1
|
Manoharan V, Adegbayi OO, Maynard JP. P2 purinergic receptor expression and function in tumor-related immune cells. Purinergic Signal 2024:10.1007/s11302-024-10054-7. [PMID: 39387963 DOI: 10.1007/s11302-024-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
P2 purinergic receptor expression is dysregulated in multiple cancer subtypes and is associated with worse outcomes. Studies identify roles for P2 purinergic receptors in tumor cells that drive disease aggressiveness. There is also sufficient evidence that P2 purinergic receptor expression within the tumor microenvironment (TME) is critical for disease initiation and progression. Immune cells constitute a significant component of the TME and display both tumorigenic and anti-tumorigenic potential. Studies pre-dating the investigation of P2 purinergic receptors in cancer identify P2 receptor expression on multiple immune cells including macrophages, neutrophils, T-cells, and dendritic cells; all of which are implicated in tumor initiation, tumor promotion, or response to treatment. Herein, we discuss P2 purinergic receptor expression and function in tumor-related immune cells. We provide a rationale for further investigations of P2 purinergic receptors within the TME to better define the mechanistic pathways of inflammation-mediate tumorigenesis and explore P2 purinergic receptors as potential targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vahinipriya Manoharan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwafemi O Adegbayi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
TLR agonist rMBP-NAP inhibits B16 melanoma tumor growth via induction of DCs maturation and T-cells cytotoxic response. Cytotechnology 2022; 74:459-467. [PMID: 36110155 PMCID: PMC9374861 DOI: 10.1007/s10616-022-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
Melanoma is the most aggressive skin cancer with increasing incidence and poor prognosis all over the world. Recent research has found that immunological abnormalities played a key role in the pathogenesis of melanoma. Increased understanding of tumor immune mechanisms has led to attract more attention for the potential of TLR agonists on treatment of melanoma. The present study aimed to determine the potential and efficacy of a novel TLR agonist rMBP-NAP for antitumor treatment in murine model of B16 melanoma. Subcutaneous administration of mice with rMBP-NAP remarkably inhibited tumor growth and tumor inhibitory rate was 77.72%. Additionally, rMBP‑NAP significantly upregulated the number of mature DCs (P < 0.05). Furthermore, the number and activation of CD4+ and CD8+ T cells were prominently enhanced following rMBP-NAP stimulation (P < 0.05). Overall, these results demonstrated that rMBP-NAP possessed the potential to be a novel immunomodulatory candidate drug for treating melanoma.
Collapse
|
3
|
Butner JD, Martin GV, Wang Z, Corradetti B, Ferrari M, Esnaola N, Chung C, Hong DS, Welsh JW, Hasegawa N, Mittendorf EA, Curley SA, Chen SH, Pan PY, Libutti SK, Ganesan S, Sidman RL, Pasqualini R, Arap W, Koay EJ, Cristini V. Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. eLife 2021; 10:70130. [PMID: 34749885 PMCID: PMC8629426 DOI: 10.7554/elife.70130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Checkpoint inhibitor therapy of cancer has led to markedly improved survival of a subset of patients in multiple solid malignant tumor types, yet the factors driving these clinical responses or lack thereof are not known. We have developed a mechanistic mathematical model for better understanding these factors and their relations in order to predict treatment outcome and optimize personal treatment strategies. Methods: Here, we present a translational mathematical model dependent on three key parameters for describing efficacy of checkpoint inhibitors in human cancer: tumor growth rate (α), tumor-immune infiltration (Λ), and immunotherapy-mediated amplification of anti-tumor response (µ). The model was calibrated by fitting it to a compiled clinical tumor response dataset (n = 189 patients) obtained from published anti-PD-1 and anti-PD-L1 clinical trials, and then validated on an additional validation cohort (n = 64 patients) obtained from our in-house clinical trials. Results: The derived parameters Λ and µ were both significantly different between responding versus nonresponding patients. Of note, our model appropriately classified response in 81.4% of patients by using only tumor volume measurements and within 2 months of treatment initiation in a retrospective analysis. The model reliably predicted clinical response to the PD-1/PD-L1 class of checkpoint inhibitors across multiple solid malignant tumor types. Comparison of model parameters to immunohistochemical measurement of PD-L1 and CD8+ T cells confirmed robust relationships between model parameters and their underlying biology. Conclusions: These results have demonstrated reliable methods to inform model parameters directly from biopsy samples, which are conveniently obtainable as early as the start of treatment. Together, these suggest that the model parameters may serve as early