1
|
Jaffaraghaei M, Ghafouri H, Vaziri B, Taheri M, Talebkhan Y, Heravi M, Parand M. Induction of heat shock protein expression in SP2/0 transgenic cells and its effect on the production of monoclonal antibodies. PLoS One 2024; 19:e0300702. [PMID: 38696377 PMCID: PMC11065310 DOI: 10.1371/journal.pone.0300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
The objective of the current investigation was to evaluate the induction of heat shock proteins (HSPs) in SP2/0 transgenic cells and the effect of these proteins on the production of monoclonal antibodies (mAbs). The SP2/0 cell line expressing the PSG-026 antibody, a biosimilar candidate of golimumab, the culture parameters, and the target protein expression were not justified for industrial production and were used for the experiments. Paracetamol and heat shock were used as chemical and physical inducers of HSPs, respectively. The results showed that paracetamol and heat shock increased the expression of HSP70 and HSP27 at the mRNA and protein levels. The expression of HSPs was greater in paracetamol-treated cells than in heat shock-treated cells. Paracetamol treatment at concentrations above 0.5 mM significantly reduced cell viability and mAb expression. However, treatment with 0.25 mM paracetamol results in delayed cell death and increased mAb production. Heat shock treatment at 45°C for 30 minutes after enhanced mAb expression was applied after pre-treatment with paracetamol. In bioreactor cultures, pretreatment of cells with paracetamol improved cell viability and shortened the lag phase, resulting in increased cell density. The production of mAbs in paracetamol-treated cultures was markedly greater than that in the control. Analysis of protein quality and charge variants revealed no significant differences between paracetamol-treated and control cultures, indicating that the induction of HSPs did not affect protein aggregation or charge variants. These findings suggest that inducing and manipulating HSP expression can be a valuable strategy for improving recombinant protein production in biopharmaceutical processes.
Collapse
Affiliation(s)
- Morteza Jaffaraghaei
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansooreh Heravi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Parand
- Department of Research and Development, PersisgenPar, Tehran, Iran
| |
Collapse
|
2
|
Cui W, Liu S. Optimization of adaptation parameters from adhesion cell culture in serum-containing media to suspension in chemically defined media by superlative box design. Cytotechnology 2024; 76:39-52. [PMID: 38304631 PMCID: PMC10828141 DOI: 10.1007/s10616-023-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
A new design of experiments-superlative box design (SBD), was adopted to optimize the adaptation of Chinese hamster ovary cells from adhesion culture to serum-free suspension culture. It is a general trend to use a serum-free medium instead of a serum-containing medium. The advantage of serum-free medium (chemically defended) is that it does not contain unknown components and avoids safety issues. SBD requires fewer experiments while ensuring a sufficient number of experiments and uniformity in the distribution of experiments amongst all the factors. Six factors were considered in this experimental design with 43 runs plus three more repeating center runs. The cell line was adapted to serum-free media by gradually reducing serum, and from adherent to suspension by rotating at various speeds in a shake flask. Response surface methodology was applied to find the optimum condition. The optimized cell density reached 7.02 × 105 cells/mL, calculated by the quadratic model. Experiments validated the predicted cell adaptation with the maximum cell density. Three suspension runs were selected randomly to perform in the bioreactor to validate cell stability and production homogeneity. This study provides an efficient method to transfer adherent cells to suspension cells and is the first to successfully use SBD and establish a parameter quadratic optimization model.
Collapse
Affiliation(s)
- Wanyue Cui
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210 USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210 USA
| |
Collapse
|
3
|
Szkodny AC, Lee KH. Biopharmaceutical Manufacturing: Historical Perspectives and Future Directions. Annu Rev Chem Biomol Eng 2022; 13:141-165. [PMID: 35300518 DOI: 10.1146/annurev-chembioeng-092220-125832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes key milestones related to the production of biopharmaceuticals-therapies manufactured using recombinant DNA technology. The market for biopharmaceuticals has grown significantly since the first biopharmaceutical approval in 1982, and the scientific maturity of the technologies used in their manufacturing processes has grown concomitantly. Early processes relied on established unit operations, with research focused on process scale-up and improved culture productivity. In the early 2000s, changes in regulatory frameworks and the introduction of Quality by Design emphasized the importance of developing manufacturing processes to deliver a desired product quality profile. As a result, companies adopted platform processes and focused on understanding the dynamic interplay between product quality and processing conditions. The consistent and reproducible manufacturing processes of today's biopharmaceutical industry have set high standards for product efficacy, quality, and safety, and as the industry continues to evolve in the coming decade, intensified processing capabilities for an expanded range of therapeutic modalities will likely become routine. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alana C Szkodny
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; ;
| |
Collapse
|
4
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
5
|
Wang D, Greenwood P, Klein MS. A protein-free chemically defined medium for the cultivation of various micro-organisms with food safety significance. J Appl Microbiol 2021; 131:844-854. [PMID: 33449387 DOI: 10.1111/jam.15005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS To develop a broadly applicable medium free of proteins with well-defined and reproducible chemical composition for the cultivation of various micro-organisms with food safety significance. METHODS AND RESULTS The defined medium was designed as a buffered minimal salt medium supplemented with amino acids, vitamins, trace metals and other nutrients. Various strains commonly used for food safety research were selected to test the new defined medium. We investigated single growth factors needed by different strains and the growth performance of each strain cultivated in the defined medium. Results showed that the tested strains initially grew slower in the defined medium compared to tryptic soy broth, but after an overnight incubation cultures from the defined medium reached adequately high cell densities. CONCLUSIONS The newly designed defined medium can be widely applied in food safety studies that require media with well-defined chemical constituents. SIGNIFICANCE AND IMPACT OF THE STUDY Defined media are important in studies of microbial metabolites and physiological properties. A defined medium capable of cultivating different strains simultaneously is needed in the food safety area. The new defined medium has broader applications in comparing different strains directly and provides more reproducible results.
