1
|
Breitbart ST, Agrawal AA, Wagner HH, Johnson MTJ. Urbanization and a green corridor do not impact genetic divergence in common milkweed (Asclepias syriaca L.). Sci Rep 2023; 13:20437. [PMID: 37993590 PMCID: PMC10665382 DOI: 10.1038/s41598-023-47524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Urbanization is altering landscapes globally at an unprecedented rate. While ecological differences between urban and rural environments often promote phenotypic divergence among populations, it is unclear to what degree these trait differences arise from genetic divergence as opposed to phenotypic plasticity. Furthermore, little is known about how specific landscape elements, such as green corridors, impact genetic divergence in urban environments. We tested the hypotheses that: (1) urbanization, and (2) proximity to an urban green corridor influence genetic divergence in common milkweed (Asclepias syriaca) populations for phenotypic traits. Using seeds from 52 populations along three urban-to-rural subtransects in the Greater Toronto Area, Canada, one of which followed a green corridor, we grew ~ 1000 plants in a common garden setup and measured > 20 ecologically-important traits associated with plant defense/damage, reproduction, and growth over four years. We found significant heritable variation for nine traits within common milkweed populations and weak phenotypic divergence among populations. However, neither urbanization nor an urban green corridor influenced genetic divergence in individual traits or multivariate phenotype. These findings contrast with the expanding literature demonstrating that urbanization promotes rapid evolutionary change and offer preliminary insights into the eco-evolutionary role of green corridors in urban environments.
Collapse
Affiliation(s)
- Sophie T Breitbart
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, E145 Corson Hall, Ithaca, NY, 14853, USA
- Department of Entomology, Cornell University, 2126 Comstock Hall, Ithaca, NY, 14853, USA
| | - Helene H Wagner
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
2
|
Sato JJ, Aiba H, Ohtake K, Minato S. Evolutionary and Anthropogenic Factors Affecting the Mitochondrial D-loop Genetic Diversity of Apodemus and Myodes Rodents on the Northern Slope of Mt. Fuji. MAMMAL STUDY 2020. [DOI: 10.3106/ms2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jun J. Sato
- Faculty of Life Science and Technology, Fukuyama University, Higashimura-cho, Aza, Sanzo, 985, Fukuyama 729-0292, Japan
| | - Haruka Aiba
- Japanese Dormice Preservation & Research Group, Yamanashi 408-0015, Japan
| | - Kouichi Ohtake
- Japanese Dormice Preservation & Research Group, Yamanashi 408-0015, Japan
| | - Shusaku Minato
- Japanese Dormice Preservation & Research Group, Yamanashi 408-0015, Japan
| |
Collapse
|
3
|
Miles LS, Rivkin LR, Johnson MTJ, Munshi‐South J, Verrelli BC. Gene flow and genetic drift in urban environments. Mol Ecol 2019; 28:4138-4151. [DOI: 10.1111/mec.15221] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lindsay S. Miles
- Integrative Life Sciences Doctoral Program Virginia Commonwealth University Richmond VA USA
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - L. Ruth Rivkin
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
- Centre for Urban Environments University of Toronto Mississauga Mississauga ON Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
- Centre for Urban Environments University of Toronto Mississauga Mississauga ON Canada
| | - Jason Munshi‐South
- Louis Calder Center—Biological Field Station Fordham University Armonk NY USA
| | - Brian C. Verrelli
- Center for Life Sciences Education Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
4
|
|
5
|
Beninde J, Feldmeier S, Veith M, Hochkirch A. Admixture of hybrid swarms of native and introduced lizards in cities is determined by the cityscape structure and invasion history. Proc Biol Sci 2018; 285:rspb.2018.0143. [PMID: 30051861 DOI: 10.1098/rspb.2018.0143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Introductions of non-native lineages increase opportunities for hybridization. Non-native lineages of the common wall lizard, Podarcis muralis, are frequently introduced in cities where they hybridize with native populations. We aimed at unravelling the invasion history and admixture of native and non-native wall lizards in four German cities using citywide, comprehensive sampling. We barcoded and genotyped 826 lizards and tested if gene flow in populations composed of admixed native and introduced lineages is facilitated by similar environmental factors to those in native populations by comparing fine-scale landscape genetic patterns. In cities with non-native lineages, lizards commonly occurred in numerous clusters of hybrid swarms, which showed variable lineage composition, consisting of up to four distinct evolutionary lineages. Hybrid swarms held vast genetic diversity and showed recent admixture with other hybrid swarms. Landscape genetic analyses showed differential effects of cityscape structures across cities, but identified water bodies as strong barriers to gene flow in both native and admixed populations. By contrast, railway tracks facilitated gene flow of admixed populations only. Our study shows that cities represent unique settings for hybridization, caused by multiple introductions of non-native taxa. Cityscape structure and invasion histories of cities will determine future evolutionary pathways at these novel hybrid zones.