and robust biomarkers of the efficacy of checkpoint inhibitor therapy on an individualized per-patient basis. Funding: We gratefully acknowledge support from the Andrew Sabin Family Fellowship, Center for Radiation Oncology Research, Sheikh Ahmed Center for Pancreatic Cancer Research, GE Healthcare, Philips Healthcare, and institutional funds from the University of Texas M.D. Anderson Cancer Center. We have also received Cancer Center Support Grants from the National Cancer Institute (P30CA016672 to the University of Texas M.D. Anderson Cancer Center and P30CA072720 the Rutgers Cancer Institute of New Jersey). This research has also been supported in part by grants from the National Science Foundation Grant DMS-1930583 (ZW, VC), the National Institutes of Health (NIH) 1R01CA253865 (ZW, VC), 1U01CA196403 (ZW, VC), 1U01CA213759 (ZW, VC), 1R01CA226537 (ZW, RP, WA, VC), 1R01CA222007 (ZW, VC), U54CA210181 (ZW, VC), and the University of Texas System STARS Award (VC). BC acknowledges support through the SER Cymru II Programme, funded by the European Commission through the Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) COFUND scheme and the Welsh European Funding Office (WEFO) under the European Regional Development Fund (ERDF). EK has also received support from the Project Purple, NIH (U54CA210181, U01CA200468, and U01CA196403), and the Pancreatic Cancer Action Network (16-65-SING). MF was supported through NIH/NCI center grant U54CA210181, R01CA222959, DoD Breast Cancer Research Breakthrough Level IV Award W81XWH-17-1-0389, and the Ernest Cockrell Jr. Presidential Distinguished Chair at Houston Methodist Research Institute. RP and WA received serial research awards from AngelWorks, the Gillson-Longenbaugh Foundation, and the Marcus Foundation. This work was also supported in part by grants from the National Cancer Institute to SHC (R01CA109322, R01CA127483, R01CA208703, and U54CA210181 CITO pilot grant) and to PYP (R01CA140243, R01CA188610, and U54CA210181 CITO pilot grant). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Joseph D Butner
- The Houston Methodist Research Institute, Houston, United States
| | - Geoffrey V Martin
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Zhihui Wang
- The Houston Methodist Research Institute, Houston, United States
| | - Bruna Corradetti
- The Houston Methodist Research Institute, Houston, United States
| | - Mauro Ferrari
- The Houston Methodist Research Institute, Houston, United States
| | - Nestor Esnaola
- The Houston Methodist Research Institute, Houston, United States
| | - Caroline Chung
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - James W Welsh
- The Houston Methodist Research Institute, Houston, United States
| | - Naomi Hasegawa
- University of Texas Health Science Center, Houston, United States
| | | | | | - Shu-Hsia Chen
- The Houston Methodist Research Institute, Houston, United States
| | - Ping-Ying Pan
- The Houston Methodist Research Institute, Houston, United States
| | | | | | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, United States
| | | | - Wadih Arap
- Hematology and Oncology, Rutgers Cancer Institute of New Jersey, Newark, United States
| | - Eugene J Koay
- University of Texas MD Anderson Cancer Center, Houston, United States
| | | |
Collapse
|
4
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
6
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Manaster Y, Shipony Z, Hutzler A, Kolesnikov M, Avivi C, Shalmon B, Barshack I, Besser MJ, Feferman T, Shakhar G. Reduced CTL motility and activity in avascular tumor areas. Cancer Immunol Immunother 2019; 68:1287-1301. [PMID: 31253998 PMCID: PMC11028152 DOI: 10.1007/s00262-019-02361-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/16/2019] [Indexed: 01/04/2023]
Abstract
Patchy infiltration of tumors by cytotoxic T cells (CTLs) predicts poorer prognosis for cancer patients. The factors limiting intratumoral CTL dissemination, though, are poorly understood. To study CTL dissemination in tumors, we histologically examined human melanoma samples and used mice to image B16-OVA tumors infiltrated by OT-I CTLs using intravital two-photon microscopy. In patients, most CTLs concentrated around peripheral blood vessels, especially in poorly infiltrated tumors. In mice, OT-I CTLs had to cluster around tumor cells to efficiently kill them in a contact-and perforin-dependent manner and cytotoxicity was strictly antigen-specific. OT-I CTLs as well as non-specific CTLs concentrated around peripheral vessels, and cleared the tumor cells around them. This was also the case when CTLs were injected directly into the tumors. CTLs crawled rapidly only in areas within 50 µm of flowing blood vessels and transient occlusion of vessels immediately, though reversibly, stopped their migration. In vitro, oxygen depletion and blockade of oxidative phosphorylation also reduced CTL motility. Taken together, these results suggest that hypoxia limits CTL migration away from blood vessels, providing immune-privileged niches for tumor cells to survive. Normalizing intratumoral vasculature may thus synergize with tumor immunotherapy.
