1
|
Vendrami DLJ, Hoffman JI, Wilding CS. Heterogeneous Genomic Divergence Landscape in Two Commercially Important European Scallop Species. Genes (Basel) 2022; 14:14. [PMID: 36672754 PMCID: PMC9858869 DOI: 10.3390/genes14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Two commercially important scallop species of the genus Pecten are found in Europe: the north Atlantic Pecten maximus and the Mediterranean Pecten jacobaeus whose distributions abut at the Almeria-Orán front. Whilst previous studies have quantified genetic divergence between these species, the pattern of differentiation along the Pecten genome is unknown. Here, we mapped RADseq data from 235 P. maximus and 27 P. jacobaeus to a chromosome-level reference genome, finding a heterogeneous landscape of genomic differentiation. Highly divergent genomic regions were identified across 14 chromosomes, while the remaining five showed little differentiation. Demographic and comparative genomics analyses suggest that this pattern resulted from an initial extended period of isolation, which promoted divergence, followed by differential gene flow across the genome during secondary contact. Single nucleotide polymorphisms present within highly divergent genomic regions were located in areas of low recombination and contrasting patterns of LD decay were found between the two species, hinting at the presence of chromosomal inversions in P. jacobaeus. Functional annotations revealed that highly differentiated regions were enriched for immune-related processes and mRNA modification. While future work is necessary to characterize structural differences, this study provides new insights into the speciation genomics of P. maximus and P. jacobaeus.
Collapse
Affiliation(s)
- David L. J. Vendrami
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33615 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
2
|
Hollenbeck CM, Portnoy DS, Garcia de la Serrana D, Magnesen T, Matejusova I, Johnston IA. Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus). Proc Biol Sci 2022; 289:20221573. [PMID: 36196545 PMCID: PMC9532988 DOI: 10.1098/rspb.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.,Texas A&M AgriLife Research, College Station, TX, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53B, Bergen, Norway
| | - Iveta Matejusova
- Marine Science Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Xelect Ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, UK
| |
Collapse
|
3
|
Peyran C, Boissin E, Morage T, Nebot-Colomer E, Iwankow G, Planes S. Genetic homogeneity of the critically endangered fan mussel, Pinna nobilis, throughout lagoons of the Gulf of Lion (North-Western Mediterranean Sea). Sci Rep 2021; 11:7805. [PMID: 33833376 PMCID: PMC8032772 DOI: 10.1038/s41598-021-87493-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
The fan mussel, Pinna nobilis, endemic to the Mediterranean Sea, is a critically endangered species facing mass mortality events in almost all of its populations, following the introduction of the parasite Haplosporidium pinnae. Such a unique pandemic in a marine organism, which spreads rapidly and with mortality rates reaching up to 100%, could lead to the potential extinction of the species. Only few regions, involving lagoon habitats, remain healthy throughout the entire Mediterranean Sea. This study describes the genetic structure of P. nobilis across the Gulf of Lion, including confined locations such as lagoons and ports. A total of 960 samples were collected among 16 sites distributed at 8 localities, and then genotyped using 22 microsatellite markers. Genetic diversity was high in all sites with mean allele numbers ranging between 10 and 14.6 and with observed heterozygosities (Ho) between 0.679 and 0.704. No genetic differentiation could be identified (FST ranging from 0.0018 to 0.0159) and the percentages of related individuals were low and similar among locations (from 1.6 to 6.5%). Consequently, all fan mussels, over the entire coastline surveyed, including those in the most geographically isolated areas, belong to a large genetically homogeneous population across the Gulf of Lion. Considering the ongoing mass mortality context, this result demonstrates that almost all of the genetic diversity of P. nobilis populations is still preserved even in isolated lagoons, which might represent a refuge habitat for the future of the species.
