1
|
Dapporto L, Menchetti M, Dincă V, Talavera G, Garcia-Berro A, D'Ercole J, Hebert PD, Vila R. The genetic legacy of the Quaternary ice ages for West Palearctic butterflies. SCIENCE ADVANCES 2024; 10:eadm8596. [PMID: 39292774 PMCID: PMC11409959 DOI: 10.1126/sciadv.adm8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
The interplay between geographic barriers and climatic oscillations over the past 2.6 million years structured genetic variation at the continental scale. The genetic legacy of the Quaternary ice ages (GLQ) hypothesis outlines this phenomenon for Europe, but a comprehensive data-driven assessment is lacking. Using innovative genetic landscape methods, we model the GLQ in the West Palearctic based on 31,653 Cytochrome c oxidase subunit 1 (COI) sequences from 494 butterfly species and three functional traits. Seven distinct bioregions with varying levels of genetic endemicity emerge, revealing a latitudinal gradient in variation that confirms the "southern richness, northern purity" hypothesis. Through shift from case studies to a comparative approach, we objectively identify the main glacial refugia, colonization routes, and barriers to dispersal. Our findings offer a quantitative model of the GLQ across Europe, North Africa, and neighboring Asia, with broader applicability to other taxa and potentially scalable to encompass life on Earth.
Collapse
Affiliation(s)
- Leonardo Dapporto
- ZEN Lab, Department of Biology, University of Florence, Florence, Italy
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-CMCNB), Barcelona, Spain
| | | | - Jacopo D'Ercole
- Centre for Biodiversity Genomics, Guelph, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Paul Dn Hebert
- Centre for Biodiversity Genomics, Guelph, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
2
|
Clark RD, Pinsky ML. Global patterns of nuclear and mitochondrial genetic diversity in marine fishes. Ecol Evol 2024; 14:e11365. [PMID: 38711488 PMCID: PMC11070773 DOI: 10.1002/ece3.11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Genetic diversity is a fundamental component of biodiversity. Examination of global patterns of genetic diversity can help highlight mechanisms underlying species diversity, though a recurring challenge has been that patterns may vary by molecular marker. Here, we compiled 6862 observations of genetic diversity from 492 species of marine fish and tested among hypotheses for diversity gradients: the founder effect hypothesis, the kinetic energy hypothesis, and the productivity-diversity hypothesis. We fit generalized linear mixed effect models (GLMMs) and explored the extent to which various macroecological drivers (latitude, longitude, temperature (SST), and chlorophyll-a concentration) explained variation in genetic diversity. We found that mitochondrial genetic diversity followed geographic gradients similar to those of species diversity, being highest near the Equator, particularly in the Coral Triangle, while nuclear genetic diversity did not follow clear geographic patterns. Despite these differences, all genetic diversity metrics were correlated with chlorophyll-a concentration, while mitochondrial diversity was also positively associated with SST. Our results provide support for the kinetic energy hypothesis, which predicts that elevated mutation rates at higher temperatures increase mitochondrial but not necessarily nuclear diversity, and the productivity-diversity hypothesis, which posits that resource-rich regions support larger populations with greater genetic diversity. Overall, these findings reveal how environmental variables can influence mutation rates and genetic drift in the ocean, caution against using mitochondrial macrogenetic patterns as proxies for whole-genome diversity, and aid in defining global gradients of genetic diversity.
Collapse
Affiliation(s)
- René D. Clark
- Department of BiologyDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Malin L. Pinsky
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
3
|
Baini S, De Biase A. Filling knowledge gaps in insect conservation by leveraging genetic data from public archives. Database (Oxford) 2024; 2024:baae002. [PMID: 38284937 PMCID: PMC10878047 DOI: 10.1093/database/baae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
Insect decline has become a growing concern in recent years, with studies showing alarming declines in populations of several taxa. Our knowledge about genetic spatial patterns and evolutionary history of insects still exhibits significant gaps hindering our ability to effectively conserve and manage insect populations and species. Genetic data may provide valuable insights into the diversity and the evolutionary relationships of insects' species and populations. Public repositories, such as GenBank and BOLD, containing vast archives of genetic data with associated metadata, offer an irreplaceable resource for researchers contributing to our understanding of species diversity, population structure and evolutionary relationships. However, there are some issues in using these data, as they are often scattered and may lack accuracy due to inconsistent sampling protocols and incomplete information. In this paper we describe a curated georeferenced database of genetic data collected in GenBank and BOLD, for insects listed in the International Union for Conservation of Nature (IUCN) Italian Red Lists (dragonflies, bees, saproxylic beetles and butterflies). After querying these repositories, we performed quality control and data standardization steps. We created a dataset containing approximately 33 000 mitochondrial sequences and associated metadata about taxonomy, collection localities, geographic coordinates and IUCN Red List status for 1466 species across the four insect lists. We describe the current state of geographical metadata in queried repositories for species listed under different conservation status in the Italian Red Lists to quantify data gaps posing barriers to prioritization of conservation actions. Our curated dataset is available for data repurposing and analysis, enabling researchers to conduct comparative studies. We emphasize the importance of filling knowledge gaps in insect diversity and distribution and highlight the potential of this dataset for promoting other research fields like phylogeography, macrogenetics and conservation strategies. Our database can be downloaded through the Zenodo repository in SQL format. Database URL: https://zenodo.org/records/8375181.