Collapse
Affiliation(s)
- Yoav Manaster
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel
| | - Zohar Shipony
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel
| | - Anat Hutzler
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel
| | - Masha Kolesnikov
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Derech Sheba 2, 52621, Ramat Gan, Israel
| | - Bruria Shalmon
- Department of Pathology, Sheba Medical Center, Derech Sheba 2, 52621, Ramat Gan, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Derech Sheba 2, 52621, Ramat Gan, Israel
| | - Michal J Besser
- Ella Institute, Sheba Medical Center, Derech Sheba 2, 52621, Ramat Gan, Israel
- Department of Human Microbiology and Immunology, Sackler Medical School, Tel-Aviv University, 35 Klachkin st, 6997801, Tel Aviv, Israel
| | - Tali Feferman
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel.
| | - Guy Shakhar
- Department of Immunology, Weizmann Institute of Science, Wolfson Bldg., 234 Herzl St., 76100, Rehovot, Israel.
| |
Collapse
|
8
|
Nicolas-Boluda A, Donnadieu E. Obstacles to T cell migration in the tumor microenvironment. Comp Immunol Microbiol Infect Dis 2018; 63:22-30. [PMID: 30961814 DOI: 10.1016/j.cimid.2018.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
These last years, significant progress has been made in the design of strategies empowering T cells with efficient anti-tumor activities. Hence, adoptive T cell therapy and the use of monoclonal antibodies against the immunosuppressive surface molecules CTLA-4 and PD-1 appear as the most promising immunotherapies against cancer. One of the challenges ahead is to render these therapeutic interventions even more effective as a still elevated fraction of cancer patients is refractory to these treatments. A frequently overlooked determinant of the success of T cell-based immunotherapy relates to the ability of effector T cells to migrate into and within tumors, as well as to have access to tumor antigens. Here, we will focus on recent advances in understanding T cell trafficking into and within tumors. Both chemoattractant molecules and structural determinants are essential for regulating T cell motile behavior along with cellular interactions-mediated antigen recognition. In addition, we will review evidence that the microenvironment of advanced tumors creates multiple obstacles limiting T cells from migrating and making contact with their malignant targets. We will particularly focus on the extracellular matrix and tumor-associated macrophages that make tumors a hostile environment for T cell ability to contact and kill malignant cells. Finally, we will discuss possible strategies to restore a tumor microenvironment more favorable to T cell migration and functions with a special emphasis on approaches targeting the dysregulated extracellular matrix of growing tumors.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Emmanuel Donnadieu
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
9
|
Ding C, Li L, Zhang Y, Ji Z, Zhang C, Liang T, Guo X, Liu X, Kang Q. Toll-like receptor agonist rMBP-NAP enhances antitumor cytokines production and CTL activity of peripheral blood mononuclear cells from patients with lung cancer. Oncol Lett 2018; 16:4707-4712. [PMID: 30214604 PMCID: PMC6126164 DOI: 10.3892/ol.2018.9182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR) agonists are known for their ability to inhibit tumor progression via enhancing antitumor cytokines production and cytotoxic T lymphocyte (CTL) activity. Recombinant Helicobacter pylori neutrophil-activating protein fused with maltose-binding protein (rMBP-NAP) has been reported as a novel TLR agonist for antitumor treatment in murine models. The present study aimed to determine the potential and efficacy of the rMBP-NAP for antitumor treatment prior to further clinical trials. The rMBP-NAP was expressed and purified for subsequent experiments. Peripheral blood mononuclear cells (PBMCs) from health donors and patients with lung cancer (LC) were incubated with PBS and 0.2 mg/ml rMBP-NAP. Antitumor cytokines production was assayed using ELISA and reverse transcription-quantitative polymerase chain reaction analysis. The cytolytic activity of PBMCs and the number of Interferon-γ (IFN-γ)-secreting cells were assayed using lactate dehydrogenase and Enzyme-linked ImmunoSpot assays, respectively. The results from the present study revealed that the expression of IFN-γ, interleukin (IL)-2, tumor necrosis factor-α and IL-12 of PBMCs from patients with LC and healthy donors were significantly increased following treatment with rMBP-NAP (P<0.05). Additionally, rMBP-NAP significantly upregulated the number of IFN-γ-secreting cells in PBMCs and prominently increased the cytotoxic activity of PBMCs (P<0.05). Furthermore, the expression of TLR2 was significantly enhanced following rMBP-NAP stimulation (P<0.05), which indicated that rMBP-NAP may serve an antitumor role via TLR2 signaling pathways. Overall, these results demonstrated that rMBP-NAP possesses the potential to be a novel immunomodulatory candidate drug and requires further evaluation in clinical trials.
