1
|
Mirzaei M, Sharifi I, Mohammad-Rafi F, Anjomshoa M, Abiri A, Moqaddari AH, Nooshadokht M, Raiesi O, Amirheidari B. Antileishmanial effects and drugability characteristics of a heterocyclic copper complex: An in silico, in vitro and molecular study. J Inorg Biochem 2023; 245:112245. [PMID: 37167732 DOI: 10.1016/j.jinorgbio.2023.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Leishmaniasis caused by the protozoan Leishmania presents a severe illness, principally in tropical and subtropical areas. Antileishmanial metal complexes, like Glucantime®️ with proven activity, are routinely studied to probe their potency. We investigated the effects of a Cu (II) homoleptic complex coordinated by two dimethyl-bipyridine ligands against Leishmania major stages in silico and in vitro. The affinity of this heterocyclic Cu (II) complex (CuDMBP) towards a parasitic metacaspase was studied by molecular docking. Key pharmacokinetic and pharmacodynamic properties of the complex were predicted using three web-based tools. CuDMBP was tested for in vitro antileishmanial activities using MTT assay, model murine macrophages, flow cytometry, and quantitative real-time polymerase chain reaction (qPCR). Molecular docking confirmed the tendency between the target macromolecule and the complex. ADMET evaluations highlighted CuDMBP's key pharmacological features, including P-glycoprotein-associated GI absorption and lack of trans-BBB permeability. MTT showed significant inhibitory effects against promastigotes. CuDMBP significantly increased the level of cellular IL-12 expression (p < 0.05), while the upregulation observed in the expression of iNOS was considered not significant (p > 0.05). It decreased the expression of IL-10 significantly (p < 0.05). Findings demonstrated that CuDMBP deserves to be introduced as a leishmanicidal candidate provided further studies are carried out.
Collapse
Affiliation(s)
- Mohammad Mirzaei
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farrokh Mohammad-Rafi
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Anjomshoa
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hossain Moqaddari
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Maryam Nooshadokht
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Bagher Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Masoud M, Maryam SSP, Mahla SB, Mehrnaz KS, Mahla L, Reza V, Bahareh K, Tania D, Alireza F. Elevated Bax/Bcl-2 Ratio: A Cytotoxic Mode of Action of Kermanian Propolis Against an Acute Lymphoblastic Leukemia Cell Line, NALM-6. Indian J Hematol Blood Transfus 2022; 38:649-657. [PMID: 36258739 PMCID: PMC9569251 DOI: 10.1007/s12288-022-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
Abstract
Currently, alternative cancer remedies, especially herbal-derived medicines, have attracted great interest. Propolis, a honeybee-produced naturopathic formulation, is an available, affordable, and safe example of such remedies with different content according to its geographic location. Findings regarding the protective properties of this resinous substance across numerous pathological conditions are promising. Although the anti-tumor effects of propolis from different origins have been explored to some degree, yet there is no study on the effects of Kermanian propolis in the treatment of hematologic malignancies. Accordingly, the objective of the present experiment was to divulge the anti-tumor potential of this bioactive substance both as monotherapy and in combination with doxorubicin against an acute lymphoblastic leukemia cell line (NALM-6).The viability of cells treated with Kermanian propolis (5-500 μg/mL) and doxorubicin (5-100 μg/mL) was analyzed during 72 h. Based on the MTT results, the best incubation time, IC50 concentrations, and finally the cytotoxicity of the combination therapy were ascertained. Next, the apoptotic rate and expression of apoptosis-related genes (Bcl-2 and Bax) were assessed in mono and combination therapies using flow cytometry and real-time PCR assays, respectively. Kermanian propolis and doxorubicin have impressive tumor-suppressing activity in a dose-dependent manner (IC50 concentrations: 100 and 40 μg/mL respectively). The best incubation time was considered 48 h. For the combination approach, 50 and 10 μg/mL were determined as optimum concentrations of the compounds. The selected concentrations induced notable apoptosis in the studied cells through significant (P < 0.01) upregulation of Bax/Bcl-2 level. The present study clearly suggests that Kermanian propolis, as an adjunct treatment option, has a promising apoptosis-induced cell death potential in the NALM-6 cell line.
