1
|
Elliott W, Guo D, Veldtman G, Tan W. Effect of Viscoelasticity on Arterial-Like Pulsatile Flow Dynamics and Energy. J Biomech Eng 2020; 142:041001. [PMID: 31523750 PMCID: PMC7104782 DOI: 10.1115/1.4044877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 08/16/2019] [Indexed: 11/08/2022]
Abstract
Time-dependent arterial wall property is an important but difficult topic in vascular mechanics. Hysteresis, which appears during the measurement of arterial pressure-diameter relationship through a cardiac cycle, has been used to indicate time-dependent mechanics of arteries. However, the cause-effect relationship between viscoelastic (VE) properties of the arterial wall and hemodynamics, particularly the viscous contribution to hemodynamics, remains challenging. Herein, we show direct comparisons between elastic (E) (loss/storage < 0.1) and highly viscoelastic (loss/storage > 0.45) conduit structures with arterial-like compliance, in terms of their capability of altering pulsatile flow, wall shear, and energy level. Conduits were made from varying ratio of vinyl- and methyl-terminated poly(dimethylsiloxane) and were fit in a mimetic circulatory system measuring volumetric flow, pressure, and strain. Results indicated that when compared to elastic conduits, viscoelastic conduits attenuated lumen distension waveforms, producing an average of 11% greater cross-sectional area throughout a mimetic cardiac cycle. In response to such changes in lumen diameter strain, pressure and volumetric flow waves in viscoelastic conduits decreased by 3.9% and 6%, respectively, in the peak-to-peak amplitude. Importantly, the pulsatile waveforms for both diameter strain and volumetric flow demonstrated greater temporal alignment in viscoelastic conduits due to pulsation attenuation, resulting in 25% decrease in the oscillation of wall shear stress (WSS). We hope these findings may be used to further examine time-dependent arterial properties in disease prognosis and progression, as well as their use in vascular graft design.
Collapse
Affiliation(s)
- Winston Elliott
- Department of Mechanical Engineering, University of Colorado at
Boulder, 1111 Engineering Drive, ECME 114,
Boulder, CO 80309
| | - Dongjie Guo
- Department of Mechanical Engineering, University of Colorado at
Boulder, 1111 Engineering Drive, ECME 114,
Boulder, CO 80309; State Laboratory
of Surface and Interface, Zhengzhou University of Light
Industry, Zhengzhou 450002
China
| | - Gruschen Veldtman
- Department of Pediatrics, Cincinnati Children's
Hospital, University of Cincinnati, 3333 Burnet Ave,
Cincinnati, OH 45229
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at
Boulder, 1111 Engineering Drive, ECME 114,
Boulder, CO 80309
e-mail:
| |
Collapse
|
2
|
Biwer LA, Lechauve C, Vanhoose S, Weiss MJ, Isakson BE. A Cell Culture Model of Resistance Arteries. J Vis Exp 2017. [PMID: 28930992 DOI: 10.3791/55992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The myoendothelial junction (MEJ), a unique signaling microdomain in small diameter resistance arteries, exhibits localization of specific proteins and signaling processes that can control vascular tone and blood pressure. As it is a projection from either the endothelial or smooth muscle cell, and due to its small size (on average, an area of ~1 µm2), the MEJ is difficult to study in isolation. However, we have developed a cell culture model called the vascular cell co-culture (VCCC) that allows for in vitro MEJ formation, endothelial cell polarization, and dissection of signaling proteins and processes in the vascular wall of resistance arteries. The VCCC has a multitude of applications and can be adapted to suit different cell types. The model consists of two cell types grown on opposite sides of a filter with 0.4 µm pores in which the in vitro MEJs can form. Here we describe how to create the VCCC via plating of cells and isolation of endothelial, MEJ, and smooth muscle fractions, which can then be used for protein isolation or activity assays. The filter with intact cell layers can be fixed, embedded, and sectioned for immunofluorescent analysis. Importantly, many of the discoveries from this model have been confirmed using intact resistance arteries, underscoring its physiological relevance.
