1
|
Ghnim ZS, Mahdi MS, Ballal S, Chahar M, Verma R, Al-Nuaimi AMA, Kumar MR, Al-Hussein RKA, Adil M, Jawad MJ. The role of kinesin superfamily proteins in hepatocellular carcinoma. Med Oncol 2024; 41:271. [PMID: 39400594 DOI: 10.1007/s12032-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
The most prevalent form of primary liver cancer, hepatocellular carcinoma (HCC) poses a significant global health challenge due to its limited therapeutic options. Researchers are currently focused on the complex molecular landscape that governs the initiation and progression of HCC in order to identify new avenues for diagnosis, prognosis, and treatment. In the context of HCC, the Kinesin Superfamily Proteins (KIFs) have become critical regulators of cellular processes, prompting a growing interest in their function among the diverse array of molecular actors implicated in cancer. The KIFs, a family of microtubule-based molecular motors, are renowned for their essential roles in the dynamics of mitotic spindles and intracellular transport. Beyond their well-established functions in normal cellular physiology, emerging evidence indicates that dysregulation of KIFs significantly contributes to the pathogenesis of HCC. Novel therapeutic targets and diagnostic markers are revealed through the unique opportunity to comprehend the complex interplay between KIFs and the molecular events that drive HCC.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Amritsar, Punjab, 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Zhong Q, Hong W, Xiong L. KIF3C: an emerging biomarker with prognostic and immune implications across pan-cancer types and its experiment validation in gastric cancer. Aging (Albany NY) 2024; 16:6163-6187. [PMID: 38552217 PMCID: PMC11042961 DOI: 10.18632/aging.205694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Wenbo Hong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
3
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Wang J, Che F, Zhao Y, Wei L, Chen D, Dai C, Zhang B, Zhou X, Yang B, Chen Z. The Prognostic and Therapeutic Roles of ARL-6 Gene in Hepatocellular Carcinoma. Int J Med Sci 2024; 21:207-218. [PMID: 38169538 PMCID: PMC10758142 DOI: 10.7150/ijms.88039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent human cancers. ARL-6, a member of the ADP ribosylation factor (like) (ARF) protein family, has gained attention as a potential therapeutic target in various malignancies and a prognostic biomarker. However, its specific roles in HCC, both prognostically and biochemically, remain largely unclear. Methods: To examine the functional relevance of ARL-6 in HCC, we acquired data from GEPIA, UALCAN, TIMER, TCGA, GeneMANIA, and Metascape databases. Then, we conducted immunohistochemistry on a replication sample comprising 26 HCC specimens to assess the efficacy of the ARL-6 gene. To unravel the mechanistic intricacies, we employed diverse assays such as the cell counting kit 8 (CCK8), flow cytometry, and transwell invasion assessment. Results: Our findings demonstrated the mRNA expression of ARL-6 was significantly upregulated in HCC compared to normal tissue, as evidenced by comprehensive database analysis. Immunohistochemistry further revealed that ARL-6 expression was remarkably higher in HCC than in para-carcinoma tissues. Moreover, ARL-6 expression exhibited noteworthy variations across diverse LIHC characteristics, including sample type, histological subtype, TP53 mutation status, nodal metastatic status, and cancer stage. In addition, high transcriptional levels of ARL-6 were correlated with diminished overall survival (OS) and disease-free survival (DFS) in HCC patients. Furthermore, our study indicated positive correlations between ARL-6 expression levels and the activities of tumor-infiltrating immune cells such as B cells, myeloid dendritic cells, macrophages, neutrophils, CD8+T cells, and CD4+T cells. Substantiating our findings, database analysis uncovered additional evidence of ARL-6 gene co-expression and its functional significance in HCC cases. Finally, we demonstrated the involvement of the ARL-6 gene in HCC cell invasion, proliferation, and apoptosis. Conclusions: In conclusion, our investigation sheds light on the pivotal role of ARL-6 in influencing HCC prognosis and treatment by modulating the biological activities of tumor cells. These discoveries hold promise for the development of predictive biomarkers and novel therapeutic avenues for affected patients.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fuheng Che