Collapse
Affiliation(s)
- Cong Ding
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenglong Zhang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Taotao Liang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xun Guo
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Liu
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qiaozhen Kang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
10
|
Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 2018; 9:20165-20178. [PMID: 29732011 PMCID: PMC5929454 DOI: 10.18632/oncotarget.24957] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Intravital microscopy (IVM) is a dynamic imaging modality that allows for the real time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. In the setting of preclinical cancer models, IVM has facilitated an understanding of the tumor associated vasculature and the role of effector immune cells in the tumor microenvironment. Novel approaches to apply IVM to human malignancies have thus far focused on cancer diagnosis and tumor vessel characterization, but have the potential to provide advances in the field of personalized medicine by identifying individual patients who may respond to systemically delivered chemotherapeutic drugs or immunotherapeutic agents. In this review, we highlight the role that IVM has had in investigating tumor vasculature and the tumor microenvironment in preclinical studies and discuss its current and future applications to directly observe human tumors.
Collapse
|
11
|
Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 2016; 381:259-68. [DOI: 10.1016/j.canlet.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
|
12
|
CD3(+)CD8(+)CD28(-) T Lymphocytes in Patients with Lupus Nephritis. J Immunol Res 2016; 2016:1058165. [PMID: 27446964 PMCID: PMC4944066 DOI: 10.1155/2016/1058165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 01/10/2023] Open
Abstract
The results of studies on the CD3+CD8+CD28− cells in SLE are inconsistent since several analyses describe CD3+CD8+CD28− as either immunosuppressive or cytotoxic. The aim of this study is to inquire whether the quantitative changes of CD3+CD8+CD28− T lymphocytes subpopulation are related to the clinical status of patients with lupus nephritis. Evaluation of Foxp3 expression on CD3+CD8+CD28− cells may shed some light on functional properties of these cells. 54 adult SLE patients and 19 sex and age matched healthy volunteers were enrolled in the study. There were 15 patients in inactive (SLEDAI ≤ 5) and 39 in active (SLEDAI > 5) phase of disease. We determined absolute count of CD3+CD8+CD28− and CD3+CD8+CD28−Foxp3+ subpopulations by flow cytometry. We observed a statistically significant increase in absolute count and percentage of CD3+CD8+CD28− in SLE patients compared to HC (p < 0.001). Moreover there was significant positive correlation between increasing absolute count of CD3+CD8+CD28− cells and disease activity measured by SLEDAI (rs = 0.281, p = 0.038). Active LN patients had increased absolute count of CD3+CD8+CD28− cells compared to HC. Positive correlation of CD3+CD8+CD28− number with disease activity, and lack of Foxp3 expression on these cells, suggests that CD3+CD8+CD28− lymphocytes might be responsible for an increased proinflammatory response in the exacerbation of SLE.
