1
|
Acharya V, Choi D, Yener B, Beamer G. Prediction of Tuberculosis From Lung Tissue Images of Diversity Outbred Mice Using Jump Knowledge Based Cell Graph Neural Network. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:17164-17194. [PMID: 38515959 PMCID: PMC10956573 DOI: 10.1109/access.2024.3359989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained samples is critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining these stained samples. However, current deep-learning approaches to analyzing large-sized whole slide images (WSIs) often employ patch-wise analysis, potentially missing the complex spatial patterns observed in the granuloma essential for accurate TB classification. To address this limitation, we propose an approach that models cell characteristics and interactions as a graph, capturing both cell-level information and the overall tissue micro-architecture. This method differs from the strategies in related cell graph-based works that rely on edge thresholds based on sparsity/density in cell graph construction, emphasizing a biologically informed threshold determination instead. We introduce a cell graph-based jumping knowledge neural network (CG-JKNN) that operates on the cell graphs where the edge thresholds are selected based on the length of the mycobacteria's cords and the activated macrophage nucleus's size to reflect the actual biological interactions observed in the tissue. The primary process involves training a Convolutional Neural Network (CNN) to segment AFBs and macrophage nuclei, followed by converting large (42831*41159 pixels) lung histology images into cell graphs where an activated macrophage nucleus/AFB represents each node within the graph and their interactions are denoted as edges. To enhance the interpretability of our model, we employ Integrated Gradients and Shapely Additive Explanations (SHAP). Our analysis incorporated a combination of 33 graph metrics and 20 cell morphology features. In terms of traditional machine learning models, Extreme Gradient Boosting (XGBoost) was the best performer, achieving an F1 score of 0.9813 and an Area under the Precision-Recall Curve (AUPRC) of 0.9848 on the test set. Among graph-based models, our CG-JKNN was the top performer, attaining an F1 score of 0.9549 and an AUPRC of 0.9846 on the held-out test set. The integration of graph-based and morphological features proved highly effective, with CG-JKNN and XGBoost showing promising results in classifying instances into AFB and activated macrophage nucleus. The features identified as significant by our models closely align with the criteria used by pathologists in practice, highlighting the clinical applicability of our approach. Future work will explore knowledge distillation techniques and graph-level classification into distinct TB progression categories.
Collapse
Affiliation(s)
| | - Diana Choi
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 02155, USA
| | - BüLENT Yener
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gillian Beamer
- Research Pathology, Aiforia Technologies, Cambridge, MA 02142, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
2
|
Fisher TB, Saini G, Rekha TS, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. Breast Cancer Res 2024; 26:12. [PMID: 38238771 PMCID: PMC10797728 DOI: 10.1186/s13058-023-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. METHODS H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. RESULTS The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. CONCLUSION Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
- Timothy B Fisher
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Geetanjali Saini
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - T S Rekha
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Jayashree Krishnamurthy
- JSSAHER (JSS Academy of Higher Education and Research) Medical College, Mysuru, Karnataka, India
| | - Shristi Bhattarai
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Grace Callagy
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Mark Webber
- Discipline of Pathology, University of Galway, Galway, Ireland
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA.
