1
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
2
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
3
|
Lungu L, Blaja S, Cucicova C, Ciocarlan A, Barba A, Kulcițki V, Shova S, Vornicu N, Geana EI, Mangalagiu II, Aricu A. Synthesis and Antimicrobial Activity Evaluation of Homodrimane Sesquiterpenoids with a Benzimidazole Unit. Molecules 2023; 28:molecules28030933. [PMID: 36770601 PMCID: PMC9921711 DOI: 10.3390/molecules28030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles and 2-homodrimenyl-1,3-benzimidazoles was synthesized. The syntheses involved the decarboxylative cyclization and condensation of the said acids or acyl chlorides with o-phenylendiamine and 2-aminobenzimidazole, as well as the p-TsOH-mediated cyclodehydration of the said monoacylamides. The structures of the synthesized compounds have been fully confirmed, including by the X-ray diffraction. Their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). Compounds 7 and 20 showed higher antifungal (MIC = 0.064 and 0.05 μg/mL) and antibacterial (MIC = 0.05 and 0.032 μg/mL) activities compared to those of the standards: caspofungin (MIC = 0.32 μg/mL) and kanamycin (MIC = 2.0 μg/mL), and compounds 4, 10, 14, and 19 had moderate activities.
Collapse
Affiliation(s)
- Lidia Lungu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Svetlana Blaja
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Caleria Cucicova
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Alexandru Ciocarlan
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Alic Barba
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Veaceslav Kulcițki
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R., 9 Closca Str., 700066 Iasi, Romania
| | - Elisabeta-Irina Geana
- Department of Research and Development, National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm., Valcea, 4th Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 11 Carol Bd., 700506 Iasi, Romania
| | - Aculina Aricu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
- Correspondence: or
| |
Collapse
|
4
|
Ciocarlan A. From (-)-sclareol to Norlabdane Heterocyclic Hybrid Compounds. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
This review relates to chemistry of the well-known biologically active natural labdane diterpenoid (-)-sclareol easily available from Clary sage (Salvia sclarea L.). It is mainly used in industry, especially for synthesis of fragrance compounds and natural analogs. The paper covers achievements on the synthesis, structure determination and biological activity of molecular hybrid compounds bearing hydrazide and thiosemicarbazone fragments or diazine, 1,2,4-triazole, carbazole, 1,3-thiazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole units prepared based on it.
Collapse
Affiliation(s)
- Alexandru Ciocarlan
- Institute of Chemistry, 3 Academiei str., Chisinau MD 2028, Republic of Moldova
| |
Collapse
|
5
|
Lungu L, Cucicova C, Blaja S, Ciocarlan A, Dragalin I, Barba A, Vornicu N, Geana EI, Mangalagiu II, Aricu A. Synthesis of Homodrimane Sesquiterpenoids Bearing 1,3-Benzothiazole Unit and Their Antimicrobial Activity Evaluation. Molecules 2022; 27:molecules27165082. [PMID: 36014322 PMCID: PMC9414590 DOI: 10.3390/molecules27165082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Based on some homodrimane carboxylic acids and their acyl chlorides, a series of fourteen 2-homodrimenyl-1,3-benzothiazoles, N-homodrimenoyl-2-amino-1,3-benzothiazoles, 4′-methyl-homodrimenoyl anilides and 4′-methyl-homodrimenthioyl anilides were synthesized and their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). The synthesis involved the decarboxylative cyclization, condensation and thionation of the said acids, anhydrides or their derivatives with 2-aminothiophenol, 2-aminobenzothiazole, p-toluidine and Lawesson’s reagent. As a result, together with the desired compounds, some unexpected products 8, 25, and 27 were obtained, and the structures and mechanisms for their formation have been proposed. Compounds 4, 9, and 25 showed higher antifungal and antibacterial activity compared to the standards caspofungin (MIC = 1.5 μg/mL) and kanamycin (MIC = 3.0 μg/mL), while compound 8 had comparable activities. In addition, compounds 6, 17, and 27 showed selective antifungal activity at MIC = 2.0, 0.25, and 1.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Lidia Lungu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Caleria Cucicova
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Svetlana Blaja
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Alexandru Ciocarlan
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Ion Dragalin
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Alic Barba
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
| | - Nicoleta Vornicu
- Metropolitan Center of Research T.A.B.O.R., 9 Closca Str., RO-700066 Iasi, Romania