Collapse
Affiliation(s)
- Joscha Beninde
- Department of Biogeography, Trier University, 54286 Trier, Germany
| | | | - Michael Veith
- Department of Biogeography, Trier University, 54286 Trier, Germany
| | - Axel Hochkirch
- Department of Biogeography, Trier University, 54286 Trier, Germany
| |
Collapse
|
6
|
Combs M, Byers KA, Ghersi BM, Blum MJ, Caccone A, Costa F, Himsworth CG, Richardson JL, Munshi-South J. Urban rat races: spatial population genomics of brown rats ( Rattus norvegicus) compared across multiple cities. Proc Biol Sci 2018; 285:20180245. [PMID: 29875297 PMCID: PMC6015871 DOI: 10.1098/rspb.2018.0245] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 01/30/2023] Open
Abstract
Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.
Collapse
Affiliation(s)
- Matthew Combs
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| | - Kaylee A Byers
- Department of Interdisciplinary Studies, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Wildlife Health Cooperative, The Animal Health Centre, Abbotsford, British Columbia, Canada
| | - Bruno M Ghersi
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, 40296-710, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Chelsea G Himsworth
- Canadian Wildlife Health Cooperative, The Animal Health Centre, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA
| |
Collapse
|
7
|
Perrier C, Lozano del Campo A, Szulkin M, Demeyrier V, Gregoire A, Charmantier A. Great tits and the city: Distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evol Appl 2018; 11:593-613. [PMID: 29875805 PMCID: PMC5979639 DOI: 10.1111/eva.12580] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
Urbanization is a growing concern challenging the evolutionary potential of wild populations by reducing genetic diversity and imposing new selection regimes affecting many key fitness traits. However, genomic footprints of urbanization have received little attention so far. Using RAD sequencing, we investigated the genomewide effects of urbanization on neutral and adaptive genomic diversity in 140 adult great tits Parus major collected in locations with contrasted urbanization levels (from a natural forest to highly urbanized areas of a city; Montpellier, France). Heterozygosity was slightly lower in the more urbanized sites compared to the more rural ones. Low but significant effect of urbanization on genetic differentiation was found, at the site level but not at the nest level, indicative of the geographic scale of urbanization impact and of the potential for local adaptation despite gene flow. Gene-environment association tests identified numerous SNPs with small association scores to urbanization, distributed across the genome, from which a subset of 97 SNPs explained up to 81% of the variance in urbanization, overall suggesting a polygenic response to selection in the urban environment. These findings open stimulating perspectives for broader applications of high-resolution genomic tools on other cities and larger sample sizes to investigate the consistency of the effects of urbanization on the spatial distribution of genetic diversity and the polygenic nature of gene-urbanization association.