Collapse
Affiliation(s)
- D Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - P Greenwood
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - M S Klein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Luo H, Li Y, Robbins D, Wang SC, Xi G, Cox M, Nicholson SM, Wei C, Pabst TM, Wang WK. Safety risk management for low molecular weight process-related impurities in monoclonal antibody therapeutics: Categorization, risk assessment, testing strategy, and process development with leveraging clearance potential. Biotechnol Prog 2020; 37:e3119. [PMID: 33373106 PMCID: PMC8365748 DOI: 10.1002/btpr.3119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022]
Abstract
Process-related impurities (PRIs) derived from manufacturing process should be minimized in final drug product. ICH Q3A provides a regulatory road map for PRIs but excludes biologic drugs like monoclonal antibodies (mAbs) that contain biological PRIs (e.g. host cell proteins and DNA) and low molecular weight (LMW) PRIs (e.g., fermentation media components and downstream chemical reagents). Risks from the former PRIs are typically addressed by routine tests to meet regulatory expectations, while a similar routine-testing strategy is unrealistic and unnecessary for LMW PRIs, and thus a risk-assessment-guided testing strategy is often utilized. In this report, we discuss a safety risk management strategy including categorization, risk assessment, testing strategy, and its integrations with other CMC development activities, as well as downstream clearance potentials. The clearance data from 28 mAbs successfully addressed safety concerns but did not fully reveal the process clearance potentials. Therefore, we carried out studies with 13 commonly seen LMW PRIs in a typical downstream process for mAbs. Generally, Protein A chromatography and cation exchange chromatography operating in bind-and-elute mode showed excellent clearances with greater than 1,000- and 100-fold clearance, respectively. The diafiltration step had better clearance (greater than 100-fold) for the positively and neutrally charged LMW PRIs than for the negatively charged or hydrophobic PRIs. We propose that a typical mAb downstream process provides an overall clearance of 5,000-fold. Additionally, the determined sieving coefficients will facilitate diafiltration process development. This report helps establish effective safety risk management and downstream process design with robust clearance for LMW PRIs.
Collapse
Affiliation(s)
- Haibin Luo
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Yuling Li
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - David Robbins
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Sheau-Chiann Wang
- Analytical Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Guoling Xi
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Matthew Cox
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Simone M Nicholson
- Safety Science, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Chenghong Wei
- Regulatory Affairs, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - Timothy M Pabst
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| | - William K Wang
- Purification Process Sciences, Biopharmaceutical Development Department, Biopharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland, USA
| |
Collapse
|
7
|
Brown KA, Rajendran S, Dowd J, Wilson DJ. Rapid characterization of structural and functional similarity for a candidate bevacizumab (Avastin) biosimilar using a multipronged mass‐spectrometry‐based approach. Drug Test Anal 2019; 11:1207-1217. [DOI: 10.1002/dta.2609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kerene A. Brown
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| | | | - Jason Dowd
- Apobiologix (division of Apotex Inc.) Toronto ON Canada
| | - Derek J. Wilson
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| |
Collapse
|
8
|
Manukyan L, Padova J, Mihranyan A. Virus removal filtration of chemically defined Chinese Hamster Ovary cells medium with nanocellulose-based size exclusion filter. Biologicals 2019; 59:62-67. [PMID: 30871931 DOI: 10.1016/j.biologicals.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Abstract
Sterility of bioreactors in biotherapeutic processing remains a significant challenge. Virus removal size-exclusion filtration is a robust and highly efficient approach to remove viruses. This article investigates the virus removal capacity of nanocellulose-based filter for upstream bioprocessing of chemically defined Chinese hamster ovary (CHO) cells medium containing Pluronic F-68 (PowerCHO™, Lonza) and supplemented with insulin-transferrin-selenium (ITS) at varying process parameters. Virus retention was assessed by spiking ITS-supplemented PowerCHO™ medium with small-size ΦX174 phage (28 nm) as a surrogate for mammalian parvoviruses. The nanocellulose-based size exclusion filter showed high virus retention capacity (over 4 log10) and high flow rates (around 180 L m-2 h-1). The filter had no impact on ITS supplements during filtration. It was further shown that the filtered PowerCHO™ medium supported cell culture growth with no impact on cell viability, morphology, and confluence. The results of this work show new opportunities in developing cost-efficient virus removal filters for upstream bioprocessing.
