1
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
2
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Krenz M, Korthuis RJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol 2012; 52:93-104. [PMID: 22041278 PMCID: PMC3246046 DOI: 10.1016/j.yjmcc.2011.10.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/11/2011] [Accepted: 10/15/2011] [Indexed: 12/13/2022]
Abstract
While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol ingestion may point the way towards development of new therapeutic approaches that mimic the powerful protective effects of socially relevant alcohol intake to limit I/R injury, but minimize the negative psychosocial impact and pathologic outcomes that also accompany consumption of ethanol.
Collapse
Affiliation(s)
- Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
4
|
Gaskin FS, Kamada K, Zuidema MY, Jones AW, Rubin LJ, Korthuis RJ. Isoform-selective 5'-AMP-activated protein kinase-dependent preconditioning mechanisms to prevent postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2011; 300:H1352-60. [PMID: 21239628 DOI: 10.1152/ajpheart.00944.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that preconditioning induced by ethanol consumption at low levels [ethanol preconditioning (EPC)] or with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR-PC) 24 h before ischemia-reperfusion prevents postischemic leukocyte-endothelial cell adhesive interactions (LEI) by a mechanism that is initiated by nitric oxide formed by endothelial nitric oxide synthase. Recent work indicates that 1) ethanol increases the activity of AMP-activated protein kinase (AMPK) and 2) AMPK phosphorylates endothelial nitric oxide synthase at the same activation site seen following EPC (Ser1177). In light of these observations, we postulated that the heterotrimeric serine/threonine kinase, AMPK, may play a role in triggering the development of the anti-inflammatory phenotype induced by EPC. Ethanol was administered to C57BL/6J mice by gavage in the presence or absence of AMPK inhibition. Twenty-four hours later, the numbers of rolling and adherent leukocytes in postcapillary venules of the small intestine were recorded using an intravital microscopic approach. Following 45 min of ischemia, LEI were recorded after 30 and 60 min of reperfusion or at equivalent time points in control animals. Ischemia-reperfusion induced a marked increase in LEI relative to sham-operated control mice. The increase in LEI was prevented by EPC, an effect that was lost with AMPK inhibition during the period of ethanol exposure. Studies conducted in AMPK α(1)- and α(2)-knockout mice suggest that the anti-inflammatory effects of AICAR are not dependent on which isoform of the catalytic α-subunit is present because a deficiency of either isoform results in a loss of protection. In sharp contrast, EPC appears to be triggered by an AMPK α(2)-isoform-dependent mechanism.
Collapse
Affiliation(s)
- F Spencer Gaskin
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ma ZW, Feng XB, Zheng SG, Bie P, Wang SG, Li K, Zhang YJ, Dong JH. Ethanol preconditioning reduces hepatic I/R injury by inhibiting the complement system activation. J Surg Res 2009; 166:314-23. [PMID: 19854450 DOI: 10.1016/j.jss.2009.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/17/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which cerebral, intestinal, and myocardial tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. Whether EtOH-PC can offer protective effects against hepatic I/R injury and whether these effects are associated with inhibition of complement activation were investigated. METHODS Male SD rats were divided into four groups, i.e., sham operation, ethanol control, IR, and ethanol-pretreatment I/R (EIR) groups. EtOH-PC was induced by gavaging rats with 40% ethanol at a dose of 5 g/kg body weight 24 h prior to experiment. Animal survival rate was compared. Liver function, hepatic MDA level, plasma complement C3 level, and serum hemolytic activity were determined. Histologic changes and complement C3 deposition in liver section were examined. Expression of liver complement 3 mRNA was analyzed by quantitative real-time -PCR. RESULTS The 14-d survival rates were remarkably higher in the EIR groups than in the corresponding IR groups when hepatic ischemia time was 110, 120, and 130 min. Serum ALT, AST, IL-1β, and liver tissue MDA were significantly lower, and histopathologic changes significantly milder in the EIR group than in the IR group (P <0.05). Compared with the IR group, both the reduction in CH50 and plasma C3 were significantly suppressed, and the staining of C3 in liver tissue significantly reduced in the EIR group. There were no significant differences of hepatic C3 mRNA among four groups. CONCLUSIONS Ethanol preconditioning reduces hepatic I/R injury, and the effect is associated with inhibition of complement activation.