Collapse
Affiliation(s)
- Lauren A Biwer
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | | | - Sheri Vanhoose
- Research Histology Core, University of Virginia School of Medicine
| | | | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine;
| |
Collapse
|
3
|
Han X, Sakamoto N, Tomita N, Meng H, Sato M, Ohta M. Influence of shear stress on phenotype and MMP production of smooth muscle cells in a co-culture model. ACTA ACUST UNITED AC 2017. [DOI: 10.17106/jbr.31.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaobo Han
- Graduate School of Biomedical Engineering, Tohoku University
| | - Naoya Sakamoto
- Department of Medical Engineering, Kawasaki University of Medical Welfare
- Department of Intelligent Mechanical Systems, Tokyo Metropolitan University
| | | | - Hui Meng
- Toshiba Stroke and Vascular Research Center, Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York
| | - Masaaki Sato
- Graduate School of Biomedical Engineering, Tohoku University
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University
| |
Collapse
|
4
|
Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment. Curr Hypertens Rep 2016; 18:4. [PMID: 26733189 DOI: 10.1007/s11906-015-0609-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.
Collapse
|
5
|
Elliott W, Scott-Drechsel D, Tan W. In Vitro Model of Physiological and Pathological Blood Flow with Application to Investigations of Vascular Cell Remodeling. J Vis Exp 2015:e53224. [PMID: 26554396 DOI: 10.3791/53224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vascular disease is a common cause of death within the United States. Herein, we present a method to examine the contribution of flow dynamics towards vascular disease pathologies. Unhealthy arteries often present with wall stiffening, scarring, or partial stenosis which may all affect fluid flow rates, and the magnitude of pulsatile flow, or pulsatility index. Replication of various flow conditions is the result of tuning a flow pressure damping chamber downstream of a blood pump. Introduction of air within a closed flow system allows for a compressible medium to absorb pulsatile pressure from the pump, and therefore vary the pulsatility index. The method described herein is simply reproduced, with highly controllable input, and easily measurable results. Some limitations are recreation of the complex physiological pulse waveform, which is only approximated by the system. Endothelial cells, smooth muscle cells, and fibroblasts are affected by the blood flow through the artery. The dynamic component of blood flow is determined by the cardiac output and arterial wall compliance. Vascular cell mechano-transduction of flow dynamics may trigger cytokine release and cross-talk between cell types within the artery. Co-culture of vascular cells is a more accurate picture reflecting cell-cell interaction on the blood vessel wall and vascular response to mechanical signaling. Contribution of flow dynamics, including the cell response to the dynamic and mean (or steady) components of flow, is therefore an important metric in determining disease pathology and treatment efficacy. Through introducing an in vitro co-culture model and pressure damping downstream of blood pump which produces simulated cardiac output, various arterial disease pathologies may be investigated.
Collapse
Affiliation(s)
- Winston Elliott
- Department of Mechanical Engineering, University of Colorado at Boulder;
| | | | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder
| |
Collapse
|
6
|
Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ, Finol EA. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 120:88-101. [PMID: 25975872 PMCID: PMC4441565 DOI: 10.1016/j.cmpb.2015.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Computational fluid dynamics (CFD) modeling of the pulmonary vasculature has the potential to reveal continuum metrics associated with the hemodynamic stress acting on the vascular endothelium. It is widely accepted that the endothelium responds to flow-induced stress by releasing vasoactive substances that can dilate and constrict blood vessels locally. The objectives of this study are to examine the extent of patient specificity required to obtain a significant association of CFD output metrics and clinical measures in models of the pulmonary arterial circulation, and to evaluate the potential correlation of wall shear stress (WSS) with established metrics indicative of right ventricular (RV) afterload in pulmonary hypertension (PH). Right Heart Catheterization (RHC) hemodynamic data and contrast-enhanced computed tomography (CT) imaging were retrospectively acquired for 10 PH patients and processed to simulate blood flow in the pulmonary arteries. While conducting CFD modeling of the reconstructed patient-specific vasculatures, we experimented with three different outflow boundary conditions to investigate the potential for using computationally derived spatially averaged wall shear stress (SAWSS) as a metric of RV afterload. SAWSS was correlated with both pulmonary vascular resistance (PVR) (R(2)=0.77, P<0.05) and arterial compliance (C) (R(2)=0.63, P<0.05), but the extent of the correlation was affected by the degree of patient specificity incorporated in the fluid flow boundary conditions. We found that decreasing the distal PVR alters the flow distribution and changes the local velocity profile in the distal vessels, thereby increasing the local WSS. Nevertheless, implementing generic outflow boundary conditions still resulted in statistically significant SAWSS correlations with respect to both metrics of RV afterload, suggesting that the CFD model could be executed without the need for complex outflow boundary conditions that require invasively obtained patient-specific data. A preliminary study investigating the relationship between outlet diameter and flow distribution in the pulmonary tree offers a potential computationally inexpensive alternative to pressure based outflow boundary conditions.