Collapse
Affiliation(s)
- Levon Manukyan
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 752121, Uppsala, Sweden.
| | - Justine Padova
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 752121, Uppsala, Sweden
| | - Albert Mihranyan
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 752121, Uppsala, Sweden
| |
Collapse
|
9
|
|
10
|
Morais V, Dee V, Suárez N. Purification of Capsular Polysaccharides of Streptococcus pneumoniae: Traditional and New Methods. Front Bioeng Biotechnol 2018; 6:145. [PMID: 30370268 PMCID: PMC6194195 DOI: 10.3389/fbioe.2018.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a major bacterial disease responsible for many deaths worldwide each year and is particularly dangerous in children under 5 years old and adults over 50. The capsular polysaccharide (CPS) constitutes the outermost layer of the bacterial cell and is the main virulence factor. Regardless of whether pharmaceutical agents are composed of CPS alone or protein-conjugated CPS, CPS purification is essential for the development of vaccines against S. pneumoniae. These vaccines are effective and safe but remain quite expensive. This review describes the methods currently available for CPS purification. Advances in CPS purification methods are aimed at improvements in quality and yield and, above all, process simplification.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Valerie Dee
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Norma Suárez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
11
|
McGillicuddy N, Floris P, Albrecht S, Bones J. Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett 2017; 40:5-21. [DOI: 10.1007/s10529-017-2437-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
12
|
Ritchie EK, Martin EB, Racher A, Jaques C. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies. J Biotechnol 2017; 251:160-165. [DOI: 10.1016/j.jbiotec.2017.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022]
|
13
|
Trunfio N, Lee H, Starkey J, Agarabi C, Liu J, Yoon S. Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics. Biotechnol Prog 2017; 33:1127-1138. [PMID: 28393480 PMCID: PMC5573913 DOI: 10.1002/btpr.2480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 02/06/2017] [Indexed: 11/06/2022]
Abstract
Two of the primary issues with characterizing the variability of raw materials used in mammalian cell culture, such as wheat hydrolysate, is that the analyses of these materials can be time consuming, and the results of the analyses are not straightforward to interpret. To solve these issues, spectroscopy can be combined with chemometrics to provide a quick, robust and easy to understand methodology for the characterization of raw materials; which will improve cell culture performance by providing an assessment of the impact that a given raw material will have on final product quality. In this study, four spectroscopic technologies: near infrared spectroscopy, middle infrared spectroscopy, Raman spectroscopy, and fluorescence spectroscopy were used in conjunction with principal component analysis to characterize the variability of wheat hydrolysates, and to provide evidence that the classification of good and bad lots of raw material is possible. Then, the same spectroscopic platforms are combined with partial least squares regressions to quantitatively predict two cell culture critical quality attributes (CQA): integrated viable cell density and IgG titer. The results showed that near infrared (NIR) spectroscopy and fluorescence spectroscopy are capable of characterizing the wheat hydrolysate's chemical structure, with NIR performing slightly better; and that they can be used to estimate the raw materials' impact on the CQAs. These results were justified by demonstrating that of all the components present in the wheat hydrolysates, six amino acids: arginine, glycine, phenylalanine, tyrosine, isoleucine and threonine; and five trace elements: copper, phosphorus, molybdenum, arsenic and aluminum, had a large, statistically significant effect on the CQAs, and that NIR and fluorescence spectroscopy performed the best for characterizing the important amino acids. It was also found that the trace elements of interest were not characterized well by any of the spectral technologies used; however, the trace elements were also shown to have a less significant effect on the CQAs than the amino acids. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 33:1127-1138, 2017.