Collapse
|
13
|
Naumenko V, Jenne C, Mahoney DJ. Intravital Microscopy for Imaging the Tumor Microenvironment in Live Mice. Methods Mol Biol 2016; 1458:217-30. [PMID: 27581025 DOI: 10.1007/978-1-4939-3801-8_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of intravital microscopy has provided unprecedented capacity to study the tumor microenvironment in live mice. The dynamic behavior of cancer, stromal, vascular, and immune cells can be monitored in real time, in situ, in both primary tumors and metastatic lesions, allowing treatment responses to be observed at single cell resolution and therapies tracked in vivo. These features provide a unique opportunity to elucidate the cellular mechanisms underlying the biology and treatment of cancer. We describe here a method for imaging the microenvironment of subcutaneous tumors grown in mice using intravital microscopy.
Collapse
Affiliation(s)
- Victor Naumenko
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Diseases, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Craig Jenne
- Snyder Institute for Chronic Diseases, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| | - Douglas J Mahoney
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1.
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
14
|
Proapoptotic and antiapoptotic proteins of the Bcl-2 family regulate sensitivity of pancreatic cancer cells toward gemcitabine and T-cell-mediated cytotoxicity. J Immunother 2015; 38:116-26. [PMID: 25751501 DOI: 10.1097/cji.0000000000000073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensitivity of carcinoma cells towards gemcitabine (Gem) has been linked to mitochondrial apoptotic proteins. Recently, we described synergistic efficacy of Gem-based chemoimmunotherapy and a dendritic cell (DC) tumor vaccine in a murine pancreatic carcinoma model. Here, we investigated the role of the mitochondrial proteins Bcl-2, Bcl-xL, and Bax for sensitization of pancreatic carcinoma cells toward T-cell-mediated cytotoxicity alone and in combination with Gem. Bcl-2 expression was silenced by siRNA in Panc02 pancreatic cancer cells expressing the model antigen ovalbumin (PancOVA). Tumor cells were treated with Gem and/or siRNA, and cytotoxicity induced by OVA-specific cytotoxic T lymphocytes (CTL) from OT-1 mice was assessed. Gem-induced and T-cell-induced cytotoxicity was also studied in human Colo357 pancreatic cancer cell lines overexpressing Bax or Bcl-xL. Apoptosis induction by Fas-activating antibody was measured by Annexin V staining. The in vivo capacity of Bcl-2 siRNA to augment CTL efficacy induced by DC vaccinations was assessed in C57BL/6 mice bearing PancOVA tumors. PancOVA cells treated with Bcl-2 siRNA were sensitized towards both Gem and T-cell-mediated killing; combination therapy exhibited an additive effect. Bax overexpression sensitized Colo357 cells to both Gem-mediated and T-cell-mediated cytotoxicity, whereas Bcl-xL overexpression was inhibitory. Combining Bcl-2 silencing with DC therapy improved tumor control in the PancOVA model in vivo without affecting the number of tumor-reactive CTL. In conclusion, expression of Bcl-2, Bcl-xL, and Bax in pancreatic tumor cells determines sensitivity towards both Gem-mediated and CTL-mediated toxicity. Bcl-2 silencing could be exploited therapeutically in tumor vaccine approaches.
Collapse
|
15
|
Kiraz Y, Baran Y, Nalbant A. T cells in tumor microenvironment. Tumour Biol 2015; 37:39-45. [PMID: 26476540 DOI: 10.1007/s13277-015-4241-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tumors progress in a specific area, which supports its development, spreading or shrinking in time with the presence of different factors that effect the fate of the cancer cells. This specialized site is called "tumor microenvironment" and has a composition of heterogenous materials. The immune cells are also residents of this stromal, cancerous, and inflammatory environment, and their types, densities, or functional differences are one of the key factors that mediate the fate of a tumor. T cells as a vital part of the immune system also are a component of tumor microenvironment, and their roles have been elucidated in many studies. In this review, we focused on the immune system components by focusing on T cells and detailed T helper cell subsets in tumor microenvironment and how their behaviors affect either the tumor or the patient's outcome.
