet Baysan
- Department of Computer Science & Engineering, Istanbul Sehir University, Istanbul, 34662, Turkey
| | - Kevin Woolard
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA
| | - Margaret C Cam
- Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hua Song
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Amanda Linkous
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Susie Ahn
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer Walling
- Cancer Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Galina I Belova
- Office of The Clinical Director, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Howard A Fine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
14
|
Zhou W, Wang Y, Wu R, He Y, Su Q, Shi G. MicroRNA-488 and -920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Res Ther 2017; 19:203. [PMID: 28915828 PMCID: PMC5602958 DOI: 10.1186/s13075-017-1418-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background Gout is considered one of the most painful acute conditions caused by deposition of monosodium urate (MSU) crystals within joints. Recent studies have shown that interleukin (IL)-1β is a key inflammatory mediator in acute gouty arthritis (GA), and its level is regulated by microRNAs (miRNAs). However, the molecular mechanisms of the regulation remain unclear. Methods A miRNA microarray was used to analyze the miRNA expression profiles in peripheral white blood cells (WBCs) of patients with GA. THP-1 cells were transfected with miRNA mimics, stimulated by MSU crystals, and then subjected to quantitative real-time polymerase chain reaction or Western blot analysis. Levels of IL-1β, IL-8, and tumor necrosis factor (TNF)-α in culture supernatants of THP-1 cells were measured by enzyme-linked immunosorbent assay. A luciferase reporter assay was conducted to confirm the interaction of miRNA and IL-1β 3′-untranslated regions (UTRs). Results Combining bioinformatics and miRNA expression profiles, we found five miRNAs (hsa-miR-30c-1-3p, hsa-miR-488-3p, hsa-miR-550a-3p, hsa-miR-663a, and hsa-miR-920) that possibly target IL-1β. Then, we demonstrated that miR-488 and miR-920 were significantly decreased in the WBCs of patients with GA and that MSU crystals could inhibit expression of miR-488 and miR-920. Upregulation of miR-488 and miR-920 could suppress MSU-induced IL-1β protein expression in THP-1 cells, but no significant difference in IL-1β messenger RNA levels was observed. Moreover, we found that miR-488 and miR-920 could directly target the 3′-UTR of IL-1β. Overexpression of miR-488 and miR-920 could significantly inhibit the gene and protein expression of IL-8 and TNF-α in MSU-induced THP-1 cells. Conclusions This study demonstrates the roles of miR-488 and miR-920 in regulating the production of proinflammatory cytokines in the pathogenesis of GA. These findings suggest that miR-488 and miR-920 could serve as potential therapeutic targets in the treatment of GA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1418-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weidong Zhou
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Ying Wang
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Rongfeng Wu
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Yan He
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Qun Su
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China
| | - Guixiu Shi
- The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China.
| |
Collapse
|
15
|
Wu Y, Bian C, Zhen C, Liu L, Lin Z, Nisar MF, Wang M, Bartsch JW, Huang E, Ji P, Yang L, Yu Y, Yang J, Jiang X, Zhong JL. Telomerase reverse transcriptase mediates EMT through NF-κB signaling in tongue squamous cell carcinoma. Oncotarget 2017; 8:85492-85503. [PMID: 29156735 PMCID: PMC5689625 DOI: 10.18632/oncotarget.20888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
Locoregional lymph nodes metastasis in oral tongue squamous cell carcinoma represents one of important and common prognostic factors for poor clinical outcome. The human Telomerase Reverse Transcriptase (hTERT) is one of key players in cancer metastasis and stemness, but its exact function in tongue squamous cell carcinoma remains unknown. Here, we aim to understand the role of hTERT by utilizing the CRISPR/Cas9 gene editing system to deplete hTERT in the SCC-15 cell line. Functional comparison of SCC-15 control and knockout cells (hTERT−/−) showed that loss of hTERT suppressed cell proliferation and migration/invasion. Furthermore, hTERT depletion significantly decreased tumorigenesis, including alterations in cellular morphology that areindicative for epithelial-mesenchymal transition (EMT). Mechanistically we demonstrated that the hTERT knockout attenuates NF-κB signaling via a negative feedback regulation in tumorprogression. From these results we propose a novel molecular mechanism of hTERT to promote SCC-15 invasion and metastasis via NF-κB activation. We conclude that targeting hTERT may represent a new therapeutic strategy to improve therapy and survival of tongue squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Yan Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of High Education, Chongqing, 401147, China.,The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Chunxiang Bian
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of High Education, Chongqing, 401147, China.,The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Chunlin Zhen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of High Education, Chongqing, 401147, China.,The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Liu Liu
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Zhenghong Lin
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Mei Wang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Jörg W Bartsch
- Department of Neurosurgery, Phillips-University Marburg, Baldingerstr, Marburg 35033, Germany
| | - Enyi Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of High Education, Chongqing, 401147, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of High Education, Chongqing, 401147, China
| | - Li Yang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Yanhong Yu
- Department of Urology, First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Junfeng Yang
- Department of Urology, First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Xuemei Jiang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| | - Julia Li Zhong