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Fisher TB, Saini G, Ts R, Krishnamurthy J, Bhattarai S, Callagy G, Webber M, Janssen EAM, Kong J, Aneja R. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3243195. [PMID: 37645881 PMCID: PMC10462230 DOI: 10.21203/rs.3.rs-3243195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30-40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60-70% show residual disease (RD). The role of the tumor microenvironment (TME) in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) were separated through a stratified 8-fold cross validation strategy for the first step and leave one out cross validation strategy for the second step. A tile-level histology label prediction pipeline and four machine learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
Collapse
Affiliation(s)
| | | | - Rekha Ts
- JSSAHER (JSS Academy of Higher Education and Research) Medical College
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fischer SC, Bassel GW, Kollmannsberger P. Tissues as networks of cells: towards generative rules of complex organ development. J R Soc Interface 2023; 20:20230115. [PMID: 37491909 PMCID: PMC10369035 DOI: 10.1098/rsif.2023.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Network analysis is a well-known and powerful tool in molecular biology. More recently, it has been introduced in developmental biology. Tissues can be readily translated into spatial networks such that cells are represented by nodes and intercellular connections by edges. This discretization of cellular organization enables mathematical approaches rooted in network science to be applied towards the understanding of tissue structure and function. Here, we describe how such tissue abstractions can enable the principles that underpin tissue formation and function to be uncovered. We provide an introduction into biologically relevant network measures, then present an overview of different areas of developmental biology where these approaches have been applied. We then summarize the general developmental rules underpinning tissue topology generation. Finally, we discuss how generative models can help to link the developmental rule back to the tissue topologies. Our collection of results points at general mechanisms as to how local developmental rules can give rise to observed topological properties in multicellular systems.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Center for Computational and Theoretical Biology, Faculty of Biology, University of Würzburg, Würzburg, Germany
| | - George W. Bassel
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Philip Kollmannsberger
- Biomedical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Vicente-Munuera P, Gómez-Gálvez P, Tetley RJ, Forja C, Tagua A, Letrán M, Tozluoglu M, Mao Y, Escudero LM. EpiGraph: an open-source platform to quantify epithelial organization. Bioinformatics 2020; 36:1314-1316. [PMID: 31544932 PMCID: PMC7703762 DOI: 10.1093/bioinformatics/btz683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
Summary Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform Fiji. This makes EpiGraph very user friendly, with no programming skills required. Availability and implementation EpiGraph is available at https://imagej.net/EpiGraph and the code is accessible (https://github.com/ComplexOrganizationOfLivingMatter/Epigraph) under GPLv3 license. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Robert J Tetley
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Cristina Forja
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| | - Marta Letrán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain
| | - Melda Tozluoglu
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.,College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, Seville 41013, Spain.,Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), Madrid 28031, Spain
| |
Collapse
|
6
|
Tan CL, Chiew KL, Yong KS, Sze SN, Abdullah J, Sebastian Y. A graph-theoretic approach for the detection of phishing webpages. Comput Secur 2020. [DOI: 10.1016/j.cose.2020.101793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Comin CH, Taylor GJ, Costa LDF. Quantifying the regularity of a 3D set of points on the surface of an ellipsoidal object. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kim J, McKee JA, Fontenot JJ, Jung JP. Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration. Front Bioeng Biotechnol 2020; 7:443. [PMID: 31998708 PMCID: PMC6967031 DOI: 10.3389/fbioe.2019.00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Regenerating lost or damaged tissue is the primary goal of Tissue Engineering. 3D bioprinting technologies have been widely applied in many research areas of tissue regeneration and disease modeling with unprecedented spatial resolution and tissue-like complexity. However, the extraction of tissue architecture and the generation of high-resolution blueprints are challenging tasks for tissue regeneration. Traditionally, such spatial information is obtained from a collection of microscopic images and then combined together to visualize regions of interest. To fabricate such engineered tissues, rendered microscopic images are transformed to code to inform a 3D bioprinting process. If this process is augmented with data-driven approaches and streamlined with machine intelligence, identification of an optimal blueprint can become an achievable task for functional tissue regeneration. In this review, our perspective is guided by an emerging paradigm to generate a blueprint for regeneration with machine intelligence. First, we reviewed recent articles with respect to our perspective for machine intelligence-driven information retrieval and fabrication. After briefly introducing recent trends in information retrieval methods from publicly available data, our discussion is focused on recent works that use machine intelligence to discover tissue architectures from imaging and spectral data. Then, our focus is on utilizing optimization approaches to increase print fidelity and enhance biomimicry with machine learning (ML) strategies to acquire a blueprint ready for 3D bioprinting.