Collapse
Affiliation(s)
- Charles Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Ana Lozano del Campo
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Marta Szulkin
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
- Wild Urban Evolution and Ecology LaboratoryCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Arnaud Gregoire
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| |
Collapse
|
8
|
Gryczyńska A, Gortat T, Kowalec M. Urban rodent reservoirs of Borrelia spp. in Warsaw, Poland. Epidemiol Infect 2018; 146:589-593. [PMID: 29502545 PMCID: PMC9134506 DOI: 10.1017/s095026881800033x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 01/26/2023] Open
Abstract
The anticipated worldwide surge in urban environments is generating ever-greater interest in the study of host-pathogen interactions in this specific type of habitat. We investigated the potential of city-inhabiting rodents to serve as the main Lyme borreliosis agents (Borrelia spp.) reservoir. We also tried to verify if anthropogenic disturbances changing the vertebrate species community composition may also alter the scheme of Borrelia spp. circulation. A total of 252 Apodemus mice (A. agrarius, A. flavicollis, A. sylvaticus) were captured in Warsaw (Poland), at sites classified into different zones of anthropogenic disturbance, ranging from suburban forests to municipal parks strictly in the city centre. Borrelia spp. infection, ascertained based on bacterium DNA presence in the rodents' blood, was found only in A. agrarius and A. flavicollis (7.6 and 6%, respectively). Only one species from the Borrelia genus - the mammal-associated species B. afzelii - was found in the mice studied. We found no statistical evidence of a correlation between infection in Apodemus mice and the zone of anthropogenic disturbance where the mice were caught. Non-homogeneous concentrations of Borelia spp. infected specimens within the strict city centre area suggest a lack of contact between members of particular mice subpopulations, and their responsibility for relatively high, but local Borrelia spp. infection.
Collapse
Affiliation(s)
- A. Gryczyńska
- Department of Ecology, Faculty of Biology, Institute of Zoology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
| | - T. Gortat
- Department of Ecology, Faculty of Biology, Institute of Zoology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
| | - M. Kowalec
- Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| |
Collapse
|
9
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
10
|
Combs M, Puckett EE, Richardson J, Mims D, Munshi‐South J. Spatial population genomics of the brown rat (
Rattus norvegicus
) in New York City. Mol Ecol 2017; 27:83-98. [DOI: 10.1111/mec.14437] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Matthew Combs
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | - Emily E. Puckett
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | | | - Destiny Mims
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| | - Jason Munshi‐South
- Louis Calder Center Biological Field Station Fordham University Armonk NY USA
| |
Collapse
|
11
|
Dwużnik D, Gortat T, Behnke JM, Gryczyńska A, Bednarska M, Mikoszewski AS, Kozakiewicz M, Bajer A. Comparison of helminth community of Apodemus agrarius and Apodemus flavicollis between urban and suburban populations of mice. Parasitol Res 2017; 116:2995-3006. [PMID: 28913695 PMCID: PMC5660139 DOI: 10.1007/s00436-017-5609-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/31/2017] [Indexed: 11/25/2022]
Abstract
The growing human population and the development of urban areas have led to fragmentation and destruction of many natural habitats but have also created new urban habitats. These environmental changes have had a negative impact on many species of plants and animals, including parasite communities. The aim of present study was to compare the helminth communities of Apodemus flavicollis and Apodemus agrarius in natural and urban habitats. Helminth burdens were assessed in 124 mice, 48 A. flavicollis, and 76 A. agrarius from two managed forests close to the city boundaries and two city parks within Warsaw, Central Poland. In total, eight species of helminths, Nematoda (n = 3), Digenea (n = 2), and Cestoda (n = 3), were identified. Helminth community structure and prevalence/abundance of individual helminth species differed significantly between the two Apodemus species. Overall, prevalence and abundance of helminth species were significantly higher in A. agrarius compared to A. flavicollis. For A. flavicollis, higher prevalence and abundance of helminths were detected in individuals from managed forest habitats in comparison to city parks. In striped field mice, much higher prevalence and mean abundance were recorded in rodents trapped in city parks than in managed forests. This phenomenon may be explained by better adaptation of A. agrarius, compared to A. flavicollis, to city habitats, resulting in high local densities of mice and the full range of parasite species affecting this host species. Our data confirm also that the established routes of infection exist for selected helminth species in the urban environment.