Collapse
Affiliation(s)
- Vitaly O Kheyfets
- Department of Bioengineering, UC Denver - Anschutz Medical Campus, Children's Hospital Colorado, 13123 E. 16th Ave B100, Aurora, CO 80045, United States.
| | - Lourdes Rios
- The University of Texas at San Antonio, Department of Biomedical Engineering, San Antonio, TX 78249, United States; The University of Texas at San Antonio, Department of Biological Sciences, San Antonio, TX 78249, United States.
| | - Triston Smith
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Theodore Schroeder
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Jeffrey Mueller
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Srinivas Murali
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - David Lasorda
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Anthony Zikos
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - Jennifer Spotti
- Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Radiology, Pittsburgh, PA 15212, United States; Western Pennsylvania Allegheny Health System, Allegheny General Hospital, McGinnis Cardiovascular Institute, Department of Cardiology, Pittsburgh, PA 15212, United States.
| | - John J Reilly
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA 15261, United States.
| | - Ender A Finol
- The University of Texas at San Antonio, Department of Biomedical Engineering, San Antonio, TX 78249, United States.
| |
Collapse
|
7
|
Kheyfets V, Thirugnanasambandam M, Rios L, Evans D, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Spotti J, Finol E. The role of wall shear stress in the assessment of right ventricle hydraulic workload. Pulm Circ 2015; 5:90-100. [PMID: 25992274 DOI: 10.1086/679703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/22/2014] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease affecting approximately 15-50 people per million, with a higher incidence in women. PH mortality is mostly attributed to right ventricle (RV) failure, which results from RV hypotrophy due to an overburdened hydraulic workload. The objective of this study is to correlate wall shear stress (WSS) with hemodynamic metrics that are generally accepted as clinical indicators of RV workload and are well correlated with disease outcome. Retrospective right heart catheterization data for 20 PH patients were analyzed to derive pulmonary vascular resistance (PVR), arterial compliance (C), and an index of wave reflections (Γ). Patient-specific contrast-enhanced computed tomography chest images were used to reconstruct the individual pulmonary arterial trees up to the seventh generation. Computational fluid dynamics analyses simulating blood flow at peak systole were conducted for each vascular model to calculate WSS distributions on the endothelial surface of the pulmonary arteries. WSS was found to be decreased proportionally with elevated PVR and reduced C. Spatially averaged WSS (SAWSS) was positively correlated with PVR (R (2) = 0.66), C (R (2) = 0.73), and Γ (R (2) = 0.5) and also showed promising preliminary correlations with RV geometric characteristics. Evaluating WSS at random cross sections in the proximal vasculature (main, right, and left pulmonary arteries), the type of data that can be acquired from phase-contrast magnetic resonance imaging, did not reveal the same correlations. In conclusion, we found that WSS has the potential to be a viable and clinically useful noninvasive metric of PH disease progression and RV health. Future work should be focused on evaluating whether SAWSS has prognostic value in the management of PH and whether it can be used as a rapid reactivity assessment tool, which would aid in selection of appropriate therapies.
Collapse
Affiliation(s)
- Vitaly Kheyfets
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| | | | - Lourdes Rios
- Department of Biological Sciences, University of Texas, San Antonio, Texas, USA
| | - Daniel Evans
- Department of Mechanical Engineering, University of Texas, San Antonio, Texas, USA
| | - Triston Smith
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Theodore Schroeder
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Mueller
- Department of Radiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Srinivas Murali
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - David Lasorda
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Jennifer Spotti
- Department of Cardiology, McGinnis Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ender Finol
- Department of Biomedical Engineering, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
8
|
Bellofiore A, Henningsen J, Lepak CG, Tian L, Roldan-Alzate A, Kellihan HB, Consigny DW, Francois CJ, Chesler NC. A novel in vivo approach to assess radial and axial distensibility of large and intermediate pulmonary artery branches. J Biomech Eng 2015; 137:044501. [PMID: 25587800 DOI: 10.1115/1.4029578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 11/08/2022]
Abstract
Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) toward RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study, we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio-pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing clinical right heart catheterization (RHC) in combination with MRI.