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college, Life Science College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Reduced E-Cadherin and Aberrant β-Catenin Expression are Associated With Advanced Disease in Signet-Ring Cell Carcinomas. Appl Immunohistochem Mol Morphol 2017; 25:432-438. [DOI: 10.1097/pai.0000000000000317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:159-169. [PMID: 28069583 DOI: 10.1093/abbs/gmw131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type in China. MicroRNAs are endogenously expressed in mammals and play a significant role in tumor invasion and metastasis by targeting potential downstream genes. In the present study, microarray analysis showed that miR-375 expression was distinctly downregulated in ESCC compared with that in normal esophageal epithelium tissues. Then, luciferase reporter assay showed that SHOX2 was the direct downstream target of miR-375 and this interaction was confirmed by the rescue experiments. Quantitative polymerase chain reaction results also showed that SHOX2 expression was upregulated in ESCC cells and tissues. Further analysis showed that SHOX2 induced proliferation, invasion, and metastasis of ESCC both in vivo and in vitro. Moreover, the interaction between miR-375 and SHOX2 affected the epithelial-to-mesenchymal transition. We conclude that miR-375 may suppress invasion and metastasis of ESCC by directly targeting SHOX2. The miR-375/SHOX2 axis may be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun Yi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing 210002, China
| | - Li Jin
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Zhenyue He
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
18
|
Ma YR, Siegal GP, Wei S. Reacquisition of E-cadherin expression in metastatic deposits of signet-ring cell carcinoma of the upper gastrointestinal system: a potential anchor for metastatic deposition. J Clin Pathol 2016; 70:528-532. [PMID: 27864451 DOI: 10.1136/jclinpath-2016-203959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
AIMS To examine the expression of E-cadherin in paired primary and metastatic signet-ring cell carcinomas (SRCC) of various organ systems in order to explore the potential role of the molecule in metastatic dissemination of this unique tumour type. METHODS Thirty-seven consecutive cases of SRCC from various organs with paired primary and metastatic tumorous tissue available were retrieved. The intensity of membranous E-cadherin expression was semiquantitatively scored on a scale of 0-3+. RESULTS Reduced E-cadherin expression was a distinct feature of primary SRCC and was observed in 78% of primary tumours. Interestingly, the E-cadherin reduction was less frequently seen in metastatic SRCC when compared with their primary counterparts, and was only found in 57% of tumours in lymph node metastases or at distant sites of relapse. Furthermore, the mean score of E-cadherin expression of primary SRCC was significantly lower than that of their metastatic counterparts (2.3 vs 1.8; p=0.008). When divided by organ systems, the reacquisition of E-cadherin expression in the metastatic deposits was most remarkable in the SRCC of upper gastrointestinal tract origin (2.3 vs 1.4; p=0.003), whereas no significant difference was observed in other organ systems. CONCLUSIONS While the reduction of E-cadherin in primary SRCC supports its pivotal role in epithelial-mesenchymal transition, a process crucial in tumour progression and metastatic dissemination, the re-expression of this molecule in metastatic SRCC cells implies a reversal to their epithelial phenotype (thus mesenchymal-epithelial transition) which, in turn, theoretically helps tumour cells to anchor and form cohesive metastatic deposits.
Collapse
Affiliation(s)
- Yihong R Ma
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shi Wei
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu HY, Wang JS, Duan XY. High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther 2016; 9:3975-83. [PMID: 27418840 PMCID: PMC4935103 DOI: 10.2147/ott.s103112] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies show that epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) contribute to the progression and poor prognosis of carcinoma through multiple mechanisms. Both inflammation and changing of epithelium have a close relationship with tumorigenesis of gastric cancer. However, the relevance between EMT and TAMs is still unclear in gastric cancer and needs more scientific research. This study is designed to explore the relationship between EMT and TAMs in gastric cancer. MATERIALS AND METHODS Immunohistochemistry was used to detect the expression of EMT-related proteins and TAM markers in cancer tissues and normal gastric tissues. RESULTS High levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. In addition, expression of the two indicators is associated with expression of transforming growth factor-β1 (TGF-β1). Infiltration of TAMs is also associated with EMT-related marker in gastric cancer. CONCLUSION Our results suggest that high levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. A correlation was found between EMT- and TAM-related indicators, which may be associated with TGF-β signaling pathway. The level of TAMs infiltration plays an important role in gastric cancer, the markers of which can be used as prognostic indicators.
Collapse
Affiliation(s)
- Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jun-Hai Li
- The Department of Oncological Surgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang
| | - Xu Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Ji-Zhao Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Hang-Ying Qu
- The Department of Oncological Surgery, Shaanxi University of Chinese Medicine, Xianyang
| | - Jian-Sheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Xiao-Yi Duan
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
20
|
Li J, Jia Z, Kong J, Zhang F, Fang S, Li X, Li W, Yang X, Luo Y, Lin B, Liu T. Carcinoma-Associated Fibroblasts Lead the Invasion of Salivary Gland Adenoid Cystic Carcinoma Cells by Creating an Invasive Track. PLoS One 2016; 11:e0150247. [PMID: 26954362 PMCID: PMC4782997 DOI: 10.1371/journal.pone.0150247] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/11/2016] [Indexed: 02/04/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are critical in determining tumor invasion and metastasis. However the role of CAFs in the invasion of salivary gland adenoid cystic carcinoma (ACC) is poorly understood. In this study, we isolated primary CAFs from two ACC patients. ACC-derived CAFs expressed typical CAF biomarkers and showed increased migration and invasion activity. Conditioned medium collected from CAFs significantly promoted ACC cell migration and invasion. Co-culture of CAFs with ACC cells in a microfluidic device further revealed that CAFs localized at the invasion front and ACC cells followed the track behind the CAFs. Interfering of both matrix metalloproteinase and CXCL12/CXCR4 pathway inhibited ACC invasion promoted by CAFs. Overall, our study demonstrates that ACC-derived CAFs exhibit the most important defining feature of CAFs by promoting cancer invasion. In addition to secretion of soluble factors, CAFs also lead ACC invasion by creating an invasive track in the ECM.