Collapse
Affiliation(s)
- Joohyun Kim
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States
| | - Jane A. McKee
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jake J. Fontenot
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Serin F, Erturkler M, Gul M. A novel overlapped nuclei splitting algorithm for histopathological images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 151:57-70. [PMID: 28947006 DOI: 10.1016/j.cmpb.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Nuclei segmentation is a common process for quantitative analysis of histopathological images. However, this process generally results in overlapping of nuclei due to the nature of images, the sample preparation and staining, and image acquisition processes as well as insufficiency of 2D histopathological images to represent 3D characteristics of tissues. We present a novel algorithm to split overlapped nuclei. METHODS The histopathological images are initially segmented by K-Means segmentation algorithm. Then, nuclei cluster are converted to binary image. The overlapping is detected by applying threshold area value to nuclei in the binary image. The splitting algorithm is applied to the overlapped nuclei. In first stage of splitting, circles are drawn on overlapped nuclei. The radius of the circles is calculated by using circle area formula, and each pixel's coordinates of overlapped nuclei are selected as center coordinates for each circle. The pixels in the circle that contains maximum number of intersected pixels in both the circle and the overlapped nuclei are removed from the overlapped nuclei, and the filled circle labeled as a nucleus. RESULTS The algorithm has been tested on histopathological images of healthy and damaged kidney tissues and compared with the results provided by an expert and three related studies. The results demonstrated that the proposed splitting algorithm can segment the overlapping nuclei with accuracy of 84%. CONCLUSIONS The study presents a novel algorithm splitting the overlapped nuclei in histopathological images and provides more accurate cell counting in histopathological analysis. Furthermore, the proposed splitting algorithm has the potential to be used in different fields to split any overlapped circular patterns.
Collapse
Affiliation(s)
- Faruk Serin
- Department of Computer Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey.
| | - Metin Erturkler
- Department of Computer Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
10
|
Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput Med Imaging Graph 2017; 61:2-13. [PMID: 28676295 DOI: 10.1016/j.compmedimag.2017.06.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection.
Collapse
|
11
|
Dhulekar N, Ray S, Yuan D, Baskaran A, Oztan B, Larsen M, Yener B. Prediction of Growth Factor-Dependent Cleft Formation During Branching Morphogenesis Using A Dynamic Graph-Based Growth Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:350-64. [PMID: 27070978 PMCID: PMC4917296 DOI: 10.1109/tcbb.2015.2452916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study considers the problem of describing and predicting cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG) under the influence of varied concentrations of epidermal growth factors (EGF). Given a time-lapse video of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies the ground truth. Tissue-scale (global) and morphological features related to regions of interest (local features) are used to characterize the biological ground truth. Second, we devise a predictive growth model that simulates EGF-modulated branching morphogenesis using a dynamic graph algorithm, which is driven by biological parameters such as EGF concentration, mitosis rate, and cleft progression rate. Given the initial configuration of the SMG, the evolution of the dynamic graph predicts the cleft formation, while maintaining the local structural characteristics of the SMG. We determined that higher EGF concentrations cause the formation of higher number of buds and comparatively shallow cleft depths. Third, we compared the prediction accuracy of our model to the Glazier-Graner-Hogeweg (GGH) model, an on-lattice Monte-Carlo simulation model, under a specific energy function parameter set that allows new rounds of de novo cleft formation. The results demonstrate that the dynamic graph model yields comparable simulations of gland growth to that of the GGH model with a significantly lower computational complexity. Fourth, we enhanced this model to predict the SMG morphology for an EGF concentration without the assistance of a ground truth time-lapse biological video data; this is a substantial benefit of our model over other similar models that are guided and terminated by information regarding the final SMG morphology. Hence, our model is suitable for testing the impact of different biological parameters involved with the process of branching morphogenesis in silico, while reducing the requirement of in vivo experiments.
Collapse
|
12
|
Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 2013; 20:1099-108. [PMID: 23959844 PMCID: PMC3822114 DOI: 10.1136/amiajnl-2012-001540] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives With the objective of bringing clinical decision support systems to reality, this article reviews histopathological whole-slide imaging informatics methods, associated challenges, and future research opportunities. Target audience This review targets pathologists and informaticians who have a limited understanding of the key aspects of whole-slide image (WSI) analysis and/or a limited knowledge of state-of-the-art technologies and analysis methods. Scope First, we discuss the importance of imaging informatics in pathology and highlight the challenges posed by histopathological WSI. Next, we provide a thorough review of current methods for: quality control of histopathological images; feature extraction that captures image properties at the pixel, object, and semantic levels; predictive modeling that utilizes image features for diagnostic or prognostic applications; and data and information visualization that explores WSI for de novo discovery. In addition, we highlight future research directions and discuss the impact of large public repositories of histopathological data, such as the Cancer Genome Atlas, on the field of pathology informatics. Following the review, we present a case study to illustrate a clinical decision support system that begins with quality control and ends with predictive modeling for several cancer endpoints. Currently, state-of-the-art software tools only provide limited image processing capabilities instead of complete data analysis for clinical decision-making. We aim to inspire researchers to conduct more research in pathology imaging informatics so that clinical decision support can become a reality.