Collapse
|
9
|
Dodson RB, Morgan MR, Galambos C, Hunter KS, Abman SH. Chronic intrauterine pulmonary hypertension increases main pulmonary artery stiffness and adventitial remodeling in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2014; 307:L822-8. [PMID: 25326575 PMCID: PMC4254964 DOI: 10.1152/ajplung.00256.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/14/2014] [Indexed: 11/22/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome that is characterized by high pulmonary vascular resistance due to changes in lung vascular growth, structure, and tone. PPHN has been primarily considered as a disease of the small pulmonary arteries (PA), but proximal vascular stiffness has been shown to be an important predictor of morbidity and mortality in other diseases associated with pulmonary hypertension (PH). The objective of this study is to characterize main PA (MPA) stiffness in experimental PPHN and to determine the relationship of altered biomechanics of the MPA with changes in extracellular matrix (ECM) content and orientation of collagen and elastin fibers. MPAs were isolated from control and PPHN fetal sheep model and were tested by planar biaxial testing to measure stiffness in circumferential and axial vessel orientations. Test specimens were fixed for histological assessments of the vascular wall ECM constituents collagen and elastin. MPAs from PPHN sheep had increased mechanical stiffness (P < 0.05) and altered ECM remodeling compared with control MPA. A constitutive mathematical model and histology demonstrated that PPHN vessels have a smaller contribution of elastin and a greater role for collagen fiber engagement compared with the control arteries. We conclude that exposure to chronic hemodynamic stress in late-gestation fetal sheep increases proximal PA stiffness and alters ECM remodeling. We speculate that proximal PA stiffness further contributes to increased right ventricular impedance in experimental PPHN, which contributes to abnormal transition of the pulmonary circulation at birth.
Collapse
Affiliation(s)
- R Blair Dodson
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Matthew R Morgan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Csaba Galambos
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Tan W, Madhavan K, Hunter KS, Park D, Stenmark KR. Vascular stiffening in pulmonary hypertension: cause or consequence? (2013 Grover Conference series). Pulm Circ 2014; 4:560-80. [PMID: 25610594 PMCID: PMC4278618 DOI: 10.1086/677370] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated that systemic arterial stiffening is a precursor to hypertension and that hypertension, in turn, can perpetuate arterial stiffening. Pulmonary artery (PA) stiffening is also well documented to occur in pulmonary hypertension (PH), and there is evidence that pulmonary vascular stiffness (PVS) may be a better predictor of outcome than pulmonary vascular resistance (PVR). We have hypothesized that the decreased flow-damping function of elastic PAs in PH likely initiates and/or perpetuates dysfunction of pulmonary microvasculature. Recent studies have shown that large-vessel stiffening increases flow pulsatility in the distal pulmonary vasculature, leading to endothelial dysfunction within a proinflammatory, vasoconstricting, and profibrogenic environment. The intricate role of stiffening-stimulated high pulsatile flow in endothelial cell dysfunction includes stepwise molecular events underlying PA hypertrophy, inflammation, endothelial-mesenchymal transition, and fibrosis. In addition to contributing to microenvironmental alterations of the distal vasculature, disordered proximal-distal PA coupling likely also plays a role in increasing ventricular afterload, ultimately causing right ventricle (RV) dysfunction and death. Current therapeutic treatments do not provide a realistic approach to destiffening arteries and, thus, to potentially abrogating the effects of high pulsatile flow on the distal pulmonary vasculature or the increased work imposed by stiffening on the RV. Scrutinizing the effect of PA stiffening on high pulsatile flow-induced cellular and molecular changes, and vice versa, might lead to important new therapeutic options that abrogate PA remodeling and PH development. With a clear understanding that PA stiffening may contribute to the progression of PH to an irreversible state by contributing to chronic microvascular damage in lungs, future studies should be aimed first at defining the underlying mechanisms leading to PA stiffening and then at improved treatment approaches based on these findings.