Collapse
Affiliation(s)
- Nicholas Trunfio
- Dept. of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Haewoo Lee
- Dept. of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | | | - Cyrus Agarabi
- Div. II, Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA, Silver Spring, MD, USA
| | - Jay Liu
- Dept. of Chemical Engineering, Pukyung National University, Busan, Nam-Gu, Korea
| | - Seongkyu Yoon
- Dept. of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
14
|
Chauhan G, Schmelzer AE. A novel cholesterol/lipid delivery system for murine myeloma cell lines. Biotechnol Prog 2017; 33:795-803. [DOI: 10.1002/btpr.2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/09/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Gaurav Chauhan
- Department of Cell Culture and Fermentation SciencesMedImmune, One Medimmune WayGaithersburg MD20878
| | - Albert E. Schmelzer
- Department of Cell Culture and Fermentation SciencesMedImmune, One Medimmune WayGaithersburg MD20878
| |
Collapse
|
15
|
Amanzadeh A, Heidarnejad F, Abdollahpour-Alitappeh M, Molla-Kazemiha V, Yari S, Hadizadeh-Tasbiti A, Habibi-Anbouhi M, Abolhassani M, Shokrgozar MA. Development of high-affinity monoclonal antibody using CD44 overexpressed cells as a candidate for targeted immunotherapy and diagnosis of acute myeloid leukemia. Hum Antibodies 2017; 26:7-15. [PMID: 28269763 DOI: 10.3233/hab-170315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
AIM CD44s antigens have been suggested as an efficient biomarker for cancer stem cells. Current study aimed to develop a hybridoma that producing a high affinity murine anti-human CD44 monoclonal antibody for early diagnostic laboratory tests of some cancer. MATERIALS AND METHODS To make hybridoma against CD44, mice were immunized with MDA-MB-468 cells. Resulted hybridomas using three culture media were screened by indirect ELISA, then cloned by limiting dilution, and isotype was determined after obtaining ascitic fluid and antibody purification. RESULTS We obtained a stable secreting clone, capable of secreting a high-affinity monoclonal antibody against CD44 protein, IgG2a kappa, with the affinity of 5.4 × 10-8 M without cross-reactivity. CONCLUSION We could establish a hybridoma in a native form. This stable and high-affinity anti-CD44 mAb has a potential for diagnostic procedures and laboratory research. Thus, it could be exploited as a suitable tool for target-specific diagnosis and even treatment in several cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/isolation & purification
- Antibody Affinity
- Antibody Specificity
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cell Line, Tumor
- Clone Cells
- Female
- Gene Expression
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/immunology
- Hybridomas/cytology
- Hybridomas/immunology
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/isolation & purification
- Immunotherapy/methods
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Shamsi Yari
- Department of Mycobacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Mohsen Abolhassani
- Immunology Department, Hybridoma Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
16
|
Tastanova A, Schulz A, Folcher M, Tolstrup A, Puklowski A, Kaufmann H, Fussenegger M. Overexpression of YY1 increases the protein production in mammalian cells. J Biotechnol 2016; 219:72-85. [DOI: 10.1016/j.jbiotec.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023]
|
17
|
Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2016; 117:163-72. [DOI: 10.1016/j.jpba.2015.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022]
|
18
|
Leung SO, Gao K, Wang GY, Cheung BKW, Lee KY, Zhao Q, Cheung WT, Wang JZ. Surrogate target cells expressing surface anti-idiotype antibody for the clinical evaluation of an internalizing CD22-specific antibody. MAbs 2015; 7:66-76. [PMID: 25427174 DOI: 10.4161/19420862.2014.985519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Collapse
Key Words
- ADCC, antibody dependent cell cytotoxicity
- CD22
- CMC, complement mediated cytotoxicity
- HACA, human anti-chimeric antibody
- MOA, mechanism of action
- NHL, non-Hodgkins lymphoma
- PBMC, peripheral blood mononuclear cell
- PK, pharmacokinetic
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- anti-idiotype
- bioassay
- internalizing
- mAb, monoclonal antibody
- surrogate target cells
Collapse
Affiliation(s)
- Shui-On Leung
- a Institute of Biomedical Sciences ; Fudan University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, Takuma S, Hirashima C, Aoyagi H. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J Biosci Bioeng 2015; 120:78-84. [DOI: 10.1016/j.jbiosc.2014.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
|
20
|
Ling WLW, Bai Y, Cheng C, Padawer I, Wu C. Development and manufacturability assessment of chemically-defined medium for the production of protein therapeutics in CHO cells. Biotechnol Prog 2015; 31:1163-71. [DOI: 10.1002/btpr.2108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/13/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Wai Lam W. Ling
- Process Development and Engineering, Biologics BioProcess Development; Merck Research Laboratories, Kenilworth; NJ
| | - Yunling Bai
- Process Development and Engineering, Biologics BioProcess Development; Merck Research Laboratories, Kenilworth; NJ
| | - Cheng Cheng
- Process Development and Engineering, Biologics BioProcess Development; Merck Research Laboratories, Kenilworth; NJ
| | - Ishai Padawer
- Process Development and Engineering, Biologics BioProcess Development; Merck Research Laboratories, Kenilworth; NJ
| | - Changjian Wu
- Process Development and Engineering, Biologics BioProcess Development; Merck Research Laboratories, Kenilworth; NJ
| |
Collapse
|
21
|
Rodrigues ME, Costa AR, Henriques M, Cunnah P, Melton DW, Azeredo J, Oliveira R. Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production. Appl Biochem Biotechnol 2013; 169:1279-91. [DOI: 10.1007/s12010-012-0068-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/26/2012] [Indexed: 11/29/2022]
|
22
|
Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, Xiang W. Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 2012; 65:363-78. [PMID: 22907508 DOI: 10.1007/s10616-012-9488-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