Collapse
Affiliation(s)
- Jiao Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- Department of Oral Surgery, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Fuyin Zhang
- Department of Oral Surgery, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shimeng Fang
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Wuwei Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Yong Luo
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, China
| | - Bingcheng Lin
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, China
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail:
| |
Collapse
|
21
|
Tissot T, Arnal A, Jacqueline C, Poulin R, Lefèvre T, Mery F, Renaud F, Roche B, Massol F, Salzet M, Ewald P, Tasiemski A, Ujvari B, Thomas F. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. Bioessays 2016; 38:276-85. [PMID: 26849295 DOI: 10.1002/bies.201500163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | - Audrey Arnal
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, University of Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, (UMI IRD/UPMC UMMISCO), BondyCedex, France
| | - François Massol
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) INSERM U1192, Université Lille, Lille, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Aurélie Tasiemski
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
22
|
Downregulation of ubiquitin-specific protease 14 (USP14) inhibits breast cancer cell proliferation and metastasis, but promotes apoptosis. J Mol Histol 2015; 47:69-80. [PMID: 26712154 DOI: 10.1007/s10735-015-9650-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/20/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer is the second leading cause of cancer-related death in women. Previously, evidence suggested that ubiquitin-specific protease 14 (USP14) was associated with various signal transduction pathways and tumourigenesis. In this study, we demonstrate that USP14 is a novel therapeutic target in breast cancer. A Western blot analysis of USP14 was performed using seven breast cancer tissues and paired adjacent normal tissues and showed that the expression of USP14 was increased in the breast cancer tissues. Immunohistochemistry was conducted on formalin-fixed paraffin-embedded sections of breast cancer samples from 100 cases. Using Pearson's χ(2) test, it was demonstrated that USP14 expression was associated with the histological grade, lymph node status and Ki-67 expression in the tumour. The Kaplan-Meier analysis revealed that increased USP14 expression in patients with breast cancer was associated with a poorer prognosis. In in vitro experiments, the highly migratory MDA-MB-231 cells that were treated with USP14-shRNA (shUSP14) exhibited decreased motility using Transwell migration assays. Next, we employed a starvation and re-feeding assay, and the CCK-8 assay demonstrated that USP14 regulated breast cancer cell proliferation. Furthermore, we used flow cytometry to analyse cellular apoptosis following USP14 knockdown. Taken together, our results suggested that USP14 was involved in the progression of breast cancer.
Collapse
|
23
|
Bi J, Li P, Li C, He J, Wang Y, Zhang H, Fan X, Jia R, Ge S. The SDF-1/CXCR4 chemokine axis in uveal melanoma cell proliferation and migration. Tumour Biol 2015; 37:4175-82. [PMID: 26490988 DOI: 10.1007/s13277-015-4259-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/15/2015] [Indexed: 11/25/2022] Open
Abstract
The stromal-cell-derived factor 1 (SDF-1)/chemokine receptor 4 (CXCR4) chemokine axis plays a key role in tumor migration. Here, we analyzed the axis in uveal melanoma (UM) proliferation and migration and investigated the effect of a chemical inhibitor of CXCR4, AMD3100, on UM. We found that CXCR4 was expressed in all five UM cell lines tested as well as the retinal pigment epithelium cell line ARPE-19 cells, while CXCR7 was only detected in OM290 and VUP cell lines. SDF-1 promotes the proliferation and migration of OCM-1 and OCM431 cell lines, while AMD3100 weakens this function. Taken together, our results show that the SDF-1/CXCR4 chemokine axis plays a key role in UM cell proliferation and migration and that AMD3100 can alleviate this function, which may offer a hint for UM treatment.
Collapse
Affiliation(s)
- Jianjun Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Peng Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Chuanyin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai, 200031, China.
| | - Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Ying Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
24
|
Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 2015; 5:55. [PMID: 25785247 PMCID: PMC4347445 DOI: 10.3389/fonc.2015.00055] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.
Collapse
Affiliation(s)
- Nicole Renee Parker
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Peter Khong
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Jonathon Fergus Parkinson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Neurosurgery, Royal North Shore Hospital , St Leonards, NSW , Australia
| | - Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Helen Ruth Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Medical Oncology, Royal North Shore Hospital , St Leonards, NSW , Australia
| |
Collapse
|
25
|
Huang HL, Wu YC, Su LJ, Huang YJ, Charoenkwan P, Chen WL, Lee HC, Chu WCC, Ho SY. Discovery of prognostic biomarkers for predicting lung cancer metastasis using microarray and survival data. BMC Bioinformatics 2015; 16:54. [PMID: 25881029 PMCID: PMC4349617 DOI: 10.1186/s12859-015-0463-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Few studies have investigated prognostic biomarkers of distant metastases of lung cancer. One of the central difficulties in identifying biomarkers from microarray data is the availability of only a small number of samples, which results overtraining. Recently obtained evidence reveals that epithelial-mesenchymal transition (EMT) of tumor cells causes metastasis, which is detrimental to patients' survival. RESULTS This work proposes a novel optimization approach to discovering EMT-related prognostic biomarkers to predict the distant metastasis of lung cancer using both microarray and survival data. This weighted objective function maximizes both the accuracy of prediction of distant metastasis and the area between the disease-free survival curves of the non-distant and distant metastases. Seventy-eight patients with lung cancer and a follow-up time of 120 months are used to identify a set of gene markers and an independent cohort of 26 patients is used to evaluate the identified biomarkers. The medical records of the 78 patients show a significant difference between the disease-free survival times of the 37 non-distant- and the 41 distant-metastasis patients. The experimental results thus obtained are as follows. 1) The use of disease-free survival curves can compensate for the shortcoming of insufficient samples and greatly increase the test accuracy by 11.10%; and 2) the support vector machine with a set of 17 transcripts, such as CCL16 and CDKN2AIP, can yield a leave-one-out cross-validation accuracy of 93.59%, a test accuracy of 76.92%, a large disease-free survival area of 74.81%, and a mean survival prediction error of 3.99 months. The identified putative biomarkers are examined using related studies and signaling pathways to reveal the potential effectiveness of the biomarkers in prospective confirmatory studies. CONCLUSIONS The proposed new optimization approach to identifying prognostic biomarkers by combining multiple sources of data (microarray and survival) can facilitate the accurate selection of biomarkers that are most relevant to the disease while solving the problem of insufficient samples.