Collapse
Affiliation(s)
- Claire Peyran
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France
| | - Emilie Boissin
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France ,grid.452595.aLaboratoire d’Excellence «CORAIL», Perpignan, France
| | - Titouan Morage
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France
| | - Elisabet Nebot-Colomer
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France ,grid.410389.70000 0001 0943 6642Centro Oceanográfico de Baleares, Instituto Español de Oceanografía (IEO), Muelle de Poniente S/N, 07015 Palma de Mallorca, Spain
| | - Guillaume Iwankow
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France
| | - Serge Planes
- PSL Research University: EPHE - UPVD - CNRS, USR 3278 CRIOBE, 66860 Perpignan, France ,grid.452595.aLaboratoire d’Excellence «CORAIL», Perpignan, France
| |
Collapse
|
4
|
Le Moan A, Bekkevold D, Hemmer-Hansen J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb) 2021; 126:668-683. [PMID: 33531657 PMCID: PMC8115344 DOI: 10.1038/s41437-020-00389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Changing environmental conditions can lead to population diversification through differential selection on standing genetic variation. Structural variant (SV) polymorphisms provide examples of ancient alleles that in time become associated with novel environmental gradients. The European plaice (Pleuronectes platessa) is a marine flatfish showing large allele-frequency differences at two putative SVs associated with environmental variation. In this study, we explored the contribution of these SVs to population structure across the North East Atlantic. We compared genome-wide population structure using sets of RAD-sequencing SNPs with the spatial structure of the SVs. We found that in contrast to the rest of the genome, the SVs were only weakly associated with an isolation-by-distance pattern. Indeed, both SVs showed important variation in haplogroup frequencies, with the same haplogroup increasing both along the salinity gradient of the Baltic Sea, and found in high frequency in the northern-range margin of the Atlantic. Phylogenetic analyses suggested that the SV alleles are much older than the age of the Baltic Sea itself. These results suggest that the SVs are older than the age of the environmental gradients with which they currently co-vary. Altogether, our results suggest that the plaice SVs were shaped by evolutionary processes occurring at two time frames, firstly following their origin, ancient spread and maintenance in the ancestral populations, and secondly related to their current association with more recently formed environmental gradients such as those found in the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Alan Le Moan
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark ,grid.8761.80000 0000 9919 9582Department of Marine Sciences at Tjärnö, University of Gothenburg, Laboratorievägen 10, Strömstad, Sweden
| | - Dorte Bekkevold
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Jakob Hemmer-Hansen
- grid.5170.30000 0001 2181 8870National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| |
Collapse
|
5
|
Stewart BD, Jenkins SR, Boig C, Sinfield C, Kennington K, Brand AR, Lart W, Kröger R. Metal pollution as a potential threat to shell strength and survival in marine bivalves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143019. [PMID: 33160677 DOI: 10.1016/j.scitotenv.2020.143019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Marine bivalve molluscs, such as scallops, mussels and oysters, are crucial components of coastal ecosystems, providing a range of ecosystem services, including a quarter of the world's seafood. Unfortunately, coastal marine areas often suffer from high levels of metals due to dumping and disturbance of contaminated material. We established that increased levels of metal pollution (zinc, copper and lead) in sediments near the Isle of Man, resulting from historical mining, strongly correlated with significant weakening of shell strength in king scallops, Pecten maximus. This weakness increased mortality during fishing and left individuals more exposed to predation. Comparative structural analysis revealed that shells from the contaminated area were thinner and exhibited a pronounced mineralisation disruption parallel to the shell surface within the foliated region of both the top and bottom valves. Our data suggest that these disruptions caused reduced fracture strength and hence increased mortality, even at subcritical contamination levels with respect to current international standards. This hitherto unreported effect is important since such non-apical responses rarely feed into environmental quality assessments, despite potentially significant implications for the survival of organisms exposed to contaminants. Hence our findings highlight the impact of metal pollution on shell mineralisation in bivalves and urge a reappraisal of currently accepted critical contamination levels.
Collapse
Affiliation(s)
- Bryce D Stewart
- Department of Environment and Geography, University of York, North Yorkshire, United Kingdom.
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom
| | - Charlotte Boig
- Department of Physics, University of York, North Yorkshire, United Kingdom
| | | | - Kevin Kennington
- Department of Environment Food and Agriculture, Isle of Man Government, Isle of Man
| | - Andrew R Brand
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - William Lart
- Sea Fish Industry Authority, Grimsby, United Kingdom
| | - Roland Kröger
- Department of Physics, University of York, North Yorkshire, United Kingdom.