Collapse
Affiliation(s)
- Serena Baini
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Viale dell’Università 32, Rome I-00185, Italy
| | - Alessio De Biase
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Viale dell’Università 32, Rome I-00185, Italy
| |
Collapse
|
4
|
Schmidt C, Hoban S, Jetz W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet 2023; 39:816-829. [PMID: 37648576 DOI: 10.1016/j.tig.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
French CM, Bertola LD, Carnaval AC, Economo EP, Kass JM, Lohman DJ, Marske KA, Meier R, Overcast I, Rominger AJ, Staniczenko PPA, Hickerson MJ. Global determinants of insect mitochondrial genetic diversity. Nat Commun 2023; 14:5276. [PMID: 37644003 PMCID: PMC10465557 DOI: 10.1038/s41467-023-40936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth's biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.
Collapse
Affiliation(s)
- Connor M French
- Biology Department, City College of New York, New York, NY, USA.
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.
| | - Laura D Bertola
- Biology Department, City College of New York, New York, NY, USA
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, N 2200, Denmark
| | - Ana C Carnaval
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - David J Lohman
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| | | | - Rudolf Meier
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany
| | - Isaac Overcast
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Institut de Biologie de l'Ecole Normale Superieure, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME, USA
| | | | - Michael J Hickerson
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
6
|
Velli E, Caniglia R, Mattucci F. Phylogenetic History and Phylogeographic Patterns of the European Wildcat ( Felis silvestris) Populations. Animals (Basel) 2023; 13:ani13050953. [PMID: 36899811 PMCID: PMC10000227 DOI: 10.3390/ani13050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species' distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats; these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining wildcats and putative admixed individuals, spatially clustered into four main geographic groups, which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population, (ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster. Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed evolutionary histories and the wild ancestry contents detected in this study could be used to identify adequate Conservation Units within European wildcat populations and help to design appropriate long-term management actions.
Collapse
|
7
|
Schmidt C, Hoban S, Hunter M, Paz-Vinas I, Garroway CJ. Genetic diversity and IUCN Red List status. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023:e14064. [PMID: 36751982 DOI: 10.1111/cobi.14064] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The International Union for Conservation of Nature (IUCN) Red List is an important and widely used tool for conservation assessment. The IUCN uses information about a species' range, population size, habitat quality and fragmentation levels, and trends in abundance to assess extinction risk. Genetic diversity is not considered, although it affects extinction risk. Declining populations are more strongly affected by genetic drift and higher rates of inbreeding, which can reduce the efficiency of selection, lead to fitness declines, and hinder species' capacities to adapt to environmental change. Given the importance of conserving genetic diversity, attempts have been made to find relationships between red-list status and genetic diversity. Yet, there is still no consensus on whether genetic diversity is captured by the current IUCN Red List categories in a way that is informative for conservation. To assess the predictive power of correlations between genetic diversity and IUCN Red List status in vertebrates, we synthesized previous work and reanalyzed data sets based on 3 types of genetic data: mitochondrial DNA, microsatellites, and whole genomes. Consistent with previous work, species with higher extinction risk status tended to have lower genetic diversity for all marker types, but these relationships were weak and varied across taxa. Regardless of marker type, genetic diversity did not accurately identify threatened species for any taxonomic group. Our results indicate that red-list status is not a useful metric for informing species-specific decisions about the protection of genetic diversity and that genetic data cannot be used to identify threat status in the absence of demographic data. Thus, there is a need to develop and assess metrics specifically designed to assess genetic diversity and inform conservation policy, including policies recently adopted by the UN's Convention on Biological Diversity Kunming-Montreal Global Biodiversity Framework.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Margaret Hunter
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, Florida, USA
| | - Ivan Paz-Vinas
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Mitochondrial genome of the critically endangered Baer's Pochard, Aythya baeri, and its phylogenetic relationship with other Anatidae species. Sci Rep 2021; 11:24302. [PMID: 34934156 PMCID: PMC8692624 DOI: 10.1038/s41598-021-03868-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Historically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.
Collapse
|
9
|
Heckwolf MJ, Morim T, Riccioli F, Baltazar-Soares M. Fresh start after rough rides: understanding patterns of genetic differentiation upon human-mediated translocations. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02605-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Schmidt C, Dray S, Garroway CJ. Genetic and species-level biodiversity patterns are linked by demography and ecological opportunity. Evolution 2021; 76:86-100. [PMID: 34806781 DOI: 10.1111/evo.14407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The processes that give rise to species richness gradients are not well understood, but may be linked to resource-based limits on the number of species a region can support. Ecological limits placed on regional species richness should also affect population demography, suggesting that these processes could also generate genetic diversity gradients. If true, we might better understand how broad-scale biodiversity patterns are formed by identifying the common causes of genetic diversity and species richness. We develop a hypothetical framework based on the consequences of regional variation in ecological limits set by resource availability and heterogeneity to simultaneously explain spatial patterns of species richness and neutral genetic diversity. Repurposing raw genotypic data spanning 38 mammal species sampled across 801 sites in North America, we show that estimates of genome-wide genetic diversity and species richness share spatial structure. Notably, species richness hotspots tend to harbor lower levels of within-species genetic variation. A structural equation model encompassing eco-evolutionary processes related to resource availability, habitat heterogeneity, and contemporary human disturbance supports the spatial patterns we detect. These results suggest broad-scale patterns of species richness and genetic diversity could both partly be caused by intraspecific demographic and evolutionary processes acting simultaneously across species.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stéphane Dray
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, F-69100, France
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
11
|
Abstract
The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.
Collapse
|