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Li K, Li S, Tang S, Zhang M, Ma Z, Wang Q, Chen F. KIF22 promotes bladder cancer progression by activating the expression of CDCA3. Int J Mol Med 2021; 48:211. [PMID: 34633053 PMCID: PMC8522959 DOI: 10.3892/ijmm.2021.5044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system and is associated with a high morbidity and mortality, due to the difficulty in the accurate diagnosis of patients with early‑stage bladder cancer and the lack of effective treatments for patients with advanced bladder cancer. Thus, novel therapeutic targets are urgently required for this disease. Kinesin family member 22 (KIF22) is a kinesin‑like DNA binding protein belonging to kinesin family, and is involved in the regulation of mitosis. KIF22 has also been reported to promote the progression of several types of cancer, such as breast cancer and melanoma. The present study demonstrates the high expression of KIF22 in human bladder cancer tissues. KIF22 was found to be associated with clinical features, including clinical stage (P=0.003) and recurrence (P=0.016), and to be associated with the prognosis of patients with bladder cancer. Furthermore, it was found that KIF22 silencing inhibited the proliferation of bladder cancer cells in vitro and tumor progression in mice. Additionally, it was noted that KIF22 transcriptionally activated cell division cycle‑associated protein 3 expression, which was also confirmed in tumors in mice. Taken together, the present study investigated the molecular mechanisms underlying the promotion of bladder cancer by KIF22 and provide a novel therapeutic target for the treatment of bladder cancer. Introduction.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Song Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Shuai Tang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Minghao Zhang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Zhen Ma
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Qi Wang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| | - Fangmin Chen
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin 300170, P.R. China
| |
Collapse
|
6
|
Ni S, Li J, Qiu S, Xie Y, Gong K, Duan Y. KIF21B Expression in Osteosarcoma and Its Regulatory Effect on Osteosarcoma Cell Proliferation and Apoptosis Through the PI3K/AKT Pathway. Front Oncol 2021; 10:606765. [PMID: 33585227 PMCID: PMC7879035 DOI: 10.3389/fonc.2020.606765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignancy that occurs mainly during childhood and adolescence; however, no clear molecular or biological mechanism has been identified. In this study, we aimed to explore new biomarkers for the early diagnosis, targeted treatment, and prognostic determination of osteosarcoma. We first used bioinformatics analysis to show that KIF21B can be used as a biomarker for the diagnosis and prognosis of osteosarcoma. We then examined the expression of KIF21B in human osteosarcoma tissues and cell lines using immunohistochemistry, western blotting, and qRT-PCR. It was found that KIF21B expression was significantly upregulated in osteosarcoma tissues and cell lines. After knocking down the expression of KIF21B in the osteosarcoma cell lines 143B and U2-OS, we used cell fluorescence counting, CCK-8 assays, flow cytometry, and TUNEL staining to examine the effects of KIF21B on osteosarcoma cell proliferation and apoptosis. The results demonstrated that knocking down KIF21B in 143B and U2-OS cells could increase cell apoptosis, inhibit cell proliferation, and reduce tumor formation in nude mice. Subsequently, we used gene chips and bioinformatics to analyze the differential gene expression caused by knocking down KIF21B. The results showed that KIF21B may regulate OS cell proliferation and apoptosis by targeting the PI3K/AKT pathway. We then examined the expression of PI3K/AKT- and apoptosis-related proteins using western blotting. KIF21B knockdown inhibited the PI3K pathway, downregulated Bcl-2, and upregulated Bax. Moreover, the use of PI3K/AKT pathway agonists reversed the regulatory effect of KIF21B on the apoptosis and proliferation of 143B and U2-OS cells. In conclusion, our results indicated that KIF21B plays a key role in osteosarcoma. Low KIF21B expression might indirectly increase the apoptosis and inhibit the proliferation of osteosarcoma cells through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Songjia Ni
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingming Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiqin Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wang C, Zhang R, Wang X, Zheng Y, Jia H, Li H, Wang J, Wang N, Xiang F, Li Y. Silencing of KIF3B Suppresses Breast Cancer Progression by Regulating EMT and Wnt/ β-Catenin Signaling. Front Oncol 2021; 10:597464. [PMID: 33542902 PMCID: PMC7851081 DOI: 10.3389/fonc.2020.597464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most common malignant tumors in women. Kinesin family member 3B (KIF3B) is a critical regulator in mitotic progression. The objective of this study was to explore the expression, regulation, and mechanism of KIF3B in 103 cases of breast cancer tissues, 35 metastatic lymph nodes and breast cancer cell lines, including MDA-MB-231, MDA-MB-453, T47D, and MCF-7. The results showed that KIF3B expression was up-regulated in breast cancer tissues and cell lines, and the expression level was correlated with tumor recurrence and lymph node metastasis, while knockdown of KIF3B suppressed cell proliferation, migration, and invasion both in vivo and in vitro. In addition, UALCAN