| |
Collapse
|
6
|
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, Dolucan J, Mead D, Oliver K, Omer AD, Pelan S, Ryan Y, Sims Y, Skelton J, Smith M, Torrance J, Weisz D, Wipat A, Aiden EL, Howe K, Williams ST. The gene-rich genome of the scallop Pecten maximus. Gigascience 2020; 9:giaa037. [PMID: 32352532 PMCID: PMC7191990 DOI: 10.1093/gigascience/giaa037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe. It forms the basis of a valuable commercial fishery and plays a key role in coastal ecosystems and food webs. Like other filter feeding bivalves it can accumulate potent phytotoxins, to which it has evolved some immunity. The molecular origins of this immunity are of interest to evolutionary biologists, pharmaceutical companies, and fisheries management. FINDINGS Here we report the genome assembly of this species, conducted as part of the Wellcome Sanger 25 Genomes Project. This genome was assembled from PacBio reads and scaffolded with 10X Chromium and Hi-C data. Its 3,983 scaffolds have an N50 of 44.8 Mb (longest scaffold 60.1 Mb), with 92% of the assembly sequence contained in 19 scaffolds, corresponding to the 19 chromosomes found in this species. The total assembly spans 918.3 Mb and is the best-scaffolded marine bivalve genome published to date, exhibiting 95.5% recovery of the metazoan BUSCO set. Gene annotation resulted in 67,741 gene models. Analysis of gene content revealed large numbers of gene duplicates, as previously seen in bivalves, with little gene loss, in comparison with the sequenced genomes of other marine bivalve species. CONCLUSIONS The genome assembly of P. maximus and its annotated gene set provide a high-quality platform for studies on such disparate topics as shell biomineralization, pigmentation, vision, and resistance to algal toxins. As a result of our findings we highlight the sodium channel gene Nav1, known to confer resistance to saxitoxin and tetrodotoxin, as a candidate for further studies investigating immunity to domoic acid.
Collapse
Affiliation(s)
- Nathan J Kenny
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | - Shane A McCarthy
- University of Cambridge, Department of Genetics,Cambridge CB2 3EH, UK
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
| | - Katherine James
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | | | - Craig Corton
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Dan Mead
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Pelan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Yan Ryan
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | | | | | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Erez L Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Suzanne T Williams
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
7
|
Hornick KM, Plough LV. Tracking genetic diversity in a large-scale oyster restoration program: effects of hatchery propagation and initial characterization of diversity on restored vs. wild reefs. Heredity (Edinb) 2019; 123:92-105. [PMID: 30833745 PMCID: PMC6781163 DOI: 10.1038/s41437-019-0202-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 01/25/2023] Open
Abstract
The release of hatchery-propagated fish and shellfish is occurring on a global scale, but the genetic impacts of these practices are often not fully understood and rarely monitored. Slow recovery of depleted eastern oyster populations in the Chesapeake Bay, USA has prompted a hatchery-based restoration program focused in the Choptank River, Maryland consisting of the mass release of hatchery-produced juveniles from local, wild broodstock. To evaluate potential genetic effects of this program, we (1) examined changes in genetic diversity (allelic richness, heterozygosity) and the effective number of breeders (Nb) over the hatchery production cycle with microsatellite-based parentage of natural, mass- and controlled-spawned cohorts, and (2) compared genetic diversity and effective population size (Ne) of a restored reef to wild source populations. Mass-spawned cohorts showed high variance in reproductive contribution, particularly among males, leading to a 45% average reduction in Nb from spawning adult numbers and higher relatedness-lower magnitude reductions in heterozygosity and significant reductions in allelic richness were also observed. While controlled-spawns (single-male fertilizations of pooled eggs) reduced male variance, overall reproductive variance (Vk) remained high. Finally, oysters sampled from a restored reef displayed comparable Ne, genetic diversity, and relatedness to samples from wild populations, with no significant genetic differentiation among them. Overall, the hatchery-based results and initial field-based population genetic analyses suggest that despite reductions in diversity from parents to offspring owing to high Vk, enhancement with rotated, wild broodstock appears to have maintained genetic diversity in a restored reef population compared to proximal wild populations.
Collapse
Affiliation(s)
- Katherine M Hornick
- University of Maryland Center for Environmental Science, Horn Point Laboratory, 2020 Horns Pt. Rd., Cambridge, MD, 21613, USA.
| | - Louis V Plough
- University of Maryland Center for Environmental Science, Horn Point Laboratory, 2020 Horns Pt. Rd., Cambridge, MD, 21613, USA
| |
Collapse
|
8
|
Vendrami DLJ, De Noia M, Telesca L, Handal W, Charrier G, Boudry P, Eberhart-Phillips L, Hoffman JI. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci Rep 2019; 9:7455. [PMID: 31092869 PMCID: PMC6520335 DOI: 10.1038/s41598-019-43939-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Recent developments in genomics are advancing our understanding of the processes shaping population structure in wild organisms. In particular, reduced representation sequencing has facilitated the generation of dense genetic marker datasets that provide greater power for resolving population structure, investigating the role of selection and reconstructing demographic histories. We therefore used RAD sequencing to study the great scallop Pecten maximus and its sister species P. jacobeus along a latitudinal cline in Europe. Analysis of 219 samples genotyped at 82,439 single nucleotide polymorphisms clearly resolved an Atlantic and a Norwegian group within P. maximus as well as P. jacobeus, in support of previous studies. Fine-scale structure was also detected, including pronounced differences involving Mulroy Bay in Ireland, where scallops are commercially cultured. Furthermore, we identified a suite of 279 environmentally associated loci that resolved a contrasting phylogenetic pattern to the remaining neutral loci, consistent with ecologically mediated divergence. Finally, demographic inference provided support for the two P. maximus groups having diverged during the last glacial maximum and subsequently expanded, whereas P. jacobeus diverged around 95,000 generations ago and experienced less pronounced expansion. Our results provide an integrative perspective on the factors shaping genome-wide differentiation in a commercially important marine invertebrate.