Collapse
Affiliation(s)
- Wei Tan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Aurora, Colorado, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Krishna Madhavan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Kendall S. Hunter
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
11
|
Chae SK, Mun CH, Noh DY, Kang E, Lee SH. Simple fabrication method for a porous poly(vinyl alcohol) matrix by multisolvent mixtures for an air-exposed model of the lung epithelial system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12107-12113. [PMID: 25260012 DOI: 10.1021/la501453h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We introduce a simple and easy method for fabricating a thin and porous matrix that can be used as an extracellular matrix (ECM). A porous poly(vinyl alcohol) (PVA) matrix was created through recrystallization by multiple solvents under distilled water (DW), isopropyl alcohol (IPA), and a combination of DW and IPA. The crysatllization was driven by precipitating and dissolving a solute in a solution of a solvent and a nonsolvent, which induced the formation of microspheres in the IPA. The crystal structure depended on the ratio of the solvent/nonsolvent and the concentration of the PVA aqueous solution; these properties were used to tune the thickness, size, and porosity of the matrices. The resulting PVA matrix was chemically stabilized through a reaction with glutaraldehyde in the IPA solution. We demonstrated that a very thin and porous PVA matrix provided an effective functional model of the lung epithelial system. Lung epithelial cells (A549) displayed a high affinity for this matrix, which was permeable to the culture medium. These properties facilitated culturing under the air environment.
Collapse
Affiliation(s)
- Su-Kyoung Chae
- Department of Biomedical Engineering, College of Health Science, Korea University , Jeongneung-dong, Seongbuk-gu, Seoul 136-703, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Freund JB, Vermot J. The wall-stress footprint of blood cells flowing in microvessels. Biophys J 2014; 106:752-62. [PMID: 24507616 DOI: 10.1016/j.bpj.2013.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/11/2013] [Indexed: 02/09/2023] Open
Abstract
It is well known that mechanotransduction of hemodynamic forces mediates cellular processes, particularly those that lead to vascular development and maintenance. Both the strength and space-time character of these forces have been shown to affect remodeling and morphogenesis. However, the role of blood cells in the process remains unclear. We investigate the possibility that in the smallest vessels blood's cellular character of itself will lead to forces fundamentally different than the time-averaged forces usually considered, with fluctuations that may significantly exceed their mean values. This is quantitated through the use of a detailed simulation model of microvessel flow in two principal configurations: a diameter D=6.5 μm tube-a model for small capillaries through which red blood cells flow in single-file-and a D=12 μm tube-a model for a nascent vein or artery through which the cells flow in a confined yet chaotic fashion. Results in both cases show strong sensitivity to the mean flow speed U. Peak stresses exceed their means by greater than a factor of 10 when U/D≲10 s(-1), which corresponds to the inverse relaxation time of a healthy red blood cell. This effect is more significant for smaller D cases. At faster flow rates, including those more commonly observed under normal, nominally static physiological conditions, the peak fluctuations are more comparable with the mean shear stress. Implications for mechanotransduction of hemodynamic forces are discussed.
Collapse
Affiliation(s)
- Jonathan B Freund
- Mechanical Science & Engineering and Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| | - Julien Vermot
- IGBMC, CNRS/INSERM/UdS, BP.10142, F-67404 Illkirch, France
| |
Collapse
|
13
|
Shav D, Gotlieb R, Zaretsky U, Elad D, Einav S. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall. PLoS One 2014; 9:e88304. [PMID: 24520363 PMCID: PMC3919748 DOI: 10.1371/journal.pone.0088304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/05/2014] [Indexed: 12/30/2022] Open
Abstract
Vascular functions are affected by wall shear stresses (WSS) applied on the endothelial cells (EC), as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC). The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm2 for 30 min) increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.