Collapse
Affiliation(s)
- Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Yu-Chung Wu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Li-Jen Su
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| | - Yun-Ju Huang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Phasit Charoenkwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Wen-Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Hua-Chin Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | | | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
26
|
Li H, Chen X, Gao Y, Wu J, Zeng F, Song F. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell Signal 2015; 27:82-9. [DOI: 10.1016/j.cellsig.2014.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
|
27
|
Myers MB, McKinzie PB, Wang Y, Meng F, Parsons BL. ACB-PCR quantification of somatic oncomutation. Methods Mol Biol 2014; 1105:345-63. [PMID: 24623241 DOI: 10.1007/978-1-62703-739-6_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allele-specific competitive blocker-polymerase chain reaction (ACB-PCR) is a sensitive approach for the selective amplification of an allele. Using the ACB-PCR technique, hotspot point mutations in oncogenes and tumor-suppressor genes (oncomutations) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer (having a non-extendable 3'-end and with a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence) is included in ACB-PCR to selectively repress amplification from the abundant wild-type molecules. Consequently, ACB-PCR is capable of quantifying the level of a single basepair substitution mutation in a DNA population when present at a mutant:wild type ratio of 10(-5) or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications, including evaluating the carcinogenic potential of chemical exposures in rodent models and in the diagnosis and treatment of cancer. This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human KRAS codon 12 GGT to GAT mutation.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, HFT-120, Jefferson, AR, 72079, USA,
| | | | | | | | | |
Collapse
|
28
|
Neelakantan D, Drasin DJ, Ford HL. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh Migr 2014; 9:265-76. [PMID: 25482627 DOI: 10.4161/19336918.2014.972761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.
Collapse
Key Words
- CLL, chronic lymphoblastic leukemia
- CSC, cancer stem cell
- EMP, epithelial-mesenchymal plasticity
- EMT, epithelial-to-mesenchymal transition
- GFP, green fluorescent protein.
- MET, mesenchymal-to-epithelial transition
- MMTV, mouse mammary tumor virus
- NGS, next generation sequencing
- OxR, oxaliplatin resistant
- SCLC, small cell lung cancer
- TGF-β, transforming growth factor-β
- cancer stem cells/CSCs
- clonal evolution
- epithelial-mesenchymal transition (EMT)
- hPDGF human platelet-derived growth factor
- intratumoral heterogeneity
- metastasis
- miRNA, microRNA
- non-cell autonomous
- tumor microenvironment
Collapse
Affiliation(s)
- Deepika Neelakantan
- a Department of Pharmacology ; University of Colorado; School of Medicine ; Aurora, CO USA
| | | | | |
Collapse
|
29
|
Ohsawa S, Takemoto D, Igaki T. Dissecting tumour heterogeneity in flies: genetic basis of interclonal oncogenic cooperation. J Biochem 2014; 156:129-36. [PMID: 25012819 DOI: 10.1093/jb/mvu045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancers develop through sequential acquisition of oncogenic mutations, indicating a crucial role of genetic alterations in tumour progression. However, accumulating evidence suggests that cancers also progress towards malignancy through cell-cell interactions within heterogeneous tumour tissue. Recent studies have indicated that tumour heterogeneity not only contributes to drug resistance and tumour recurrence but also plays an active role in promoting tumour progression. Especially, genetic studies in Drosophila have discovered novel types of tumour progression through cell-cell interactions and have dissected the underlying mechanisms. This review focuses on describing recent findings obtained from Drosophila genetics that provide genetic basis of interclonal oncogenic cooperation in heterogeneous tumour tissue.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Daisaku Takemoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; and PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
30
|
Abstract
Atypical fibroxanthoma (AFX) is an ultraviolet radiation-associated dermal neoplasm. To address the clinicopathologic and molecular features of this particular neoplasm. The author conducted a literature review using PubMed searching for articles relating to AFX. AFX usually appears as a rapidly growing nodular or nodulo-ulcerative lesion. It occurs on sun-exposed skin of elderly peoples. AFX may be composed predominantly of pleomorphic, spindle, epithelioid cells, or admixture of these cells. The differential diagnosis of AFX includes pleomorphic dermal sarcoma, squamous cell carcinoma, malignant melanoma and leiomyosarcoma. Several observations favor a mesenchymal origin for AFX. These reviews address the clinicopathologic features, molecular pathology, prognosis and treatment of this neoplasm.
Collapse
|
31
|
Abstract
Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.
Collapse
|
32
|
Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 2014; 6:226-39. [PMID: 24473088 PMCID: PMC3980595 DOI: 10.3390/cancers6010226] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 01/09/2014] [Indexed: 11/17/2022] Open
Abstract
Heterogeneity is a hallmark of tumors and has a crucial role in the outcome of the malignancy, because it not only confounds diagnosis, but also challenges the design of effective therapies. There are two types of heterogeneity: inter-tumor and intra-tumor heterogeneity. While inter-tumor heterogeneity has been studied widely, intra-tumor heterogeneity has been neglected even though numerous studies support this aspect of tumor pathobiology. The main reason has been the technical difficulties, but with new advances in single-cell technology, intra-tumor heterogeneity is becoming a key area in the study of cancer. Several models try to explain the origin and maintenance of intra-tumor heterogeneity, however, one prominent model compares cancer with a tree where the ubiquitous mutations compose the trunk and mutations present in subpopulations of cells are represented by the branches. In this review we will focus on the intra-tumor heterogeneity of glioblastoma multiforme (GBM), the most common brain tumor in adults that is characterized by a marked heterogeneity at the cellular and molecular levels. Better understanding of this heterogeneity will be essential to design effective therapies against this devastating disease to avoid tumor escape.