Collapse
Affiliation(s)
- David L J Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33615, Bielefeld, Germany.
| | - Michele De Noia
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33615, Bielefeld, Germany.,Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom.,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom
| | - William Handal
- University of Brest, Laboratoire des Sciences de l'Environnement Marin (LEMAR, UMR 6539, UBO/CNRS/IRD/Ifremer), European University Institute for the Sea (IUEM), rue Dumont d'Urville, 29280, Plouzané, France
| | - Grégory Charrier
- University of Brest, Laboratoire des Sciences de l'Environnement Marin (LEMAR, UMR 6539, UBO/CNRS/IRD/Ifremer), European University Institute for the Sea (IUEM), rue Dumont d'Urville, 29280, Plouzané, France
| | - Pierre Boudry
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (UBO/CNRS/IRD/Ifremer), Plouzané, France
| | - Luke Eberhart-Phillips
- Department of Evolutionary Ecology and Behavioural Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33615, Bielefeld, Germany.,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom
| |
Collapse
|
9
|
Malfant M, Darras S, Viard F. Coupling molecular data and experimental crosses sheds light about species delineation: a case study with the genus Ciona. Sci Rep 2018; 8:1480. [PMID: 29367599 PMCID: PMC5784138 DOI: 10.1038/s41598-018-19811-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular studies sometimes reveal evolutionary divergence within accepted species. Such findings can initiate taxonomic revision, as exemplified in the formerly recognized species Ciona intestinalis. While an increasing number of studies have examined the ecology, reproductive barriers and genetics of C. intestinalis and C. robusta, there are still much uncertainties regarding other species of this genus. Using experimental crosses and mitochondrial data, we investigated the evolutionary relationships among four native and introduced Ciona spp., found in sympatry in the Mediterranean Sea or English Channel. Outcome of 62 bi-parental reciprocal crosses between C. intestinalis, C. robusta, C. roulei and C. edwardsi showed that C. edwardsi is reproductively isolated from the other taxa, which is in agreement with its distinct location in the phylogenetic tree. Conversely, hybrids are easily obtained in both direction when crossing C. intestinalis and C. roulei, reinforcing the hypothesis of two genetically differentiated lineages but likely being from a same species. Altogether, this study sheds light on the evolutionary relationship in this complex genus. It also calls for further investigation notably based on genome-wide investigation to better describe the evolutionary history within the genus Ciona, a challenging task in a changing world where biological introductions are shuffling species distribution.
Collapse
Affiliation(s)
- Marine Malfant
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Frédérique Viard
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| |
Collapse
|
10
|
Vendrami DLJ, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K, Clark MS, Leese F, McMinn C, Moore H, Hoffman JI. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160548. [PMID: 28386419 PMCID: PMC5367306 DOI: 10.1098/rsos.160548] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 05/07/2023]
Abstract
The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations.
Collapse
Affiliation(s)
- David L. J. Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EQ, UK
| | - Hannah Weigand
- Faculty of Biology, Aquatic Ecosystem Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Martina Weiss
- Faculty of Biology, Aquatic Ecosystem Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Katie Fawcett
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | - Katrin Lehman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | - M. S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Florian Leese
- Faculty of Biology, Aquatic Ecosystem Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Carrie McMinn
- Agri-Food and Biosciences Institute, Fisheries and Aquatic Ecosystems, 18a Newforge Lane, Belfast BT9 5PX, UK
| | - Heather Moore
- Agri-Food and Biosciences Institute, Fisheries and Aquatic Ecosystems, 18a Newforge Lane, Belfast BT9 5PX, UK
| | - Joseph I. Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| |
Collapse
|
11
|
Vendrami DLJ, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K, Clark MS, Leese F, McMinn C, Moore H, Hoffman JI. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160548. [PMID: 28386419 DOI: 10.5061/dryad.mk860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 05/23/2023]
Abstract
The field of molecular ecology is transitioning from the use of small panels of classical genetic markers such as microsatellites to much larger panels of single nucleotide polymorphisms (SNPs) generated by approaches like RAD sequencing. However, few empirical studies have directly compared the ability of these methods to resolve population structure. This could have implications for understanding phenotypic plasticity, as many previous studies of natural populations may have lacked the power to detect genetic differences, especially over micro-geographic scales. We therefore compared the ability of microsatellites and RAD sequencing to resolve fine-scale population structure in a commercially important benthic invertebrate by genotyping great scallops (Pecten maximus) from nine populations around Northern Ireland at 13 microsatellites and 10 539 SNPs. The shells were then subjected to morphometric and colour analysis in order to compare patterns of phenotypic and genetic variation. We found that RAD sequencing was superior at resolving population structure, yielding higher Fst values and support for two distinct genetic clusters, whereas only one cluster could be detected in a Bayesian analysis of the microsatellite dataset. Furthermore, appreciable phenotypic variation was observed in size-independent shell shape and coloration, including among localities that could not be distinguished from one another genetically, providing support for the notion that these traits are phenotypically plastic. Taken together, our results suggest that RAD sequencing is a powerful approach for studying population structure and phenotypic plasticity in natural populations.