Collapse
Affiliation(s)
- Sonal Kothari
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
13
|
Li G, Semerci M, Yener B, Zaki MJ. Effective graph classification based on topological and label attributes. Stat Anal Data Min 2012. [DOI: 10.1002/sam.11153] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Coupled analysis of in vitro and histology tissue samples to quantify structure-function relationship. PLoS One 2012; 7:e32227. [PMID: 22479315 PMCID: PMC3316529 DOI: 10.1371/journal.pone.0032227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/25/2012] [Indexed: 11/19/2022] Open
Abstract
The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models.
Collapse
|
15
|
Bilgin CC, Ray S, Baydil B, Daley WP, Larsen M, Yener B. Multiscale feature analysis of salivary gland branching morphogenesis. PLoS One 2012; 7:e32906. [PMID: 22403724 PMCID: PMC3293912 DOI: 10.1371/journal.pone.0032906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues.
Collapse
Affiliation(s)
- Cemal Cagatay Bilgin
- Rensselaer Polytechnic Institute, Computer Science Department, Troy, New York, United States of America
| | - Shayoni Ray
- University at Albany, State University of New York, Department of Biological Sciences, Albany, New York, United States of America
| | - Banu Baydil
- Rensselaer Polytechnic Institute, Computer Science Department, Troy, New York, United States of America
| | - William P. Daley
- University at Albany, State University of New York, Department of Biological Sciences, Albany, New York, United States of America
| | - Melinda Larsen
- University at Albany, State University of New York, Department of Biological Sciences, Albany, New York, United States of America
| | - Bülent Yener
- Rensselaer Polytechnic Institute, Computer Science Department, Troy, New York, United States of America
| |
Collapse
|
16
|
Sequeira SJ, Soscia DA, Oztan B, Mosier AP, Jean-Gilles R, Gadre A, Cady NC, Yener B, Castracane J, Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. Biomaterials 2012; 33:3175-86. [PMID: 22285464 DOI: 10.1016/j.biomaterials.2012.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 12/31/2022]
Abstract
Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-l-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland.
Collapse
Affiliation(s)
- Sharon J Sequeira
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Ave, LSRB 1086, Albany, NY 12222, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lahrmann B, Halama N, Sinn HP, Schirmacher P, Jaeger D, Grabe N. Automatic tumor-stroma separation in fluorescence TMAs enables the quantitative high-throughput analysis of multiple cancer biomarkers. PLoS One 2011; 6:e28048. [PMID: 22164226 PMCID: PMC3229509 DOI: 10.1371/journal.pone.0028048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/31/2011] [Indexed: 11/23/2022] Open
Abstract
The upcoming quantification and automation in biomarker based histological tumor evaluation will require computational methods capable of automatically identifying tumor areas and differentiating them from the stroma. As no single generally applicable tumor biomarker is available, pathology routinely uses morphological criteria as a spatial reference system. We here present and evaluate a method capable of performing the classification in immunofluorescence histological slides solely using a DAPI background stain. Due to the restriction to a single color channel this is inherently challenging. We formed cell graphs based on the topological distribution of the tissue cell nuclei and extracted the corresponding graph features. By using topological, morphological and intensity based features we could systematically quantify and compare the discrimination capability individual features contribute to the overall algorithm. We here show that when classifying fluorescence tissue slides in the DAPI channel, morphological and intensity based features clearly outpace topological ones which have been used exclusively in related previous approaches. We assembled the 15 best features to train a support vector machine based on Keratin stained tumor areas. On a test set of TMAs with 210 cores of triple negative breast cancers our classifier was able to distinguish between tumor and stroma tissue with a total overall accuracy of 88%. Our method yields first results on the discrimination capability of features groups which is essential for an automated tumor diagnostics. Also, it provides an objective spatial reference system for the multiplex analysis of biomarkers in fluorescence immunohistochemistry.