Collapse
|
33
|
Stebbing J, Payne R, Reise J, Frampton AE, Avery M, Woodley L, Di Leo A, Pestrin M, Krell J, Coombes RC. The efficacy of lapatinib in metastatic breast cancer with HER2 non-amplified primary tumors and EGFR positive circulating tumor cells: a proof-of-concept study. PLoS One 2013; 8:e62543. [PMID: 23667487 PMCID: PMC3647066 DOI: 10.1371/journal.pone.0062543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/18/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Analysis of circulating tumor cells (CTCs) provides real-time measures of cancer sub-populations with potential for CTC-directed therapeutics. We examined whether lapatinib which binds both HER2 and EGFR could induce depletion of the EGFR-positive pool of CTCs, which may in turn lead to clinical benefits. PATIENTS AND METHODS Patients with metastatic breast cancer and HER2 non-amplified primary tumors with EGFR-positive CTCs were recruited and lapatinib 1500 mg daily was administered, in a standard two step phase 2 trial. RESULTS There were no responses leading to termination at the first analysis with 16 patients recruited out of 43 screened. In 6 out of 14 (43%) individuals eligible for the efficacy analysis, a decrease in CTCs was observed with most of these having a greater decrease in their EGFR-positive CTC pool. CONCLUSIONS This is one of the first studies of CTC-directed therapeutics and suggests that lapatinib monotherapy is not having any demonstrable clinical effects by reducing the EGFR-positive pool of CTCs in HER2 non-amplified primary tumors. Our attempt to expand the pool of patients eligible for a targeted therapy was unsuccessful; the role of clonal populations in cancer biology and therapeutic strategies to control them will require extensive evaluation in years to come. TRIAL REGISTRATION Clinical trials.gov NCT00820924.
Collapse
Affiliation(s)
- Justin Stebbing
- Department of Oncology, Imperial College Healthcare National Health Service Trust, Charing Cross Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Idiopathic pulmonary fibrosis: an altered fibroblast proliferation linked to cancer biology. Ann Am Thorac Soc 2012; 9:153-7. [PMID: 22802290 DOI: 10.1513/pats.201203-025aw] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The fibrotic process that characterizes idiopathic pulmonary fibrosis (IPF) is commonly considered the result of a recurrent injury to the alveolar epithelium followed by an uncontrolled proliferation of fibroblasts. However, based on considerable scientific evidence, it has been recently hypothesized that IPF might be considered a neoproliferative disorder of the lung because this disease exhibits several pathogenic features similar to cancer. Indeed, epigenetic and genetic abnormalities, altered cell-to-cell communications, uncontrolled proliferation, and abnormal activation of specific signal transduction pathways are biological hallmarks that characterize the pathogenesis of IPF and cancer. IPF remains a disease marked by a survival of 3 years, and little therapeutic progress has been made in the last few years, underlining the urgent need to improve research and to change our approach to the comprehension of this disease. The concept of IPF as a cancer-like disease may be helpful in identifying new pathogenic mechanisms that can be borrowed from cancer biology, potentially leading to different and more effective therapeutic approaches. Such vision will hopefully increase the awareness of this disease among the public and the scientific community.
Collapse
|
35
|
Rinner B, Gallè B, Trajanoski S, Fischer C, Hatz M, Maierhofer T, Michelitsch G, Moinfar F, Stelzer I, Pfragner R, Guelly C. Molecular evidence for the bi-clonal origin of neuroendocrine tumor derived metastases. BMC Genomics 2012; 13:594. [PMID: 23127113 PMCID: PMC3500212 DOI: 10.1186/1471-2164-13-594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/25/2012] [Indexed: 01/09/2023] Open
Abstract
Background Reports on common mutations in neuroendocrine tumors (NET) are rare and clonality of NET metastases has not been investigated in this tumor entity yet. We selected one NET and the corresponding lymph node and liver metastases as well as the derivative cell lines to screen for somatic mutations in the primary NET and to track the fate of genetic changes during metastasis and in vitro progression. Results Applying microarray based sequence capture resequencing including 4,935 Exons from of 203 cancer-associated genes and high-resolution copy number and genotype analysis identified multiple somatic mutations in the primary NET, affecting BRCA2, CTNNB1, ERCC5, HNF1A, KIT, MLL, RB1, ROS1, SMAD4, and TP53. All mutations were confirmed in the patients’ lymph node and liver metastasis tissue as well as early cell line passages. In contrast to the tumor derived cell line, higher passages of the metastases derived cell lines lacked somatic mutations and chromosomal alterations, while expression of the classical NET marker serotonin was maintained. Conclusion Our study reveals that both metastases have evolved from the same pair of genetically differing NET cell clones. In both metastases, the in vivo dominating “mutant” tumor cell clone has undergone negative selection in vitro being replaced by the “non-mutant” tumor cell population. This is the first report of a bi-clonal origin of NET derived metastases, indicating selective advantage of interclonal cooperation during metastasis. In addition, this study underscores the importance to monitor cell line integrity using high-resolution genome analysis tools.
