1
|
Tolg C, Hill KA, Turley EA. CD44 and RHAMM Are Microenvironmental Sensors with Dual Metastasis Promoter and Suppressor Functions. Adv Biol (Weinh) 2024; 8:e2300693. [PMID: 38638002 DOI: 10.1002/adbi.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
The progression of primary tumors to metastases remains a significant roadblock to the treatment of most cancers. Emerging evidence has identified genes that specifically affect metastasis and are potential therapeutic targets for managing tumor progression. However, these genes can have dual tumor promoter and suppressor functions that are contextual in manifestation, and that complicate their development as targeted therapies. CD44 and RHAMM/HMMR are examples of multifunctional proteins that can either promote or suppress metastases, as demonstrated in experimental models. These two proteins can be viewed as microenvironmental sensors and this minireview addresses the known mechanistic underpinnings that may determine their metastasis suppressor versus promoter functions. Leveraging this mechanistic knowledge for CD44, RHAMM, and other multifunctional proteins is predicted to improve the precision of therapeutic targeting to achieve more effective management of metastasis.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
| | | | - Eva Ann Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
- Departments of Oncology, Biochemistry, and Surgery, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
2
|
Harihar S. KISS1 and Kisspeptins Detection in Cell Lines. Methods Mol Biol 2024; 2811:177-184. [PMID: 39037658 DOI: 10.1007/978-1-0716-3882-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
KISS1 belongs to the family of metastasis suppressor genes. However, its role is not limited to blocking cancer metastasis. KISS1 and its by-product kisspeptins (KP) are important players in regulating the reproductive axis in different species and have new roles in controlling physiological balance and social behaviors. These diverse functions point to KISS1 as a potential therapeutic molecule. Here we describe a methodology to detect KISS1 and KP from cell lysate and conditioned media in cell lines. This will serve as a critical tool to study KISS1 processing in KP.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
3
|
Megino-Luque C, Bravo-Cordero JJ. Metastasis suppressor genes and their role in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:1147-1154. [PMID: 37982987 PMCID: PMC10842895 DOI: 10.1007/s10555-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
The metastatic cascade is a complex process with multiple factors contributing to the seeding and growth of cancer cells at metastatic sites. Within this complex process, several genes have been identified as metastasis suppressors, playing a role in the inhibition of metastasis. Interestingly, some of these genes have been shown to also play a role in regulating the tumor microenvironment. In this review, we comment on the recent developments in the biology of metastasis suppressor genes and their crosstalk with the microenvironment.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
5
|
Borkar NA, Ambhore NS, Balraj P, Ramakrishnan YS, Sathish V. Kisspeptin regulates airway hyperresponsiveness and remodeling in a mouse model of asthma. J Pathol 2023; 260:339-352. [PMID: 37171283 PMCID: PMC10759912 DOI: 10.1002/path.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | | | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
6
|
Tolg C, Milojevic M, Qi FW, Pavanel HA, Locke MEO, Ma J, Price M, Nelson AC, McCarthy JB, Hill KA, Turley EA. RHAMM regulates MMTV-PyMT-induced lung metastasis by connecting STING-dependent DNA damage sensing to interferon/STAT1 pro-apoptosis signaling. Breast Cancer Res 2023; 25:74. [PMID: 37349798 PMCID: PMC10286489 DOI: 10.1186/s13058-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Maja Milojevic
- Departments of Biology, Western University, London, ON, Canada
| | - Freda W Qi
- Departments of Biology, Western University, London, ON, Canada
| | | | - M Elizabeth O Locke
- Departments of Biology, Western University, London, ON, Canada
- Departments of Computer Science, Western University, London, ON, Canada
| | - Jenny Ma
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mathew Price
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - James B McCarthy
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen A Hill
- Departments of Biology, Western University, London, ON, Canada.