Collapse
Affiliation(s)
- Moghadari Masoud
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Samareh Salavati pour Maryam
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sattarzadeh Bardsiri Mahla
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Kouhbananinejad Seyedeh Mehrnaz
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Lashkari Mahla
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahidi Reza
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Kashani Bahareh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dehesh Tania
- Institute for Futures Studies, Modeling in Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farsinejad Alireza
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Nooshadokht M, Mirzaei M, Sharifi I, Sharifi F, Lashkari M, Amirheidari B. In silico and in vitro antileishmanial effects of gamma-terpinene: Multifunctional modes of action. Chem Biol Interact 2022; 361:109957. [PMID: 35472413 DOI: 10.1016/j.cbi.2022.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Leishmaniasis denotes a significant health challenge worldwide with no ultimate treatment. The current study investigated the biological effects of gamma-terpinene (GT) on Leishmania major in putative antileishmanial action, cytotoxicity, apoptosis induction, gene expression alteration, antioxidant activity, hemolysis, and ROS generation. METHODS GT and meglumine antimoniate (MA) were probed alone and in combination (GT/MA) for their anti-leishmanial potentials using the MTT biochemical colorimetric assay and a model macrophage cell. In addition, their immunomodulatory properties were assessed by analyzing their effect on the transcription of cytokines related to Th1 and Th2 responses. GT and MA, alone and in combination, were also assessed for their potential to alter metacaspase gene expression in L. major promastigotes by real-time RT-PCR. The hemolytic potential of GT and MA-treated promastigotes were also measured by routine UV absorbance reading. Electrophoresis on agarose gel was employed to analyze genomic DNA fragmentation. RESULTS GT demonstrated notable dose-dependent antileishmanial effects towards promastigotes and amastigotes of L. major. The IC50 values for GT against L. major promastigotes and amastigotes were 46.76 mM and 25.89 mM, respectively. GT was considerably safer towards murine macrophages than L. major amastigotes with an SI value of 3.17. Transcriptional expression of iNOS, JAK-1, Interleukin (IL-10), and TGF-β was meaningfully decreased, while the levels of metacaspase mRNA were increased. Results also confirmed GT antioxidant activities. Also, increased levels of intracellular ROS were observed upon treatment of promastigotes with GT. The gel electrophoresis result indicated slight DNA fragmentation in the treated promastigotes by both drugs. A weak hemolytic effect was also observed for GT. CONCLUSION The results demonstrated that GT showed potent activity against L. major stages. It seems that its mechanism of action involves representing an immunomodulatory role towards upregulation of iNOS and JAK-1, while downregulation of IL-10 and TGF- β. Moreover, GT has an antioxidative potential and exerts its action through activating macrophages to kill the organism. Further in vivo and clinical studies are essential to explore its effect in future programs.
Collapse
Affiliation(s)
- Maryam Nooshadokht
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran; Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mirzaei
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Lashkari
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Farsinejad A, Vahidi R, Salavatipour M, Kouhbananinejad S, Lashkari M, Bardsiri M, Moghadari M, Kashani B. Kermanian propolis induces apoptosis through upregulation of Bax/Bcl-2 ratio in acute myeloblastic leukemia cell line (NB4). J Cancer Res Ther 2022. [DOI: 10.4103/jcrt.jcrt_1084_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zhong Y, Li X, Wang F, Wang S, Wang X, Tian X, Bai S, Miao D, Fan J. Emerging Potential of Exosomes on Adipogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:649552. [PMID: 34239869 PMCID: PMC8258133 DOI: 10.3389/fcell.2021.649552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.
Collapse
Affiliation(s)
- Yuxuan Zhong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Di Miao
- China Medical University-The Queen's University of Belfast Joint College-Combination, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Maharajan N, Cho GW, Choi JH, Jang CH. Regenerative Therapy Using Umbilical Cord Serum. In Vivo 2021; 35:699-705. [PMID: 33622862 DOI: 10.21873/invivo.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Regenerative medicine is a branch of medicine that incorporates tissue-engineering, biomaterials, and cell therapy approaches to replace or repair damaged cells and tissues. Umbilical cord serum (UCS) is an important liquid component of cord blood, which has a reliable source of innumerable growth factors and biologically active molecules. Usually, serum can be prepared from different sources of blood. In therapeutic application, cord serum can be prepared and used in the form of eye drops for the treatment of severe dry eye diseases, ocular burns, glaucoma, persistent corneal epithelial defects and neurotrophic keratitis. In addition, cord serum combined with synthetic bio scaffold materials is used to regenerate different types of tissues including tympanic membrane regeneration, bone regeneration and nerve regeneration. Absence of animal origin viruses and bacteria, lack of xenoproteins and cost-effective features make cord serum a feasible choice as replacement of fetal bovine serum in cell culture techniques. Thus, this review emphasizes the role of cord serum in regenerative therapy and clinical uses.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji Hyun Choi
- Department of Obstetrics and Gynecology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|