Collapse
Affiliation(s)
- Beate Rinner
- Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz, 8010, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stepanenko AA, Kavsan VM. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. A. Stepanenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. M. Kavsan
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
37
|
Stebbing J, Ellis P. An overview of drug development for metastatic breast cancer. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2012; 21:S18-22. [PMID: 22470903 DOI: 10.12968/bjon.2012.21.sup4.s18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
The prevalence of breast cancer is increasing as more women are living with the disease. Outcomes have improved as a result of progress in all major aspects of multidisciplinary care. These include surgery, radiotherapy, hormonal therapy, chemotherapy and newer targeted drugs. Two aspects merit particular attention here. First, there is an understanding now that cancer is a heterogenous disease and a 'one-size-fits-all' approach is becoming redundant, albeit slowly. Second, basic science and an appreciation of cellular molecular targets in those different types of breast cancer is being translated into the clinic and has led to the development of exciting new drugs for both triple negative and HER2-positive relapsed disease. An improved understanding of endocrine resistance remains an unmet need in drug development and here, it appears worthwhile to adopt less conventional approaches. Better trial design with a focus on biomarkers should lower barriers to regulatory approval as well as increase cost effectiveness.
Collapse
|
38
|
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13:1951-2011. [PMID: 22408433 PMCID: PMC3292002 DOI: 10.3390/ijms13021951] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.
Collapse
Affiliation(s)
- Salvador J. Diaz-Cano
- Department Histopathology, King’s College Hospital and King’s Health Partners, Denmark Hill, London SE5 9RS, UK; E-Mail: ; Tel.: +44-20-3299-3041; Fax: +44-20-3299-3670
| |
Collapse
|
39
|
Franco OE, Hayward SW. Targeting the tumor stroma as a novel therapeutic approach for prostate cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:267-313. [PMID: 22959029 DOI: 10.1016/b978-0-12-397927-8.00009-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between epithelium and the surrounding stroma are required to maintain organ function. These interactions provide proliferative and migratory restraints that define anatomical and positional information, mediated by growth factors and extracellular matrix components. When cancer develops, transformed cells lose these constraints while stroma adapts and coevolves to support the "function" of the tumor. The prostate is a good example of an organ that relies on its surrounding stroma during normal development and cancer progression. Carcinoma-associated fibroblasts (CAFs) constitute a substantial volume of the tumor stroma and play a pivotal role in tumor maintenance, dissemination, and even drug resistance. The origins of CAF and the exact mechanisms by which they promote tumor progression are still debated. CAF acquire an activated phenotype quite similar to the one seen during wound repair in sites of injury. Here, we describe the CAF ontogeny, the similarities with activated fibroblasts during physiological wound repair, and potential pathways that can be targeted to prevent their appearance in tumors and their protumorigenic functions in cancer progression. A strategy to identify aspects of stromal cell biology for therapeutic targeting is becoming increasingly plausible, driven by the increased understanding of the complex interplays between the cells and tissues of which tumors are comprised. Several preclinical and clinical studies show that targeting the stroma may be a promising and attractive therapeutic option for the treatment of cancer and has the potential to play an increasingly prominent role in future treatment strategies.
Collapse
Affiliation(s)
- Omar E Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
40
|
Poor response to second-line kinase inhibitors in chronic myeloid leukemia patients with multiple low-level mutations, irrespective of their resistance profile. Blood 2011; 119:2234-8. [PMID: 22210874 DOI: 10.1182/blood-2011-08-375535] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific imatinib-resistant BCR-ABL1 mutations (Y253H, E255K/V, T315I, F317L, and F359V/C) predict failure of second-line nilotinib or dasatinib therapy in patients with chronic myeloid leukemia; however, such therapy also fails in approximately 40% of patients in the chronic phase of this disease who do not have these resistant mutations. We investigated whether sensitive mutation analysis could identify other poor-risk subgroups. Analysis was performed by direct sequencing and sensitive mass spectrometry on 220 imatinib-resistant patients before they began nilotinib or dasatinib therapy. Patients with resistant mutations by either method (n = 45) were excluded because inferior response was known. Of the remaining 175 patients, 19% had multiple mutations by mass spectrometry versus 9% by sequencing. Compared with 0 or 1 mutation, the presence of multiple mutations was associated with lower rates of complete cytogenetic response (50% vs 21%, P = .003) and major molecular response (31% vs 6%, P = .005) and a higher rate of new resistant mutations (25% vs 56%, P = .0009). Sensitive mutation analysis identified a poor-risk subgroup (15.5% of all patients) with multiple mutations not identified by standard screening.
Collapse
|
41
|
Stovold R, Blackhall F, Meredith S, Hou J, Dive C, White A. Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer 2011; 76:263-8. [PMID: 22177533 DOI: 10.1016/j.lungcan.2011.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/28/2011] [Accepted: 11/12/2011] [Indexed: 12/21/2022]
Abstract
Small cell lung cancer (SCLC) is characterised by an aggressive clinical course with invariable resistance to chemotherapy despite initially high response rates. There has been little improvement in outcome over the past few decades, with no breakthrough yet in targeted therapies. Recent preclinical data and studies of circulating tumour cells (CTCs) highlight distinct cellular heterogeneity within SCLC. Better understanding of how these phenotypes contribute to metastasis and tumour progression might pave the way for development of more successful targeted therapies. Here we review these studies, their implications for future research and for the incorporation of biomarkers reflecting neuroendocrine, epithelial and mesenchymal phenotypes in clinical studies.