Collapse
Affiliation(s)
- Yağmur Kiraz
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey
- Faculty of Life and Natural Sciences, Abdullah Gul University, 38080, Kayseri, Turkey
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey
- Faculty of Life and Natural Sciences, Abdullah Gul University, 38080, Kayseri, Turkey
| | - Ayten Nalbant
- Department of Molecular Biology and Genetics, Molecular Immunology and Gene Regulation Laboratory, Izmir Institute of Technology, Urla, 35430, İzmir, Turkey.
| |
Collapse
|
16
|
Li Y, An J, Huang S, He J, Zhang J. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem Funct 2015; 33:308-13. [PMID: 26009869 DOI: 10.1002/cbf.3115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/22/2015] [Accepted: 04/15/2015] [Indexed: 11/11/2022]
Abstract
The role of B cells in the generation of cancer-immune tolerance is unclear. This study aims to investigate the role of cancer-derived microvesicles (Mvcs) in the generation of transforming growth factor (TGF)-β(+) B cells. In this study, esophageal cancer (Eca) cells were isolated from surgically removed cancer tissue. Mvcs were purified from the culture supernatant and characterized by Western blotting. The immune suppression assay was carried out with a cell culture model and flow cytometry. The results showed that Eca-derived Mvcs were LAMP1 positive and carried MMP9. Exposure to the Mvcs induces naive B cells to differentiate into TGF-β-producing regulatory B cells; the latter show immune suppressor functions on CD8(+) T-cell proliferation. In conclusion, Eca-derived Mvc can induce TGF-β(+) B cells; the latter suppress CD8(+) T-cell activities. The MMP9-laden Mvcs may be a new therapeutic target in the treatment of Eca.
Collapse
Affiliation(s)
- Yun Li
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaohong Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junhang Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Li RL, Zhou S, Qin J, Liang CM, Luo GR. Effect of administration of BMDC vaccine sensitized by heat shocked hepal-6 cell proteins on intratumoral CD25 +Foxp3 + Tregs in mouse hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2014; 22:2081-2090. [DOI: 10.11569/wcjd.v22.i15.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether the bone marrow derived dendritic cell (BMDC) vaccine sensitized by heat shocked hepal-6 cell proteins affects the infiltration of intratumoral CD25+Foxp3+ Tregs in a mouse hepatocellular carcinoma (HCC) model.
METHODS: In the presence of GM-CSF and IL-4, BMDCs were induced in vitro. BMDCs were sensitized by heat shocked hepal-6 cell proteins to generate a vaccine for HCC. The expression of CD11c, CCR7, CD80 and CD86 on these sensitized BMDCs were analyzed by FACS. The anti-tumor effect of this vaccine was evaluated using a mouse HCC model established by subcutaneous injection of Hepal-6 cells. Eight days later, the tumor-bearing mice were divided into four groups, which underwent intratumoral injection of BMDCs sensitized by heat shocked hepal-6 cell proteins, serum-free culture medium, BMDCs without sensitization and BMDCs sensitized by unheated hepal-6 cell proteins (once every 7 d, 2 times altogether), respectively. Nine days after final administration, the mice were sacrificed and the tumor samples were taken for immunofluorescence staining for CD8+ cells and intratumoral CD25+Foxp3+ Tregs.
RESULTS: Light microscopy and scanning electron microscopy showed that BMDCs propagated in the presence of GM-CSF and IL-4 displayed the typical morphological characteristics of dendritic cells. Immunocytochemical staining showed that they expressed the dendritic cell marks including CD11c, CCR7, CD80 and CD86. Compared with the controls (BMDCs without sensitization or sensitized by unheated hepal-6 cells proteins), the BMDCs sensitized by heat shocked hepal-6 cells proteins showed increased expression of CD11c (67.2 ± 4.49 vs 52.4 ± 5.20, 58.4 ± 4.43), CCR7 (65.4 ± 5.34 vs 45.9 ± 5.04, 57.0 ± 3.46), CD80 (62.9 ± 4.69 vs 46.9 ± 4.75, 54.4 ± 3.47) and CD86 (73.3 ± 3.58 vs 60.1 ± 2.98, 63.7 ± 3.10) (P < 0.01 for all). Compared with the controls, the mice administrated with the BMDC vaccine sensitized by heat shocked Hepal-6 cell proteins showed increased CD8+ T cells (55.0 ± 4.11 vs 38.2 ± 3.34, 44.6 ± 4.29, 45.6 ± 4.92, P < 0.01 for all) and decreased intratumoral CD25+Foxp3+ Tregs (0.37 ± 0.028 vs 1.31 ± 0.020, 0.77 ± 0.057, 0.57 ± 0.062, P < 0.05 for all).