analysis showed that KIF3B expression in breast cancer is increased, and the high expression of KIF3B in breast cancer is associated with poor prognosis. Furthermore, we found that silencing of KIF3B decreased the expression of Dvl2, phospho-GSK-3β, total and nucleus β-catenin, then subsequent down-regulation of Wnt/β-catenin signaling target genes such as CyclinD1, C-myc, MMP-2, MMP-7 and MMP-9 in breast cancer cells. In addition, KIF3B depletion inhibited epithelial mesenchymal transition (EMT) in breast cancer cells. Taken together, our results revealed that KIF3B is up-regulated in breast cancer which is potentially involved in breast cancer progression and metastasis. Silencing KIF3B might suppress the Wnt/β-catenin signaling pathway and EMT in breast cancer cells.
Collapse
Affiliation(s)
- Chengqin Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Runze Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Li
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Jin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fenggang Xiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
KIF3C Promotes Proliferation, Migration, and Invasion of Glioma Cells by Activating the PI3K/AKT Pathway and Inducing EMT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6349312. [PMID: 33150178 PMCID: PMC7603552 DOI: 10.1155/2020/6349312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Kinesin superfamily protein 3C (KIF3C), a motor protein of the kinesin superfamily, is expressed in the central nervous system (CNS). Recently, several studies have suggested that KIF3C may act as a potential therapeutic target in solid tumors. However, the exact function and possible mechanism of the motor protein KIF3C in glioma remain unclear. In this study, a variety of tests including CCK-8, migration, invasion, and flow cytometry assays, and western blot were conducted to explore the role of KIF3C in glioma cell lines (U87 and U251). We found that overexpression of KIF3C in glioma cell lines promoted cell proliferation, migration, and invasion and suppressed apoptosis, while silencing of KIF3C reversed these effects. Ectopic KIF3C also increased the expression of N-cadherin, vimentin, snail, and slug to promote the epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of KIF3C increased the levels of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT). These responses were reversed by KIF3C downregulation or AKT inhibition. Our results indicate that KIF3C promotes proliferation, migration, and invasion and inhibits apoptosis in glioma cells, possibly by activating the PI3K/AKT pathway in vitro. KIF3C might act as a potential biomarker or therapeutic target for further basic research or clinical management of glioma.
Collapse
|
9
|
Xue J, Sang W, Su LP, Gao HX, Cui WL, Abulajiang G, Wang Q, Zhang J, Zhang W. Proteomics reveals protein phosphatase 1γ as a biomarker associated with Hippo signal pathway in glioma. Pathol Res Pract 2020; 216:153187. [PMID: 32919304 DOI: 10.1016/j.prp.2020.153187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Hub proteins related with Hippo signal pathway in glioma were investigated using proteomics methods (Tandem Mass Tag, TMT) to determine the differentially expressed proteins in glioblastoma (GBM). Ingenuity Pathway Analysis (IPA) was performed to complement proteomic findings by identifying the top canonical pathways as well as to suggest novel proteins for the targeted therapy of glioma. A total of 222 formalin-fixed paraffin-embedded (FFPE) glioma tissue samples were used to verify the expression of protein phosphatase 1γ (PP1γ), Yes-associated protein 1 (YAP1), and SOX2 via immunohistochemistry. Bioinformatics analysis revealed these proteins as crucial in the Hippo signaling pathway in GBM. Spearman correlation was performed to analyze the relationship of these three proteins, and survival analysis was conducted to investigate their effects on prognosis. Among the 5808 proteins identified by TMT with the standard of P-value < 0.05 and fold change (FC) of>1.2 or <0.83, 1398 upregulated and 1060 downregulated differentially expressed proteins were found. IPA revealed that the Hippo signaling was activated in the top 10 canonical pathways, and PP1γ was activated in the Hippo signaling. Immunohistochemistry analysis indicated that PP1γ, YAP1, and SOX2 were highly and positively expressed in glioma. PP1γ expression was related to WHO grade (p = 0.003) and ki-67 expression (p = 0.012). Low PP1γ expression was associated with IDH1-mut in low-grade glioma (LGG; WHO grades II and III) (p = 0.037). PP1γ was positively correlated with YAP1 (p < 0.001; r = 0.259) and SOX2 (p = 0.009; r = 0.175). In survival analysis, age, WHO grade, ki-67 expression, and PP1γ expression independently predicted a short OS in total cohort (p < 0.05). Therefore, PP1γ is a hub protein associated with Hippo signal pathway in glioma, and its expression indicates poor prognosis in patients with glioma. Therefore, PP1γ may be a promising prognostic biomarker and a therapeutic target in glioma.