Collapse
Affiliation(s)
- Rachel Stovold
- Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
42
|
Gaisa NT, Graham TA, McDonald SA, Poulsom R, Heidenreich A, Jakse G, Knuechel R, Wright NA. Clonal architecture of human prostatic epithelium in benign and malignant conditions. J Pathol 2011; 225:172-80. [PMID: 21898875 DOI: 10.1002/path.2959] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 12/25/2022]
Abstract
The location of stem cells in the epithelium of the prostatic acinus remains uncertain, as does the cellular origin of prostatic neoplasia. Here, we apply lineage tracing to visualize the clonal progeny of stem cells in benign and malignant human prostates and understand the clonal architecture of this epithelium. Cells deficient for the mitochondrially-encoded enzyme cytochrome c oxidase (CCO) were identified in 27 frozen prostatectomy specimens using dual colour enzyme histochemistry and individual CCO-normal and -deficient cell areas were laser-capture microdissected. PCR-sequencing of the entire mitochondrial genome (mtDNA) of cells from CCO-deficient areas found to share mtDNA mutations not present in adjacent CCO-normal cells, thus proving a clonal origin. Immunohistochemistry was performed to visualize the three cell lineages normally present in the prostatic epithelium. Entire CCO-deficient acini, and part-deficient acini were found. Deficient patches spanned either basal or luminal cells, but sometimes also both epithelial cell types in normal, hyperplastic or atrophic epithelium, and prostatic intraepithelial neoplasia (PIN). Patches comprising both PIN and invasive cancer were observed. Each cell area within a CCO-deficient patch contained an identical mtDNA mutation, defining the patch as a clonal unit. CCO-deficient patches in benign epithelium contained basal, luminal and endocrine cells, demonstrating multilineage differentiation and therefore the presence of a stem cell. Our results demonstrate that the normal, atrophic, hypertrophic and atypical (PIN) epithelium of human prostate contains stem cell-derived clonal units that actively replenish the epithelium during ageing. These deficient areas usually included the basal compartment indicating the basal layer as the location of the stem cell. Importantly, single clonal units comprised both PIN and invasive cancer, supporting PIN as the pre-invasive lesion for prostate cancer.
Collapse
Affiliation(s)
- Nadine T Gaisa
- Institute of Pathology, RWTH, Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011; 63:582-96. [PMID: 21295093 DOI: 10.1016/j.addr.2011.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 12/19/2022]
Abstract
Cell invasion is an intrinsic cellular pathway whereby cells respond to extracellular stimuli to migrate through and modulate the structure of their extracellular matrix (ECM) in order to develop, repair, and protect the body's tissues. In cancer cells this process can become aberrantly regulated and lead to cancer metastasis. This cellular pathway contributes to the vast majority of cancer related fatalities, and therefore has been identified as a critical therapeutic target. Researchers have identified numerous potential molecular therapeutic targets of cancer cell invasion, yet delivery of therapies remains a major hurdle. Nanomedicine is a rapidly emerging technology which may offer a potential solution for tackling cancer metastasis by improving the specificity and potency of therapeutics delivered to invasive cancer cells. In this review we examine the biology of cancer cell invasion, its role in cancer progression and metastasis, molecular targets of cell invasion, and therapeutic inhibitors of cell invasion. We then discuss how the field of nanomedicine can be applied to monitor and treat cancer cell invasion. We aim to provide a perspective on how the advances in cancer biology and the field of nanomedicine can be combined to offer new solutions for treating cancer metastasis.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
| | | | | | | |
Collapse
|
44
|
Krepkin K, Costa J. Defining the role of cooperation in early tumor progression. J Theor Biol 2011; 285:36-45. [PMID: 21745479 DOI: 10.1016/j.jtbi.2011.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/30/2011] [Accepted: 06/27/2011] [Indexed: 12/14/2022]
Abstract
Competition among cells has long been recognized as an important part of carcinogenesis. However, the role of cellular cooperation in cancer has been largely ignored. In this work, we investigated the role of cooperation in early tumor progression using a mathematical and agent-based modeling approach. We hoped to learn how the introduction of cooperative cells into a cell population would affect the dynamics of the system. We modeled the stem cell compartment of tissue using a spatial structure organized into cell patches, with stem cells able to replicate or leave the stem cell compartment through apoptosis or differentiation. The cells could also acquire mutations in three oncogenes and two tumor suppressor genes. Cooperative cells in our model provided a cooperative signal that increased the fitness of their immediate neighbors, but did not affect their own fitness. Running simulations of the model, we found that if cooperative cells are introduced into a cell population, they steadily proliferate and confer a growth advantage to the entire population. This leads us to conclude that providing a cooperative signal is likely to be under positive selective pressure. When cooperative ability and mutation are concurrently present in the same cells, the overall cell population experiences a significant growth advantage, much greater than with cooperation or mutation alone. This growth advantage is diminished if cells with only oncogene/tumor suppressor mutations are also present in the population, suggesting that the optimal scenario for tumor growth would be for cooperative cells to take over a cell population, and then for mutations in oncogenes and tumor suppressors to arise on a background of cooperation. We predict that cooperation is particularly important in the very early stages of carcinogenesis, when tissue is morphologically and histologically normal. Our results have implications for the screening and early diagnosis of cancer.
Collapse
Affiliation(s)
- Konstantin Krepkin
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
45
|
Nadav-Dagan L, Katz BZ. Malignant B-cell intra-clonal diversification: following the yarn in the labyrinth. Leuk Lymphoma 2011; 52:2050-6. [DOI: 10.3109/10428194.2011.587564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Bonavia R, Inda MDM, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 2011; 71:4055-60. [PMID: 21628493 DOI: 10.1158/0008-5472.can-11-0153] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM), the most common intracranial tumor in adults, is characterized by extensive heterogeneity at the cellular and molecular levels. This insidious feature arises inevitably in almost all cancers and has great significance for the general outcome of the malignancy, because it confounds our understanding of the disease and also intrinsically contributes to the tumor's aggressiveness and poses an obstacle to the design of effective therapies. The classic view that heterogeneity arises as the result of a tumor's "genetic chaos" and the more contemporary cancer stem cell (CSC) hypothesis tend to identify a single cell population as the therapeutic target: the prevailing clone over time in the first case and the CSC in the latter. However, there is growing evidence that the different tumor cell populations may not be simple bystanders. Rather, they can establish a complex network of interactions between each other and with the tumor microenvironment that eventually strengthens tumor growth and increases chances to escape therapy. These differing but complementary ideas about the origin and maintenance of tumor heterogeneity and its importance in GBM are reviewed here.