CONCLUSION: Heat shocked hepal-6 cell protein sensitization can upregulate the expression of CD11c, CCR7, CD80 and CD86 on BMDCs in vitro. Administration with this BMDC vaccine can increase CD8+ T cells and decrease intratumoral CD25+Foxp3+ Tregs in HCC mice.
Collapse
|
18
|
Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol 2013; 3:90. [PMID: 23616948 PMCID: PMC3628362 DOI: 10.3389/fonc.2013.00090] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022] Open
Abstract
The cancer microenvironment may be conceptually regarded as a pitch where the main players are resident and non-resident cellular components, each covering a defined role and interconnected by a complex network of soluble mediators. The crosstalk between these cells and the tumor cells within this environment crucially determines the fate of tumor progression. Immune cells that infiltrate the tumor bed are transported there by blood circulation and exert a variety of effects, either counteracting or favoring tumor outgrowth. Here, we review and discuss the multiple populations composing the tumor bed, with special focus on immune cells subsets that positively or negatively dictate neoplastic progression. In this scenario, the contribution of cancer stem cells within the tumor microenvironment will also be discussed. Finally, we illustrate recent advances on new integrated approaches to investigate the tumor microenvironment in vitro.
Collapse
Affiliation(s)
- Giovanna Schiavoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità Rome, Italy
| | | | | |
Collapse
|
19
|
Park A, Govindaraj C, Xiang SD, Halo J, Quinn M, Scalzo-Inguanti K, Plebanski M. Substantially modified ratios of effector to regulatory T cells during chemotherapy in ovarian cancer patients return to pre-treatment levels at completion: implications for immunotherapy. Cancers (Basel) 2012; 4:581-600. [PMID: 24213326 PMCID: PMC3712704 DOI: 10.3390/cancers4020581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of death from gynaecological malignancy. Despite improved detection and treatment options, relapse rates remain high. Combining immunotherapy with the current standard treatments may provide an improved prognosis, however, little is known about how standard chemotherapy affects immune potential (particularly T cells) over time, and hence, when to optimally combine it with immunotherapy (e.g., vaccines). Herein, we assess the frequency and ratio of CD8+ central memory and effector T cells as well as CD4+ effector and regulatory T cells (Tregs) during the first 18 weeks of standard chemotherapy for ovarian cancer patients. In this pilot study, we observed increased levels of recently activated Tregs with tumor migrating ability (CD4+CD25hiFoxp3+CD127−CCR4+CD38+ cells) in patients when compared to controls. Although frequency changes of Tregs as well as the ratio of effector T cells to Tregs were observed during treatment, the Tregs consistently returned to pre-chemotherapy levels at the end of treatment. These results indicate T cell subset distributions associated with recurrence may be largely resistant to being “re-set” to healthy control homeostatic levels following standard treatments. However, it may be possible to enhance T effector to Treg ratios transiently during chemotherapy. These results suggest personalized immune monitoring maybe beneficial when combining novel immuno-therapeutics with standard treatment for ovarian cancer patients.
Collapse
Affiliation(s)
- Anthony Park
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Chindu Govindaraj
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Sue D. Xiang
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
- Authors to whom correspondence should be addressed; E-Mails: (S.X.); (M.P.); Tel.: +61-3-9903-0627 (S.X.); Fax: +61-3-9903-0038 (S.X.)
| | - Julene Halo
- Department of Oncology, Royal Women’s Hospital, Melbourne, Victoria 3052, Australia; E-Mails: (J.H.); (M.Q.)
| | - Michael Quinn
- Department of Oncology, Royal Women’s Hospital, Melbourne, Victoria 3052, Australia; E-Mails: (J.H.); (M.Q.)
| | - Karen Scalzo-Inguanti
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Magdalena Plebanski
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
- Authors to whom correspondence should be addressed; E-Mails: (S.X.); (M.P.); Tel.: +61-3-9903-0627 (S.X.); Fax: +61-3-9903-0038 (S.X.)