A serum-free medium (CHO-SFM) together with a fed-batch process was developed for the cultivation of a recombinant GS-CHO cell line producing TNFR-Fc. According to the metabolic characteristics of GS-CHO cell, a basal medium was prepared by supplementing DMEM:F12:RPMI1640 (2:1:1) with amino acids, insulin, transferrin, Pluronic F68 and some other ingredients. Statistical optimization approaches based on Plackett-Burman and central composite designs were then adopted to identify additional positive determinants and determine their optimal concentrations, which resulted in the final CHO-SFM medium formulations. The maximum antibody titer reached was 90.95 mg/l in the developed CHO-SFM, which was a 18 % and 10 fold higher than that observed in the commercial EX-CELL™ 302 medium (76.95 mg/l) and basal medium (8.28 mg/l), respectively. Subsequently, a reliable, reproducible and robust fed-batch strategy was designed according to the offline measurement of glucose, giving a final antibody yield of 378 mg/l, which was a threefold improvement over that in conventional batch culture (122 mg/l) using CHO-SFM. In conclusion, the use of design of experiment (DoE) method facilitated the development of CHO-SFM medium and fed-batch process for the production of recombinant antibody using GS-CHO cells.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee HW, Christie A, Xu J, Yoon S. Data fusion-based assessment of raw materials in mammalian cell culture. Biotechnol Bioeng 2012; 109:2819-28. [DOI: 10.1002/bit.24548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/29/2012] [Accepted: 04/25/2012] [Indexed: 11/07/2022]
|
24
|
Wu Y, Ma N, Wyslouzil BE, Chalmers JJ, McCormick E, Casnocha SA. Enhanced productivity of NS0 cells in fed-batch culture with cholesterol nanoparticle supplementation. Biotechnol Prog 2011; 27:796-802. [DOI: 10.1002/btpr.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 02/09/2011] [Indexed: 01/24/2023]
|
25
|
Dorai H, Ellis D, Keung YS, Campbell M, Zhuang M, Lin C, Betenbaugh MJ. Combining high-throughput screening of caspase activity with anti-apoptosis genes for development of robust CHO production cell lines. Biotechnol Prog 2011; 26:1367-81. [PMID: 20945491 DOI: 10.1002/btpr.426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A set of anti-apoptotic genes were over-expressed, either singly or in combination, in an effort to develop robust Chinese Hamster Ovary host cell lines suitable for manufacturing biotherapeutics. High-throughput screening of caspase 3/7 activity enabled a rapid selection of transfectants with reduced caspase activity relative to the host cell line. Transfectants with reduced caspase 3/7 activity were then tested for improved integrated viable cell count (IVCC), a function of peak viable cell density and longevity. The maximal level of improvement in IVCC could be achieved by over-expression of either single anti-apoptotic genes, e.g., Bcl-2Δ (a mutated variant of Bcl-2) or Bcl-XL, or a combination of two or three anti-apoptotic genes, e.g., E1B-19K, Aven, and XIAPΔ. These cell lines yielded higher transient antibody production and a greater number of stable clones with high antibody yields. In a 5 L fed-batch bioreactor system, BΔ31-1, a stable clone expressing Bcl-2Δ, had a product titer that was 180% as compared to an optimal clone (Con-1) from the control cell line. Although lactate accumulated to more than 5 g/L in the control culture, its concentration was reduced in the anti-apoptotic BΔ31-1 cultures to below 1 g/L, confirming our earlier findings that cells over-expressing anti-apoptotic genes consume the lactate that would otherwise accumulate as a by-product in the culture medium. To the best of our knowledge, this is the first study to use the high throughput caspase screening method to identify CHO host cell lines with superior anti-apoptotic characteristics.
Collapse
Affiliation(s)
- Haimanti Dorai
- Pharmaceutical Development, Centocor R&D, Radnor, PA 19087, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bai Y, Wu C, Zhao J, Liu YH, Ding W, Ling WLW. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production. Biotechnol Prog 2010; 27:209-19. [DOI: 10.1002/btpr.513] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/18/2010] [Indexed: 01/04/2023]
|
27
|
Rourou S, van der Ark A, van der Velden T, Kallel H. Development of an animal-component free medium for vero cells culture. Biotechnol Prog 2010; 25:1752-61. [PMID: 19768803 DOI: 10.1002/btpr.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work describes the development of an animal-component free medium (IPT-AFM) that allows an optimal growth of Vero cells, an adherent cell line used for the production of viral vaccines. Statistical experimental design was applied to identify crucial nutrients that affect cell growth. Using Medium 199 or MEM as a basal medium, a serum-free medium (SFM) referred as IPT-SFM that only enclosed transferrin as a component of animal origin was developed at first. Then, the composition of IPT-SFM was further improved to obtain an animal-component free medium named IPT-AFM. IPT-AFM contains M199 as a basal medium, plant hydrolysates, epidermal growth factor, ethanolamine, ferric citrate, and vitamin C. Among various plant hydrolysates, specific combinations of soy (Hypep 1510) and wheat gluten (Hypeps 4601 and 4605) hydrolysates, were identified to promote cell growth; whereas individual Hypeps had a minor positive effect on cell growth. Nevertheless, the removal of serum did influence cell attachment. Coating tissue-culture flasks with teleostean, a product extracted from cold water fish skin, had not only enhanced cell attachment but also improved cell growth performance in static cultures. Different non-animal proteases were also assessed as an alternative to trypsin. TrypLE Select, a recombinant trypsin, gave the best cell growth performances. Kinetics of cell growth in IPT-AFM were investigated in T-flasks, cell growth was comparable with that obtained in MEM+10% fetal calf serum (FCS). A mean cell division number equal to 2.26 +/- 0.18 and a specific growth rate micro 0.019 +/- 0.003 h(-1) were achieved in IPT-AFM.