Collapse
Affiliation(s)
- Dorota Dwużnik
- Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland.
| | - Tomasz Gortat
- Department of Ecology, Faculty of Biology, Biological and Chemical Research Centre, Institute of Zoology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Jerzy M Behnke
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Alicja Gryczyńska
- Department of Ecology, Faculty of Biology, Biological and Chemical Research Centre, Institute of Zoology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Bednarska
- Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Antoni S Mikoszewski
- Department of Ecology, Faculty of Biology, Biological and Chemical Research Centre, Institute of Zoology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Michał Kozakiewicz
- Department of Ecology, Faculty of Biology, Biological and Chemical Research Centre, Institute of Zoology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Bajer
- Department of Parasitology, Faculty of Biology, Institute of Zoology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| |
Collapse
|
12
|
Lourenço A, Álvarez D, Wang IJ, Velo-Antón G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol Ecol 2017; 26:1498-1514. [DOI: 10.1111/mec.14019] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Affiliation(s)
- André Lourenço
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto; Rua Campo Alegre 4169-007 Porto Portugal
- CIBIO/InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Instituto de Ciências Agrárias de Vairão; Rua Padre Armando Quintas 7 4485-661 Vairão Portugal
| | - David Álvarez
- Ecology Unit; Department of Organisms and Systems Biology; University of Oviedo; C/ Catedrático Rodrigo Uría 33071 Oviedo Spain
| | - Ian J. Wang
- Department of Environmental Science, Policy and Management; University of California; 130 Mulford Hall #3114 Berkeley CA 94705 USA
| | - Guillermo Velo-Antón
- CIBIO/InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Instituto de Ciências Agrárias de Vairão; Rua Padre Armando Quintas 7 4485-661 Vairão Portugal
| |
Collapse
|
13
|
Pieniążek A, Boguszewski PM, Meronka RA. The Impact of Urban Noise on the Behavior of Two Mouse Species Belonging to the Genus <i>Apodemus</i>. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/nr.2017.82004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Gortat T, Rutkowski R, Gryczynska A, Kozakiewicz A, Kozakiewicz M. The spatial genetic structure of the yellow-necked mouse in an urban environment – a recent invader vs. a closely related permanent inhabitant. Urban Ecosyst 2016. [DOI: 10.1007/s11252-016-0620-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Munshi‐South J, Zolnik CP, Harris SE. Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol Appl 2016; 9:546-64. [PMID: 27099621 PMCID: PMC4831458 DOI: 10.1111/eva.12357] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/27/2015] [Indexed: 12/16/2022] Open
Abstract
Urbanization results in pervasive habitat fragmentation and reduces standing genetic variation through bottlenecks and drift. Loss of genomewide variation may ultimately reduce the evolutionary potential of animal populations experiencing rapidly changing conditions. In this study, we examined genomewide variation among 23 white-footed mouse (Peromyscus leucopus) populations sampled along an urbanization gradient in the New York City metropolitan area. Genomewide variation was estimated as a proxy for evolutionary potential using more than 10 000 single nucleotide polymorphism (SNP) markers generated by ddRAD-Seq. We found that genomewide variation is inversely related to urbanization as measured by percent impervious surface cover, and to a lesser extent, human population density. We also report that urbanization results in enhanced genomewide differentiation between populations in cities. There was no pattern of isolation by distance among these populations, but an isolation by resistance model based on impervious surface significantly explained patterns of genetic differentiation. Isolation by environment modeling also indicated that urban populations deviate much more strongly from global allele frequencies than suburban or rural populations. This study is the first to examine loss of genomewide SNP variation along an urban-to-rural gradient and quantify urbanization as a driver of population genomic patterns.
Collapse
Affiliation(s)
- Jason Munshi‐South
- Department of Biological Sciences and the Louis Calder Center—Biological Field StationFordham UniversityArmonkNYUSA
| | - Christine P. Zolnik
- Department of Biological Sciences and the Louis Calder Center—Biological Field StationFordham UniversityArmonkNYUSA
| | - Stephen E. Harris
- Ph.D. Program in EcologyEvolutionary Biology and Behaviorthe Graduate Center of the City University of New YorkNew YorkNYUSA
| |
Collapse
|