Collapse
Affiliation(s)
- Zheng-Wei Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gaskin FS, Kamada K, Yusof M, Durante W, Gross G, Korthuis RJ. AICAR preconditioning prevents postischemic leukocyte rolling and adhesion: role of K(ATP) channels and heme oxygenase. Microcirculation 2009; 16:167-76. [PMID: 19152177 DOI: 10.1080/10739680802355897] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We previously demonstrated that pharmacologic activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) 24 hours prior to (AICAR preconditioning; AICAR-PC) ischemia/reperfusion (I/R) prevents postischemic leukocyte-endothelial cell adhesive interactions (LEI) by a mechanism initiated by endothelial nitric oxide synthase (eNOS)-dependent NO production during the period of AICAR-PC. The major aim of this study was to examine the role of ATP-sensitive potassium (K(ATP)) channels and heme oxygenase as mediators of the antiadhesive effects of AICAR-PC during I/R 24 hours later. METHODS Intravital fluorescence microscopy was used to quantify LEI in the small intestine of AICAR-preconditioned C57BL/6J mice treated with K(ATP) channel or heme oxygenase inhibitors during I/R 24 hours after AICAR-PC in separate experiments. RESULTS I/R induced marked increases in LEI relative to sham control mice, proadhesive responses that were prevented by AICAR-PC 24 hours prior to I/R. The effects of AICAR-PC to prevent postischemic LEI were abolished by K(ATP) channel or heme oxygenase inhibition during I/R. DISCUSSION/CONCLUSION Our results indicate that the antiadhesive effects of AICAR-PC are mediated by K(ATP) channel- and heme oxygenase-dependent mechanisms during I/R.
Collapse
Affiliation(s)
- F Spencer Gaskin
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, One Hospital Drive, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
7
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008. [PMID: 19032583 DOI: 10.1111/j.1530–0277.2008.00828.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008; 33:206-19. [PMID: 19032583 DOI: 10.1111/j.1530-0277.2008.00828.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 2007; 43:1048-60. [PMID: 17761301 PMCID: PMC2173699 DOI: 10.1016/j.freeradbiomed.2007.06.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 05/04/2007] [Accepted: 06/20/2007] [Indexed: 12/21/2022]
Abstract
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. In this study, we tested whether prior (24 h) administration of ethanol as a single bolus that produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects against neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species (ROS) derived from NADPH oxidase played a role as initiators of these putative protective effects. Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 h before transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed neuronal death, neuronal and dendritic degeneration, oxidative DNA damage, and glial cell activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit p67(phox) from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-nonenal) in plasma and hippocampus within the first 2 h after gavage. These effects were also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that antecedent ethanol ingestion at socially relevant levels induces neuroprotective effects in I/R by a mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest the possibility that preconditioning with other pharmacological agents that induce a mild oxidative stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Dennis K. Miller
- Department of Psychological Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Corresponding author: Ronald J. Korthuis, Ph.D., Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, MA415, University of Missouri-Columbia, Columbia, MO 65212, Phone: (573) 882-8059, Fax: (573) 884-4276, E-mail:
| |
Collapse
|
10
|
Yamaguchi T, Kamada K, Dayton C, Gaskin FS, Yusof M, Yoshikawa T, Carter P, Korthuis RJ. Role of eNOS-derived NO in the postischemic anti-inflammatory effects of antecedent ethanol ingestion in murine small intestine. Am J Physiol Heart Circ Physiol 2006; 292:H1435-42. [PMID: 17098834 DOI: 10.1152/ajpheart.00282.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ingestion of low levels of ethanol 24 h before [ethanol preconditioning (EPC)] ischemia and reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and adhesion (LA), effects that were abolished by adenosine A(2) receptor (ADO-A(2)R) antagonists or nitric oxide (NO) synthase (NOS) inhibitors. The aims of this study were to determine whether NO derived from endothelial NOS (eNOS) during the period of ethanol exposure triggered entrance into this preconditioned state and whether these events were initiated by an ADO-A(2)R-dependent mechanism. Ethanol or distilled water vehicle was administered to C57BL/6J [wild type (WT)] or eNOS-deficient (eNOS-/-) mice by gavage. Twenty-four hours later, the superior mesenteric artery was occluded for 45 min. LR and LA were quantified by intravital microscopy after 30 and 60 min of reperfusion. I/R increased LR and LA in WT mice, effects that were abolished by EPC or NO donor preconditioning (NO-PC). NO-PC was not attenuated by coincident administration of an ADO-A(2)R antagonist. I/R increased LR and LA in eNOS-/- mice to levels comparable with those noted in WT animals. However, EPC only slightly attenuated postischemic LR and LA, whereas NO-PC remained effective as a preconditioning stimulus in eNOS-/- mice. Preconditioning with an ADO-A(2)R agonist (which we previously demonstrated prevents I/R-induced LR and LA in WT animals) failed to attenuate these postischemic adhesive responses in eNOS-/- mice. Our results indicate that EPC is triggered by NO formed secondary to ADO-A(2)R-dependent eNOS activation during the period of ethanol exposure 24 h before I/R.