Collapse
Affiliation(s)
- Samia Rourou
- Viral Vaccines Research and Development Unit, Institut Pasteur de Tunis, BP 74, 1002 Tunis, Tunisia
| | | | | | | |
Collapse
|
28
|
Ma N, Ellet J, Okediadi C, Hermes P, McCormick E, Casnocha S. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Biotechnol Prog 2010; 25:1353-63. [PMID: 19637321 DOI: 10.1002/btpr.238] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A chemically defined nutrient feed (CDF) coupled with basal medium preloading was developed to replace a hydrolysate-containing feed (HCF) for a fed-batch NS0 process. The CDF not only enabled a completely chemically defined process but also increased recombinant monoclonal antibody titer by 115%. Subsequent tests of CDF in a CHO process indicated that it could also replace the hydrolysate-containing nutrient feed in this expression system as well as providing an 80% increase in product titer. In both CDF NS0 and CHO processes, the peak lactate concentrations were lower and, more interestingly, lactate metabolism shifted markedly from net production to net consumption when cells transitioned from exponential to stationary growth phase. Subsequent investigations of the lactate metabolic shift in the CHO CDF process were carried out to identify the cause(s) of the metabolic shift. These investigations revealed several metabolic features of the CHO cell line that we studied. First, glucose consumption and lactate consumption are strictly complementary to each other. The combined cell specific glucose and lactate consumption rate was a constant across exponential and stationary growth phases. Second, Lactate dehydrogenase (LDH) activity fluctuated during the fed-batch process. LDH activity was at the lowest when lactate concentration started to decrease. Third, a steep cross plasma membrane glucose gradient exists. Intracellular glucose concentration was more than two orders of magnitude lower than that in the medium. Fourth, a large quantity of citrate was diverted out of mitochondria to the medium, suggesting a partially truncated tricarboxylic acid (TCA) cycle in CHO cells. Finally, other intermediates in or linked to the glycolytic pathway and the TCA cycle, which include alanine, citrate, isocitrate, and succinate, demonstrated a metabolic shift similar to that of lactate. Interestingly, all these metabolites are either in or linked to the pathway downstream of pyruvate, but upstream of fumarate in glucose metabolism. Although the specific mechanisms for the metabolic shift of lactate and other metabolites remain to be elucidated, the increased understanding of the metabolism of CHO cultures could lead to future improvements in medium and process development.
Collapse
Affiliation(s)
- Ningning Ma
- Bioprocess R&D, Global Biologics, Pfizer Inc, Chesterfield, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope JA, Russo AP. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol Bioeng 2010; 106:57-67. [DOI: 10.1002/bit.22664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Majors BS, Betenbaugh MJ, Pederson NE, Chiang GG. Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog 2009; 25:1161-8. [PMID: 19551877 DOI: 10.1002/btpr.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bioreactor stresses, including nutrient deprivation, shear stress, and byproduct accumulation can cause apoptosis, leading to lower recombinant protein yields and increased costs in downstream processing. Although cell engineering strategies utilizing the overexpression of antiapoptotic Bcl-2 family proteins such as Bcl-2 and Bcl-x(L) potently inhibit apoptosis, no studies have examined the use of the Bcl-2 family protein, Mcl-1, in commercial mammalian cell culture processes. Here, we overexpress both the wild type Mcl-1 protein and a Mcl-1 mutant protein that is not degraded by the proteasome in a serum-free Chinese hamster ovary (CHO) cell line producing a therapeutic antibody. The expression of Mcl-1 led to increased viabilities in fed-batch culture, with cell lines expressing the Mcl-1 mutant maintaining approximately 90% viability after 14 days when compared with 65% for control cells. In addition to enhanced culture viability, Mcl-1-expressing cell lines were isolated that consistently showed increases in antibody production of 20-35% when compared with control cultures. The quality of the antibody product was not affected in the Mcl-1-expressing cell lines, and Mcl-1-expressing cells exhibited 3-fold lower caspase-3 activation when compared with the control cell lines. Altogether, the expression of Mcl-1 represents a promising alternative cell engineering strategy to delay apoptosis and increase recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Brian S Majors
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
31
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
32
|
Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Biotechnol Bioeng 2009; 103:592-608. [DOI: 10.1002/bit.22269] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Petiot E, Fournier F, Gény C, Pinton H, Marc A. Rapid Screening of Serum-Free Media for the Growth of Adherent Vero Cells by Using a Small-Scale and Non-invasive Tool. Appl Biochem Biotechnol 2009; 160:1600-15. [DOI: 10.1007/s12010-009-8674-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/18/2009] [Indexed: 11/24/2022]
|
34
|
Khoo SHG, Al-Rubeai M. Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab Eng 2009; 11:199-211. [DOI: 10.1016/j.ymben.2009.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/10/2008] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
|
35
|
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297-306. [PMID: 19500547 DOI: 10.1016/j.biotechadv.2009.01.008] [Citation(s) in RCA: 584] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/08/2023]
Abstract
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | | |
Collapse
|
36
|
Damasceno LM, Lee F, Ritter G, Old L, Batt C. High-level expression of a phage display-derived scFv in Pichia pastoris. Methods Mol Biol 2009; 562:225-236. [PMID: 19554300 DOI: 10.1007/978-1-60327-302-2_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Numerous techniques are available for investigating protein-ligand interactions. The phage display technique is one such method routinely used to identify antibody-antigen interactions and has the benefit of being easily adaptable to high-throughput screening platforms. Once identified, antigen-binding domains on fragment antibodies or single-chain fragment antibodies (scFv) can be expressed and purified for further studies. In this chapter, we describe a method for high-level expression of a phage display-derived scFv in Pichia pastoris. The phage display-derived antibody A33scFv recognizes a cell surface glycoprotein (designated A33) expressed in colon cancer that serves as a target antigen for radioimmunoimaging and/or immunotherapy of human colon cancer. The expression and purification of A33scFv was optimized for the methylotrophic yeast P. pastoris. P. pastoris with a Mut(S) phenotype was selected to express A33scFv under regulation of the methanol-inducible AOX1 promoter. Here we describe a large-scale fed-batch fermentation process with an efficient online closed-loop methanol control for the production of the recombinant protein. Purification of A33scFv from clarified culture medium was done using a two-step chromatographic procedure using anion exchange and hydrophobic interaction chromatography, resulting in a final product with more than 90% purity. This chapter provides protocols that can be used as a base for process development of recombinant protein expression in P. pastoris and purification of these proteins for use in further functionality studies and in diagnostic and therapeutic applications.
Collapse
|
37
|
Farges B, Chenu S, Marc A, Goergen JL. Kinetics of IFN-γ producing CHO cells and other industrially relevant cell lines in rapeseed-supplemented batch cultures. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Lv G, Sun Z, Li N, Li S, Zhang Y, Xie Y, Yu W, Wang W, Ma X. Design a chemically defined/medically approved medium for cell transplantation according to the metabolic characteristics of microencapsulated cells and the process of encapsulation. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Majors BS, Betenbaugh MJ, Chiang GG. Links between metabolism and apoptosis in mammalian cells: applications for anti-apoptosis engineering. Metab Eng 2007; 9:317-26. [PMID: 17611135 DOI: 10.1016/j.ymben.2007.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Production of complex recombinant proteins requires the culture of mammalian cells in bioreactors. Inherent in these cultures is the problem of cell death, which can result from nutrient depletion, byproduct accumulation, and other bioreactor stresses which signal the cell to die through apoptosis, or programmed cell death. Apoptosis is a highly regulated pathway of both pro- and anti-apoptotic proteins that promote cell survival or death, and cell engineering efforts to inhibit the apoptosis pathway have led to increased culture viability and recombinant protein production. Originally, the exclusive function of many of these pathway proteins was believed to be binding at the mitochondria and regulating apoptosis through modulation of the mitochondria permeability. While this protein functionality does still hold true, it is now evident that these proteins also include roles in the metabolic processes of the mitochondria. Furthermore, apoptosis pathway proteins in other organelles within the cell may also both modulate apoptosis and metabolism. This review first details the known links that exist between apoptosis proteins and metabolic functions in the cytosol, mitochondria, and endoplasmic reticulum. Second, the review turns to look at potentially new cell engineering strategies that are linked to metabolism for improving cell culture viability and protein production.