Collapse
Affiliation(s)
- Dalit Shav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Ruth Gotlieb
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - David Elad
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Influence of distal resistance and proximal stiffness on hemodynamics and RV afterload in progression and treatments of pulmonary hypertension: a computational study with validation using animal models. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:618326. [PMID: 24367392 PMCID: PMC3842075 DOI: 10.1155/2013/618326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/09/2013] [Accepted: 09/25/2013] [Indexed: 01/17/2023]
Abstract
We develop a simple computational model based on measurements from a hypoxic neonatal calf model of pulmonary hypertension (PH) to investigate the interplay between vascular and ventricular measures in the setting of progressive PH. Model parameters were obtained directly from in vivo and ex vivo measurements of neonatal calves. Seventeen sets of model-predicted impedance and mean pulmonary arterial pressure (mPAP) show good agreement with the animal measurements, thereby validating the model. Next, we considered a predictive model in which three parameters, PVR, elastic modulus (EM), and arterial thickness, were varied singly from one simulation to the next to study their individual roles in PH progression. Finally, we used the model to predict the individual impacts of clinical (vasodilatory) and theoretical (compliance increasing) PH treatments on improving pulmonary hemodynamics. Our model (1) displayed excellent patient-specific agreement with measured global pulmonary parameters; (2) quantified relationships between PVR and mean pressure and PVS and pulse pressure, as well as studiying the right ventricular (RV) afterload, which could be measured as a hydraulic load calculated from spectral analysis of pulmonary artery pressure and flow waves; (3) qualitatively confirmed the derangement of vascular wall shear stress in progressive PH; and (4) established that decreasing proximal vascular stiffness through a theoretical treatment of reversing proximal vascular remodeling could decrease RV afterload.
Collapse
|
15
|
Kheyfets VO, O'Dell W, Smith T, Reilly JJ, Finol EA. Considerations for numerical modeling of the pulmonary circulation--a review with a focus on pulmonary hypertension. J Biomech Eng 2013; 135:61011-15. [PMID: 23699723 PMCID: PMC3705788 DOI: 10.1115/1.4024141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 12/12/2022]
Abstract
Both in academic research and in clinical settings, virtual simulation of the cardiovascular system can be used to rapidly assess complex multivariable interactions between blood vessels, blood flow, and the heart. Moreover, metrics that can only be predicted with computational simulations (e.g., mechanical wall stress, oscillatory shear index, etc.) can be used to assess disease progression, for presurgical planning, and for interventional outcomes. Because the pulmonary vasculature is susceptible to a wide range of pathologies that directly impact and are affected by the hemodynamics (e.g., pulmonary hypertension), the ability to develop numerical models of pulmonary blood flow can be invaluable to the clinical scientist. Pulmonary hypertension is a devastating disease that can directly benefit from computational hemodynamics when used for diagnosis and basic research. In the present work, we provide a clinical overview of pulmonary hypertension with a focus on the hemodynamics, current treatments, and their limitations. Even with a rich history in computational modeling of the human circulation, hemodynamics in the pulmonary vasculature remains largely unexplored. Thus, we review the tasks involved in developing a computational model of pulmonary blood flow, namely vasculature reconstruction, meshing, and boundary conditions. We also address how inconsistencies between models can result in drastically different flow solutions and suggest avenues for future research opportunities. In its current state, the interpretation of this modeling technology can be subjective in a research environment and impractical for clinical practice. Therefore, considerations must be taken into account to make modeling reliable and reproducible in a laboratory setting and amenable to the vascular clinic. Finally, we discuss relevant existing models and how they have been used to gain insight into cardiopulmonary physiology and pathology.
Collapse
Affiliation(s)
- V. O. Kheyfets
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249
| | - W. O'Dell
- Department of Radiation Oncology,University of Florida,Shands Cancer Center,P.O. Box 100385,2033 Mowry Road,Gainesville, FL 32610
| | - T. Smith
- Western Allegheny Health System,Allegheny General Hospital,Gerald McGinnis Cardiovascular Institute,320 East North Avenue,Pittsburgh, PA 15212
| | - J. J. Reilly
- Department of Medicine,The University of Pittsburgh,1218 Scaife Hall,3550 Terrace Street,Pittsburgh, PA 15261
| | - E. A. Finol
- Department of Biomedical Engineering,The University of Texas at San Antonio,AET 1.360, One UTSA Circle,San Antonio, TX 78249e-mail:
| |
Collapse
|