- Departments of Computer Science, Western University, London, ON, Canada.
| | - Eva A Turley
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
- Departments of Biochemistry, Oncology and Surgery, Western University, London, ON, Canada.
| |
Collapse
|
7
|
Veschi V, Turdo A, Modica C, Verona F, Di Franco S, Gaggianesi M, Tirrò E, Di Bella S, Iacono ML, Pantina VD, Porcelli G, Mangiapane LR, Bianca P, Rizzo A, Sciacca E, Pillitteri I, Vella V, Belfiore A, Bongiorno MR, Pistone G, Memeo L, Colarossi L, Giuffrida D, Colarossi C, Vigneri P, Todaro M, Stassi G. Recapitulating thyroid cancer histotypes through engineering embryonic stem cells. Nat Commun 2023; 14:1351. [PMID: 36906579 PMCID: PMC10008571 DOI: 10.1038/s41467-023-36922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Elena Tirrò
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.,Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Sebastiano Di Bella
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | | | - Elisabetta Sciacca
- Queen Mary University, Experimental Medicine & Rheumatology, London, United Kingdom
| | - Irene Pillitteri
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico-Vittorio Emanuele, Center of Experimental Oncology and Hematology, University of Catania, Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,A.O.U.P. "Paolo Giaccone", University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Fang L, Yan Y, Gao Y, Wu Z, Wang Z, Yang S, Cheng JC, Sun YP. TGF-β1 inhibits human trophoblast cell invasion by upregulating kisspeptin expression through ERK1/2 but not SMAD signaling pathway. Reprod Biol Endocrinol 2022; 20:22. [PMID: 35101033 PMCID: PMC8802482 DOI: 10.1186/s12958-022-00902-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-β1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-β1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-β1 and mediates TGF-β1-suppressed human EVT cell invasion remains unclear. METHODS The effect of TGF-β1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-β1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS TGF-β1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-β1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-β1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-β1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-β1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-β1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS By illustrating the potential physiological role of TGF-β1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Sizhu Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Bhattacharya A, Santhoshkumar A, Kurahara H, Harihar S. Metastasis Suppressor Genes in Pancreatic Cancer: An Update. Pancreas 2021; 50:923-932. [PMID: 34643607 DOI: 10.1097/mpa.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), has for long remained a deadly form of cancer characterized by high mortality rates resulting from metastasis to multiple organs. Several factors, including the late manifestation of the disease, partly amplified by lack of efficient screening methods, have hampered the drive to design an effective therapeutic strategy to treat this deadly cancer. Understanding the biology of PDAC progression and identifying critical genes regulating these processes are essential to overcome the barriers toward effective treatment. Metastasis suppressor genes have been shown to inhibit multiple steps in the metastatic cascade without affecting primary tumor formation and are considered to hold promise for treating metastatic cancers. In this review, we catalog the bona fide metastasis suppressor genes reported in PDAC and discuss their known mechanism of action.
Collapse
Affiliation(s)
- Arnav Bhattacharya
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anirudh Santhoshkumar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
11
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
12
|
Zhu N, Zhao M, Song Y, Ding L, Ni Y. The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes Dis 2020; 9:28-40. [PMID: 35005105 PMCID: PMC8720660 DOI: 10.1016/j.gendis.2020.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
KiSS-1, first identified as an anti-metastasis gene in melanoma, encodes C-terminally amidated peptide products, including kisspeptin-145, kisspeptin-54, kisspeptin-14, kisspeptin-13 and kisspeptin-10. These products are endogenous ligands coupled to G protein-coupled receptor 54 (GPR54)/hOT7T175/AXOR12. To date, the regulatory activities of the KiSS-1/GPR54 system, such as puberty initiation, antitumor metastasis, fertility in adulthood, hypothalamic-pituitary-gonadal axis (HPG axis) feedback, and trophoblast invasion, have been investigated intensively. Accumulating evidence has demonstrated that KiSS-1 played a key role in reproduction and served as a promising biomarker relative to the diagnosis, identification of therapeutic targets and prognosis in various carcinomas, while few studies have systematically summarized its subjective factors and concluded the functions of KiSS-1/GPR54 signaling in physiology homeostasis and cancer biology. In this review, we retrospectively summarized the regulators of the KiSS-1/GPR54 system in different animal models and reviewed its functions according to physiological homeostasis regulations and above all, cancer biology, which provided us with a profound understanding of applying the KiSS-1/GPR54 system into medical applications.
Collapse
Affiliation(s)
- Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| |
Collapse
|