| |
Collapse
|
20
|
Weigelin B, Krause M, Friedl P. Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment. Immunol Lett 2011; 138:19-21. [PMID: 21333682 DOI: 10.1016/j.imlet.2011.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunological control of cancer lesions requires local uptake of tumor-specific antigen followed by the activation and expansion of tumor specific cytotoxic T-lymphocytes (CTL). An efficient effector phase further depends upon the entry of activated CTL into the tumor microenvironment and scanning of tumor tissue, which leads to direct interaction of the CTL with target cells followed by apoptosis induction and shrinkage of the tumor lesion. Whereas the antigens and pathways that lead to efficient activation of tumor-specific CTL are well established, the local mechanisms that enable efficient - or deficient - CTL function in the tumor tissue are poorly understood. Firstly, effector T lymphocytes need to be mobile to reach the tumor lesion. Next, they must physically interact with and scan tumor cells for antigenic MHC/peptide complexes. Lastly, CTLs must undergo activation and functional conjugation with target cells to induce apoptosis either by the release of perforins or the engagement of Fas/FasL. All these steps of effector function are interdependent and require the amoeboid migration of CTL through tissue to reach, engage with and leave encountered cells.
Collapse
Affiliation(s)
- Bettina Weigelin
- Microscopical Imaging of the Cell, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | | | | |
Collapse
|
21
|
Ullrich E, Bosch J, Aigner M, Völkl S, Dudziak D, Spriewald B, Schuler G, Andreesen R, Mackensen A. Advances in cellular therapy: 5th International Symposium on the clinical use of cellular products, 19 and 20 March 2009, Nürnberg, Germany. Cancer Immunol Immunother 2010; 59:1745-56. [PMID: 19862524 PMCID: PMC11030913 DOI: 10.1007/s00262-009-0779-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 10/06/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Evelyn Ullrich
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010; 120:1368-79. [PMID: 20440079 DOI: 10.1172/jci41911] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CNS is an immune-privileged environment, yet the local control of multiple pathogens is dependent on the ability of immune cells to access and operate within this site. However, inflammation of the distinct anatomical sites (i.e., meninges, cerebrospinal fluid, and parenchyma) associated with the CNS can also be deleterious. Therefore, control of lymphocyte entry and migration within the brain is vital to regulate protective and pathological responses. In this review, several recent advances are highlighted that provide new insights into the processes that regulate leukocyte access to, and movement within, the brain.
Collapse
Affiliation(s)
- Emma H Wilson
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
23
|
Abstract
CD8(+) T cells (also called cytotoxic T lymphocytes) play a major role in protective immunity against many infectious pathogens and can eradicate malignant cells. The path from naive precursor to effector and memory CD8(+) T-cell development begins with interactions between matured antigen-bearing dendritic cells (DCs) and antigen-specific naive T-cell clonal precursors. By integrating differences in antigenic, costimulatory, and inflammatory signals, a developmental program is established that governs many key parameters associated with the ensuing response, including the extent and magnitude of clonal expansion, the functional capacities of the effector cells, and the size of the memory pool that survives after the contraction phase. In this review, we discuss the multitude of signals that drive effector and memory CD8(+) T-cell differentiation and how the differences in the nature of these signals contribute to the diversity of CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Ramon Arens
- Laboratory of Cellular Immunology, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
24
|
Lohela M, Werb Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev 2009; 20:72-8. [PMID: 19942428 DOI: 10.1016/j.gde.2009.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/01/2022]
Abstract
Tumor stroma, consisting of the extracellular matrix and multiple cell types such as immune cells, fibroblasts and vascular cells, contributes to the malignancy of solid tumors by a variety of mechanisms. Intravital imaging by different microscopy techniques, especially by confocal and multi-photon microscopy, has proven to be a powerful method for analyzing the cell-cell and cell-matrix interactions in the dynamic tumor microenvironments. Intravital imaging has fostered the acquisition of data on parameters such as motility of different cell types in distinct tumor regions or manipulated with defined challenges, kinetics of tumor cell killing by T cells or macrophage-assisted tumor cell extravasation, functionality of the vasculature, protease activity and metabolic state. Achieving the direct observation of intact tumors offered by intravital imaging provides unique insights into tumor biology that will continue to deepen our understanding of the processes leading to malignancy and of the ways they can be targeted.
Collapse
Affiliation(s)
- Marja Lohela
- Department of Anatomy, University of California, HSW1323, 513 Parnassus Avenue, San Francisco, CA 94143-0452, United States
| | | |
Collapse
|