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, 4th Uzinei Str., P.O. Box 7, 240050 Ramnicu Valcea, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, ‘‘Alexandru Ioan Cuza’’ University of Iasi, 11 Carol Bd., RO-700506 Iasi, Romania
| | - Aculina Aricu
- Chemistry of Natural and Biologically Active Compounds Laboratory, Institute of Chemistry, 3 Academiei Str., MD-2028 Chisinau, Moldova
- Correspondence: or
| |
Collapse
|
6
|
Chemical Composition and Assessment of Antimicrobial Activity of Lavender Essential Oil and Some By-Products. PLANTS 2021; 10:plants10091829. [PMID: 34579362 PMCID: PMC8470038 DOI: 10.3390/plants10091829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
The producers of essential oils from the Republic of Moldova care about the quality of their products and at the same time, try to capitalize on the waste from processing. The purpose of the present study was to analyze the chemical composition of lavender (Lavanda angustifolia L.) essential oil and some by-products derived from its production (residual water, residual herbs), as well as to assess their “in vitro” antimicrobial activity. The gas chromatography-mass spectrometry analysis of essential oils produced by seven industrial manufacturers led to the identification of 41 constituents that meant 96.80–99.79% of the total. The main constituents are monoterpenes (84.08–92.55%), followed by sesquiterpenes (3.30–13.45%), and some aliphatic compounds (1.42–3.90%). The high-performance liquid chromatography analysis allowed the quantification of known triterpenes, ursolic, and oleanolic acids, in freshly dried lavender plants and in the residual by-products after hydrodistillation of the essential oil. The lavender essential oil showed good antibacterial activity against Bacillus subtilis, Pseudomonas fluorescens, Xanthomonas campestris, Erwinia carotovora at 300 μg/mL concentration, and Erwinia amylovora, Candida utilis at 150 μg/mL concentration, respectively. Lavender plant material but also the residual water and ethanolic extracts from the solid waste residue showed high antimicrobial activity against Aspergillus niger, Alternaria alternata, Penicillium chrysogenum, Bacillus sp., and Pseudomonas aeroginosa strains, at 0.75–6.0 μg/mL, 0.08–0.125 μg/mL, and 0.05–4.0 μg/mL, respectively.
Collapse
|
7
|
Synthesis of trans- methyl ferulate bearing an oxadiazole ether as potential activators for controlling plant virus. Bioorg Chem 2021; 115:105248. [PMID: 34392177 DOI: 10.1016/j.bioorg.2021.105248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022]
Abstract
A series of new ferulic acid derivatives bearing an oxadiazole ether was synthesized by introducing a structure of oxadiazole into trans-ferulic acid via an ether linkage. The synthesized target compounds were evaluated in vivo for their anti-TMV (tobacco mosaic virus) activity, which indicated that some synthesized compounds displayed strong activity for controlling TMV. For protective activity, compounds 6f and 6h had the most activities of 65% and 69.8% at 500 mg L-1, respectively. Compounds 6a, 6b, 6e, 6f and 6h showed > 60% curative activities at 500 mg L-1. Preliminary proteomics analysis showed that compound 6h could regulate the phenylpropanoid biosynthesis pathway and chloroplast function. These results indicated that synthesized novel ferulic acid derivatives could be used for controlling TMV.
Collapse
|
8
|
Besleaga I, Stepanenko I, Petrasheuskaya TV, Darvasiova D, Breza M, Hammerstad M, Marć MA, Prado-Roller A, Spengler G, Popović-Bijelić A, Enyedy EA, Rapta P, Shutalev AD, Arion VB. Triapine Analogues and Their Copper(II) Complexes: Synthesis, Characterization, Solution Speciation, Redox Activity, Cytotoxicity, and mR2 RNR Inhibition. Inorg Chem 2021; 60:11297-11319. [PMID: 34279079 PMCID: PMC8335727 DOI: 10.1021/acs.inorgchem.1c01275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Three new thiosemicarbazones
(TSCs) HL1–HL3 as triapine
analogues bearing a redox-active phenolic moiety at the terminal nitrogen
atom were prepared. Reactions of HL1–HL3 with CuCl2·2H2O in anoxic methanol afforded three copper(II)
complexes, namely, Cu(HL1)Cl2 (1), [Cu(L2)Cl] (2′), and Cu(HL3)Cl2 (3), in good yields. Solution
speciation studies revealed that the metal-free ligands are stable
as HL1–HL3 at pH 7.4, while being air-sensitive in
the basic pH range. In dimethyl sulfoxide they exist as a mixture
of E and Z isomers. A mechanism
of the E/Z isomerization with an inversion at the
nitrogen atom of the Schiff base imine bond is proposed. The monocationic
complexes [Cu(L1–3)]+ are the most abundant
species in aqueous solutions at pH 7.4. Electrochemical and spectroelectrochemical
studies of 1, 2′, and 3 confirmed their redox activity in both the cathodic and the anodic
region of potentials. The one-electron reduction was identified as
metal-centered by electron paramagnetic resonance spectroelectrochemistry.