Collapse
Affiliation(s)
- Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China; Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830011, PR China; Department of Pathology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, No. 116 Huanghe Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830000, PR China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China
| | - Li-Ping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China; Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830011, PR China
| | - Wen-Li Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China
| | - Gulinaer Abulajiang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China; Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830011, PR China
| | - Jing Zhang
- Department of Pathology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, No. 116 Huanghe Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830000, PR China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan Southern Road, Urumqi, The Xinjiang Uygur Autonomous Region of China, 830054, PR China.
| |
Collapse
|
10
|
Yao FZ, Kong DG. Identification of kinesin family member 3B (KIF3B) as a molecular target for gastric cancer. Kaohsiung J Med Sci 2020; 36:515-522. [PMID: 32237034 DOI: 10.1002/kjm2.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignancy worldwide, with 80% mortality rate in over 70% countries. Recently, targeted therapy for GC has great clinical prospects, and it is still badly needed to find novel molecular targets to control the progression and development of GC. Kinesin family member 3B (KIF3B) is known as a microtubule motor kinesin and one of the most ubiquitously expressed KIFs. KIF3B participates in multiple cellular processes such as mitosis and spermatogenesis, and the possible role of KIF3B on tumor progression has been widely revealed. KIF3B affects the progression and metastasis of multiple types of tumors, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma; however, its potential impact on GC is still unknown. Herein, we explored the possible role of KIF3B on the progression of GC and noticed that KIF3B was high expression in tumor tissues from GC patients. KIF3B was also significantly correlated with clinical pathological characteristics such as tumor size (P = .014*) and recurrence (P = .044*). We further revealed that KIF3B depleted GC cells exhibited impaired proliferation capacity in vitro. Similarly, KIF3B depletion suppressed tumor growth of GC cells in mice. In conclusion, we identified KIF3B as a promising therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Fu-Zhou Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin, China
| | - De-Gang Kong
- Department of Hepatobiliary and Pancreatic Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells. Aging (Albany NY) 2020; 11:1342-1355. [PMID: 30822278 PMCID: PMC6428088 DOI: 10.18632/aging.101835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in β cells dysfunction. Previous studies indicated that miR-127 was specifically abundant in β cells and one of its target genes, Kif3b, promoted cell proliferation. However, the impact of the miR-127-Kif3b axis on β cells remains unknown. In this study, we revealed that miR-127 level was declined both in islets from the mice with a high-fat diet and in MIN6 cells with elevated glucose treatment. The elevated level of miR-127 attenuated β cell proliferation by repressing Kif3b expression without affecting apoptosis and cell cycle, and it dampened insulin secretion. Moreover, β cell-derived miR-127 could also affect the islet endothelial cell-line, MS1, in vitro via the transfer of extracellular vesicles (EVs). Treating MS1 cells with the EVs secreted by MIN6 cells exhibited a higher ability in cell migration and tube formation. However, this effect was abolished by the miR-127 inhibitor co-cultured with EVs-treated MS1 cells. Thus, we define that miR-127 is a crucial regulator of insulin secretion and cell proliferation in pancreatic β cells as well as a potential functional regulation factor in islet endothelial cells.