Collapse
Affiliation(s)
- Taiji Yamaguchi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, School of Medicine, Shreveport, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gaskin FS, Kamada K, Yusof M, Korthuis RJ. 5'-AMP-activated protein kinase activation prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2006; 292:H326-32. [PMID: 16935999 DOI: 10.1152/ajpheart.00744.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preconditioning (PC) with nitric oxide (NO) donors or agents that increase endothelial NO synthase (eNOS) activity 24 h before ischemia-reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and stationary leukocyte adhesion (LA). Since 5'-AMP-activated protein kinase (AMPK) phosphorylates eNOS at Ser1177, resulting in activation, we postulated that AMPK activation may trigger the development of a preconditioned anti-inflammatory phenotype similar to that induced by NO donors. Wild-type (WT) C57BL/6J and eNOS(-/-) mice were treated with the AMPK agonist 5-aminoimidazole-4-carboxamide 1-beta-d-furanoside (AICAR) 30 min (early AICAR PC) or 24 h (late AICAR PC) before I/R; LR and LA were quantified in single postcapillary venules in the jejunum using intravital microscopy. I/R induced comparable marked increases in LR and LA in WT and eNOS(-/-) mice relative to sham-operated (no ischemia) animals. Late AICAR PC prevented postischemic LR and LA, whereas early AICAR PC prevented LA in WT mice. Late AICAR PC was ineffective in preventing I/R-induced LR but not LA in the eNOS(-/-) mice, and the same pattern was seen in WT animals treated with the NOS inhibitor N(omega)-nitro-l-arginine. Early AICAR PC remained effective in preventing LA in eNOS(-/-) mice. Our results indicate that both early and late PC with an AMPK agonist produces an anti-inflammatory phenotype in postcapillary venules. Since the protection afforded by late AICAR PC on postischemic LR was prevented by NOS inhibition in WT mice and absent in eNOS-deficient mice, it appears that eNOS triggers this protective effect. In stark contrast, antecedent AMPK activation prevented I/R-induced LA by an eNOS-independent mechanism.
Collapse
Affiliation(s)
- F Spencer Gaskin
- Dept. of Medical Pharmacology and Physiology, Univ. of Missouri-Columbia, 1 Hospital Dr., Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
12
|
Kamada K, Gaskin FS, Yamaguchi T, Carter P, Yoshikawa T, Yusof M, Korthuis RJ. Role of calcitonin gene-related peptide in the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Am J Physiol Heart Circ Physiol 2005; 290:H531-7. [PMID: 16143644 DOI: 10.1152/ajpheart.00839.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the role of calcitonin gene-related peptide (CGRP) in the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Ethanol was administered to wild-type C57BL/6 mice on day 1 as a bolus by gavage at a dose that produces a peak plasma ethanol of 45 mg/dl 30 min after administration. Twenty-four hours later (day 2), the superior mesenteric artery was occluded for 45 min followed by 70 min of reperfusion (I/R). Intravital fluorescence microscopy was used to quantify the numbers of rolling (LR) and adherent (LA) leukocytes labeled with carboxyfluorescein diacetate succinimidyl ester in postcapillary venules of the small intestine. I/R increased LR and LA, effects that were prevented by antecedent ethanol. The postischemic anti-inflammatory effects of ethanol consumption were abolished by administration of a specific CGRP receptor antagonist [CGRP-(8-37)] or after sensory nerve neurotransmitter depletion using capsaicin administered 4 days before ethanol ingestion, which initially induces rapid release of CGRP from sensory nerves, thereby depleting stored neuropeptide. Administration of exogenous CGRP or induction of endogenous CGRP release by treatment with capsaicin 24 h before I/R mimicked the postischemic anti-inflammatory effects of antecedent ethanol ingestion. Preconditioning with capsaicin 24 h before I/R was prevented by coincident treatment with CGRP-(8-37), while exogenous CGRP induced an anti-inflammatory phenotype in mice depleted of CGRP by capsaicin administration 4 days earlier. Our results indicate that the effect of antecedent ethanol ingestion to prevent postischemic LR and LA is initiated by a CGRP-dependent mechanism.
Collapse
Affiliation(s)
- Kazuhiro Kamada
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | | | | | | | | | | |
Collapse
|