Collapse
Affiliation(s)
- Rudy Bonavia
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
47
|
Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB, Meuwissen R, Berns A. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 2011; 19:244-56. [PMID: 21316603 DOI: 10.1016/j.ccr.2010.12.021] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/25/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
Small cell lung cancer (SCLC) is the lung neoplasia with the poorest prognosis, due to its high metastatic potential and chemoresistance upon relapse. Using the previously described mouse model for SCLC, we found that the tumors are often composed of phenotypically different cells with either a neuroendocrine or a mesenchymal marker profile. These cells had a common origin because they shared specific genomic aberrations. The transition from neuroendocrine to mesenchymal phenotype could be achieved by the ectopic expression of oncogenic Ras(V12). Crosstalk between mesenchymal and neuroendocrine cells strongly influenced their behavior. When engrafted as a mixed population, the mesenchymal cells endowed the neuroendocrine cells with metastatic capacity, illustrating the potential relevance of tumor cell heterogeneity in dictating tumor properties.
Collapse
Affiliation(s)
- Joaquim Calbo
- Division of Molecular Genetics and Center of Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Prabhu S, Gottlieb DJ, Varikatt W, St Heaps L, Diaz S, Smith A. Adult B-cell acute lymphoblastic leukemia with two unrelated abnormal cytogenetic clones. ACTA ACUST UNITED AC 2010; 201:24-7. [PMID: 20633764 DOI: 10.1016/j.cancergencyto.2010.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/31/2010] [Accepted: 04/18/2010] [Indexed: 01/18/2023]
Abstract
The presence of two different abnormal cell lines at diagnosis in hematologic malignancies is rare and raises the question of etiology and pathogenesis--two separate malignant lineages occurring together or a common stem cell malignancy? We present a 64-year-old woman who was evaluated for low platelet count and peripheral blasts. On the basis of the morphology, flow cytometry, and lack of myeloid-associated markers, a diagnosis of precursor B-cell acute lymphoblastic leukemia (B-ALL) was made. Cytogenetic analysis of the diagnostic bone marrow (BM) specimen revealed two unrelated abnormal clones--one had a dicentric (7;9)(p11;p11), resulting in the deletion of 7p and 9p, and the other had only trisomy 8. The dic(7;9) is a rare but recurrent abnormality in B-ALL, while trisomy 8 as a sole abnormality is most commonly associated with myeloid malignancies. After standard treatment for B-ALL, BM cytogenetic analysis showed disappearance of the dic(7;9) cell line but persistence of cells with trisomy 8. The presence of two unrelated clones suggestive of concomitant malignancies, possibly B-ALL with an underlying MDS, may have arisen by different mechanisms.
Collapse
Affiliation(s)
- S Prabhu
- Department of Cytogenetics, Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 2010; 6:e1000716. [PMID: 20333237 PMCID: PMC2841614 DOI: 10.1371/journal.pcbi.1000716] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/18/2010] [Indexed: 11/25/2022] Open
Abstract
On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments. Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells, which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected. Cooperation is a fundamental and widespread phenomenon in nature, yet explaining the evolution of cooperation is difficult. Natural selection typically favors individuals that maximize their own reproduction, so how is it that many diverse organisms, from bacteria to humans, have evolved to help others at a cost to themselves? Research has shown that cooperation can most readily evolve when cooperative individuals preferentially help each other, but this leaves open another critical question: How do cooperators achieve selective interaction with one another? We focus on this question in the context of unicellular organisms, such as bacteria, which exhibit simple forms of cooperation that play roles in nutrient acquisition and pathogenesis. We use a realistic simulation framework to model large cell groups, and observe that cell lines can spontaneously segregate from each other in space as the group expands. Finally, we demonstrate that lineage segregation allows cooperative cell types to preferentially benefit each other, thereby favoring the evolution of cooperation.
Collapse
Affiliation(s)
- Carey D. Nadell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kevin R. Foster
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (KRF); (JBX)
| | - João B. Xavier
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (KRF); (JBX)
| |
Collapse
|
50
|
Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1805:105-17. [PMID: 19931353 PMCID: PMC2814927 DOI: 10.1016/j.bbcan.2009.11.002] [Citation(s) in RCA: 822] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 12/14/2022]
Abstract
With rare exceptions, spontaneous tumors originate from a single cell. Yet, at the time of clinical diagnosis, the majority of human tumors display startling heterogeneity in many morphological and physiological features, such as expression of cell surface receptors, proliferative and angiogenic potential. To a substantial extent, this heterogeneity might be attributed to morphological and epigenetic plasticity, but there is also strong evidence for the co-existence of genetically divergent tumor cell clones within tumors. In this perspective, we summarize the sources of intra-tumor phenotypic heterogeneity with emphasis on genetic heterogeneity. We review experimental evidence for the existence of both intra-tumor clonal heterogeneity as well as frequent evolutionary divergence between primary tumors and metastatic outgrowths. Furthermore, we discuss potential biological and clinical implications of intra-tumor clonal heterogeneity.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|