Collapse
Affiliation(s)
- Bernd Lahrmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany
| | - Niels Halama
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Peter Sinn
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jaeger
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Gao L, Li F, Thrall MJ, Yang Y, Xing J, Hammoudi AA, Zhao H, Massoud Y, Cagle PT, Fan Y, Wong KK, Wang Z, Wong STC. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:096004. [PMID: 21950918 DOI: 10.1117/1.3619294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/classification
- Adenocarcinoma/diagnosis
- Adenocarcinoma of Lung
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/classification
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/classification
- Carcinoma, Squamous Cell/diagnosis
- Databases, Factual
- Diagnosis, Differential
- Histocytochemistry
- Humans
- Image Interpretation, Computer-Assisted/methods
- Image Processing, Computer-Assisted/methods
- Least-Squares Analysis
- Lung Neoplasms/chemistry
- Lung Neoplasms/classification
- Lung Neoplasms/diagnosis
- Pneumonia
- Sensitivity and Specificity
- Small Cell Lung Carcinoma/chemistry
- Small Cell Lung Carcinoma/classification
- Small Cell Lung Carcinoma/diagnosis
- Spectrum Analysis, Raman/methods
- Support Vector Machine
Collapse
Affiliation(s)
- Liang Gao
- Weill Cornell Medical College, The Methodist Hospital Research Institute, Department of Systems Medicine and Bioengineering, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
McKeen-Polizzotti L, Henderson KM, Oztan B, Bilgin CC, Yener B, Plopper GE. Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states. BMC Med Imaging 2011; 11:11. [PMID: 21599975 PMCID: PMC3125246 DOI: 10.1186/1471-2342-11-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 05/20/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis. METHODS In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the nodes and the approximate adjacency of cells are represented with edges. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins. RESULTS We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies. CONCLUSIONS Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.
Collapse
Affiliation(s)
- Lindsey McKeen-Polizzotti
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kira M Henderson
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Basak Oztan
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - C Cagatay Bilgin
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Bülent Yener
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - George E Plopper
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
20
|
Bilgin CC, Lund AW, Can A, Plopper GE, Yener B. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory. PLoS One 2010; 5. [PMID: 20927339 PMCID: PMC2948014 DOI: 10.1371/journal.pone.0012783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 08/20/2010] [Indexed: 11/24/2022] Open
Abstract
Background Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. Methodology/Principal Findings We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Conclusions/Significance Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.
Collapse
Affiliation(s)
- Cemal Cagatay Bilgin
- Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Amanda W. Lund
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Ali Can
- General Electric Global Research Center, Niskayuna, New York, United States of America
| | - George E. Plopper
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Bülent Yener
- Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Optimal Live Cell Tracking for Cell Cycle Study Using Time-Lapse Fluorescent Microscopy Images. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-15948-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
23
|
Gurcan MN, Boucheron L, Can A, Madabhushi A, Rajpoot N, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2009; 2:147-71. [PMID: 20671804 PMCID: PMC2910932 DOI: 10.1109/rbme.2009.2034865] [Citation(s) in RCA: 833] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.
Collapse
Affiliation(s)
- Metin N. Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA (phone: 614-292-1084; fax: 614-688-6600; )
| | - Laura Boucheron
- New Mexico State University, Klipsch School of Electrical and Computer Engineering, Las Cruces, NM 88003, USA ()
| | - Ali Can
- Global Research Center, General Electric Corporation, Niskayuna, NY 12309, USA ()
| | - Anant Madabhushi
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA ()
| | - Nasir Rajpoot
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, England ()
| | - Bulent Yener
- Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA ()
| |
Collapse
|
24
|
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng 2009. [PMID: 20671804 DOI: 10.1109/rbme.2009.2034865.histopathological] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.
Collapse
Affiliation(s)
- Metin N Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|