An electrochemical oxidation pointed out the ligand-centered oxidation,
while chemical oxidations of HL1 and HL2 as well as 1 and 2′ afforded several two-electron and four-electron
oxidation products, which were isolated and comprehensively characterized.
Complexes 1 and 2′ showed an antiproliferative
activity in Colo205 and Colo320 cancer cell lines with half-maximal
inhibitory concentration values in the low micromolar concentration
range, while 3 with the most closely related ligand to
triapine displayed the best selectivity for cancer cells versus normal
fibroblast cells (MRC-5). HL1 and 1 in the presence of 1,4-dithiothreitol are as
potent inhibitors of mR2 ribonucleotide reductase as triapine. Three triapine analogues HL1−HL3 bearing a
phenolic redox-active moiety showed moderate antiproliferative activity,
while one of the oxidation products HL2c′·CH3COOH revealed
high cytotoxicity in Colo205 and Colo320 cancer cell lines. Coordination
of HL1−HL3 to copper(II) increased strongly the cytotoxicity,
with complex 2′ showing IC50 values
of 0.181 and 0.159, respectively. The highest cytotoxicity of 2′ is likely due to the highest thermodynamic stability,
more negative reduction potential, and the lowest rate of reduction
by GSH.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Tatsiana V Petrasheuskaya
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Małgorzata A Marć
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Dóm tér 10, 6725 Szeged, Hungary
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Dóm tér 10, 6725 Szeged, Hungary
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russian Federation
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Stepanenko I, Babak MV, Spengler G, Hammerstad M, Popovic-Bijelic A, Shova S, Büchel GE, Darvasiova D, Rapta P, Arion VB. Coumarin-Based Triapine Derivatives and Their Copper(II) Complexes: Synthesis, Cytotoxicity and mR2 RNR Inhibition Activity. Biomolecules 2021; 11:biom11060862. [PMID: 34207929 PMCID: PMC8230303 DOI: 10.3390/biom11060862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023] Open
Abstract
A series of thiosemicarbazone-coumarin hybrids (HL1-HL3 and H2L4) has been synthesised in 12 steps and used for the preparation of mono- and dinuclear copper(II) complexes, namely Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), Cu(HL3)Cl2 (3) and Cu2(H2L4)Cl4 (4), isolated in hydrated or solvated forms. Both the organic hybrids and their copper(II) and dicopper(II) complexes were comprehensively characterised by analytical and spectroscopic techniques, i.e., elemental analysis, ESI mass spectrometry, 1D and 2D NMR, IR and UV–vis spectroscopies, cyclic voltammetry (CV) and spectroelectrochemistry (SEC). Re-crystallisation of 1 from methanol afforded single crystals of copper(II) complex with monoanionic ligand Cu(L1)Cl, which could be studied by single crystal X-ray diffraction (SC-XRD). The prepared copper(II) complexes and their metal-free ligands revealed antiproliferative activity against highly resistant cancer cell lines, including triple negative breast cancer cells MDA-MB-231, sensitive COLO-205 and multidrug resistant COLO-320 colorectal adenocarcinoma cell lines, as well as in healthy human lung fibroblasts MRC-5 and compared to those for triapine and doxorubicin. In addition, their ability to reduce the tyrosyl radical in mouse R2 protein of ribonucleotide reductase has been ascertained by EPR spectroscopy and the results were compared with those for triapine.
Collapse
Affiliation(s)
- Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 518057, China;
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary;
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway;
| | - Ana Popovic-Bijelic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | | | - Denisa Darvasiova
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Peter Rapta
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Correspondence: (I.S.); (V.B.A.)
| |
Collapse
|
10
|
He F, Guo S, Dai A, Zhang R, Wu J. Synthesis, Characterization, and Biological Activity of Novel Amide Derivatives Containing Trifluoromethylpyridine Moieties. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Nimal R. Electrochemical and spectroscopic characterization of biologically important Schiff bases. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Synthesis and Evaluation of Biological Activity of Homodrimane Sesquiterpenoids Bearing 1,3,4-Oxadiazole or 1,3,4-Thiadiazole Units. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02703-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Beyzaei H, Malekraisi F, Aryan R, Ghasemi B. Green aqueous synthesis and antimicrobial evaluation of 3,5-disubstituted 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|