Collapse
Affiliation(s)
- Brian S Majors
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, 221 Maryland Hall, Baltimore, MD 21218-2694, USA
| | | | | |
Collapse
|
40
|
Okonkowski J, Balasubramanian U, Seamans C, Fries S, Zhang J, Salmon P, Robinson D, Chartrain M. Cholesterol delivery to NS0 cells: Challenges and solutions in disposable linear low-density polyethylene-based bioreactors. J Biosci Bioeng 2007; 103:50-9. [PMID: 17298901 DOI: 10.1263/jbb.103.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/13/2006] [Indexed: 01/21/2023]
Abstract
We report the successful cultivation of cholesterol dependent NS0 cells in linear low-density polyethylene (LLDPE) Wave Bioreactors when employing a low ratio of cyclodextrin to cholesterol additive mixture. While cultivation of NS0 cells in Wave Bioreactors was successful when using a culture medium supplemented with fetal bovine serum (FBS), cultivation with the same culture medium supplemented with cholesterol-lipid concentrate (CLC), which contains lipids and synthetic cholesterol coupled with the carrier methyl-beta-cyclodextrin (mbetaCD), proved to be problematic. However, it was possible to cultivate NS0 cells in the medium supplemented with CLC when using conventional cultivation vessels such as disposable polycarbonate shake-flasks and glass bioreactors. A series of experiments investigating the effect of the physical conditions in Wave Bioreactors (e.g., rocking rate/angle, gas delivery mode) ruled out their likely influence, while the exposure of the cells to small squares of Wave Bioreactor film resulted in a lack of growth as in the Wave Bioreactor, suggesting an interaction between the cells, the CLC, and the LLDPE contact surface. Further experiments with both cholesterol-independent and cholesterol-dependent NS0 cells established that the concurrent presence of mbetaCD in the culture medium and the LLDPE film was sufficient to inhibit growth for both cell types. By reducing the excess mbetaCD added to the culture medium, it was possible to successfully cultivate cholesterol-dependent NS0 cells in Wave Bioreactors using a cholesterol-mbetaCD complex as the sole source of exogenous cholesterol. We propose that the mechanism of growth inhibition involves the extraction of cholesterol from cell membranes by the excess mbetaCD in the medium, followed with the irreversible adsorption or entrapment of the cholesterol-mbetaCD complexes to the LLDPE surface of the Wave Bioreactor. Controlling and mitigating these negative interactions enabled the routine utilization of disposable bioreactors for the cultivation of cholesterol-dependent NS0 cell lines in conjunction with an animal component-free cultivation medium.
Collapse
Affiliation(s)
- Jessica Okonkowski
- Merck Research Laboratories, Bioprocess R&D, PO Box 2000, RY80Y-105, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The role of recombinant proteins in the development of serum-free media. Cytotechnology 2006; 50:49-56. [PMID: 19003070 DOI: 10.1007/s10616-006-9002-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022] Open
Abstract
Early developments in serum-free media led to a variety of formulations in which components normally provided in serum and required for growth (insulin, transferrin, lipid supplements, trace elements) and poorly defined components (extracts, hydrolysates) were added to defined basal media. These additives were mostly animal-derived. Given recent concerns about TSEs (transmissible spongiform encephalopathies) and other adventitious agents, the drive in media formulations must be towards elimination of animal-origin materials while maintaining cell line productivity. The progress made towards removing animal-derived components and the use of recombinant proteins in serum-free media for mammalian cells is reviewed.
Collapse
|
42
|
Zhang J, Robinson D, Salmon P. A novel function for selenium in biological system: Selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol Bioeng 2006; 95:1188-97. [PMID: 16937407 DOI: 10.1002/bit.21081] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As the market for biopharmaceuticals especially monoclonal antibodies (MAbs) rapidly grows, their manufacturing methods are coming under increasing regulatory scrutiny, particularly due to concerns about the potential introduction of adventitious agents from animal-sourced components in the media used for their production in mammalian cell culture. Chinese hamster ovary (CHO) cells are by far the most commonly used production vehicles for these recombinant glycoproteins. In developing animal-component free media for CHO and other mammalian cell lines, the iron-transporter function of serum or human/bovine transferrin is usually replaced by certain organic or inorganic chelators capable of delivering iron for cell respiration and metabolism, but few of them are sufficiently effective. Selenium is a well-known essential trace element (TE) for cell growth and development, and its positive role in biological system includes detoxification of free radicals by activating glutathione peroxidase. In cell culture, selenium in the form of selenite can help cells to detoxify the medium thus protect them from oxidative damage. In this presentation, we describe the discovery and application of a novel function of selenite, that is, as a highly effective carrier to deliver iron for cell growth and function. In our in-house-developed animal protein-free (APF) medium for CHO cells, using an iron-selenite compound to replace the well-established tropolone delivery system for iron led to comparable or better cell growth and antibody production. A high cell density of >10 x 10(6) viable cells/mL and excellent antibody titer of approximately 3 g/L were achieved in 14-day fed-batch cultures in shake flasks, followed by successful scale-up to stirred bioreactors. The preparation of the commercially unavailable iron-selenite compound from respective ions, and its effectiveness in cell-culture performance, were dependent on reaction time, substrates, and other conditions.
Collapse
Affiliation(s)
- Jinyou Zhang
- Bioprocess R&D, Merck & Co., Inc., Rahway, New Jersey 07065, USA.
| | | | | |
Collapse
|