Collapse
Affiliation(s)
- David L J Vendrami
- Department of Animal Behavior , University of Bielefeld , Postfach 100131, 33501 Bielefeld , Germany
| | - Luca Telesca
- Department of Earth Sciences , University of Cambridge , Downing Street, Cambridge, Cambridgeshire, CB2 3EQ , UK
| | - Hannah Weigand
- Faculty of Biology, Aquatic Ecosystem Research , University of Duisburg-Essen , Universitaetsstrasse 5, 45141 Essen , Germany
| | - Martina Weiss
- Faculty of Biology, Aquatic Ecosystem Research , University of Duisburg-Essen , Universitaetsstrasse 5, 45141 Essen , Germany
| | - Katie Fawcett
- Department of Animal Behavior , University of Bielefeld , Postfach 100131, 33501 Bielefeld , Germany
| | - Katrin Lehman
- Department of Animal Behavior , University of Bielefeld , Postfach 100131, 33501 Bielefeld , Germany
| | - M S Clark
- British Antarctic Survey , Natural Environment Research Council , High Cross, Madingley Road, Cambridge CB3 0ET , UK
| | - Florian Leese
- Faculty of Biology, Aquatic Ecosystem Research , University of Duisburg-Essen , Universitaetsstrasse 5, 45141 Essen , Germany
| | - Carrie McMinn
- Agri-Food and Biosciences Institute , Fisheries and Aquatic Ecosystems , 18a Newforge Lane, Belfast BT9 5PX , UK
| | - Heather Moore
- Agri-Food and Biosciences Institute , Fisheries and Aquatic Ecosystems , 18a Newforge Lane, Belfast BT9 5PX , UK
| | - Joseph I Hoffman
- Department of Animal Behavior , University of Bielefeld , Postfach 100131, 33501 Bielefeld , Germany
| |
Collapse
|
12
|
Stock enhancement or sea ranching? Insights from monitoring the genetic diversity, relatedness and effective population size in a seeded great scallop population (Pecten maximus). Heredity (Edinb) 2016; 117:142-8. [PMID: 27353046 DOI: 10.1038/hdy.2016.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 01/18/2023] Open
Abstract
The mass release of hatchery-propagated stocks raises numerous questions concerning its efficiency in terms of local recruitment and effect on the genetic diversity of wild populations. A seeding program, consisting of mass release of hatchery-produced juveniles in the local naturally occurring population of great scallops (Pecten maximus L.), was initiated in the early 1980s in the Bay of Brest (France). The present study aims at evaluating whether this seeding program leads to actual population enhancement, with detectable effects on genetic diversity and effective population size, or consists of sea ranching with limited genetic consequences on the wild stock. To address this question, microsatellite-based genetic monitoring of three hatchery-born and naturally recruited populations was conducted over a 5-year period. Results showed a limited reduction in allelic richness but a strong alteration of allelic frequencies in hatchery populations, while genetic diversity appeared very stable over time in the wild populations. A temporal increase in relatedness was observed in both cultured stock and wild populations. Effective population size (Ne) estimates were low and variable in the wild population. Moreover, the application of the Ryman-Laikre model suggested a high contribution of hatchery-born scallops to the reproductive output of the wild population. Overall, the data suggest that the main objective of the seeding program, which is stock enhancement, is fulfilled. Moreover, gene flow from surrounding populations and/or the reproductive input of undetected sub-populations within the bay may buffer the Ryman-Laikre effect and ensure the retention of the local genetic variability.
Collapse
|