Collapse
|
12
|
KIF15 Promotes Proliferation and Growth of Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2020; 2020:6403012. [PMID: 32318326 PMCID: PMC7157793 DOI: 10.1155/2020/6403012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is thought as the most common human malignancy worldwide, and hepatocellular carcinoma (HCC) accounts for nearly 90% liver cancer. Due to its poor early diagnosis and limited treatment, HCC has therefore become the most lethal malignant cancers in the world. Recently, molecular targeted therapies showed great promise in the treatment of HCC, and novel molecular therapeutic targets is urgently needed. KIF15 is a microtubule-dependent motor protein involved in multiple cell processes, such as cell division. Additionally, KIF15 has been reported to participate in the growth of various types of tumors; however, the relation between KIF15 and HCC is unclear. Herein, our study investigated the possible role of KIF15 on the progression of HCC and found that KIF15 has high expression in tumor samples from HCC patients. KIF15 could play a critical role in the regulation of cell proliferation of HCC, which was proved by in vitro and in vivo assays. In conclusion, this study confirmed that KIF15 could be a novel therapeutic target for the treatment of HCC.
Collapse
|
13
|
Wang W, Zhang R, Wang X, Wang N, Zhao J, Wei Z, Xiang F, Wang C. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci 2020; 111:1422-1434. [PMID: 32011034 PMCID: PMC7156822 DOI: 10.1111/cas.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) displays higher heterogeneity, stronger invasiveness, higher risk of metastasis and poorer prognosis compared with major breast cancer subtypes. KIF3A, a member of the kinesin family of motor proteins, serves as a microtubule-directed motor subunit and has been found to regulate early development, ciliogenesis and tumorigenesis. To explore the expression, regulation and mechanism of KIF3A in TNBC, 3 TNBC cell lines, 98 cases of primary TNBC and paired adjacent tissues were examined. Immunohistochemistry, real-time PCR, western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques, transwell assays, scratch tests, and xenograft mice models were used. We found that KIF3A was overexpressed in TNBC and such high KIF3A expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3A suppressed TNBC cell proliferation by repressing the Rb-E2F signaling pathway and inhibited migration and invasion by repressing epithelial-mesenchymal transition. The tumor size was smaller and the number of lung metastatic nodules was lower in KIF3A depletion MDA-MB-231 cell xenograft mice than in the negative control group. In addition, KIF3A overexpression correlated with chemoresistance. These results suggested that high expression of KIF3A in TNBC was associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Weilin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Runze Zhang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiao Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ning Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Jing Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhimin Wei
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fenggang Xiang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengqin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
14
|
Zhao HQ, Dong BL, Zhang M, Dong XH, He Y, Chen SY, Wu B, Yang XJ. Increased KIF21B expression is a potential prognostic biomarker in hepatocellular carcinoma. World J Gastrointest Oncol 2020; 12:276-288. [PMID: 32206178 PMCID: PMC7081114 DOI: 10.4251/wjgo.v12.i3.276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/24/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kinesin superfamily protein member KIF21B plays an important role in regulating mitotic progression; however, the function and mechanisms of KIF21B in cancer, particularly in hepatocellular carcinoma (HCC), are unknown.
AIM To explore the role of KIF21B in hepatocellular carcinoma and its effect on prognosis after hepatectomy.
METHODS First, data on the differential expression of KIF21B in patients with HCC from The Cancer Genome Atlas database was analyzed. Subsequently, the expression levels of KIF21B in HCC cell lines and hepatocytes were detected by reverse transcription-polymerase chain reaction, and its biological effect on BEL-7404 cells was evaluated by KIF21B knockdown. Immunohistochemical analysis was used to validate the differential expression of KIF21B in HCC tissues and adjacent normal tissues from 186 patients with HCC after hepatectomy. The Kaplan-Meier method was used to assess prognosis significance.
RESULTS KIF21B expression levels were significantly higher in HCC tissues than in corresponding adjacent normal tissues. The expression levels of KIF21B in four HCC cell lines were higher than that in normal liver cells. Functional experiments showed that KIF21B knockdown remarkably suppressed cell proliferation and induced apoptosis. Moreover, immunohistochemistry results are consistent with The Cancer Genome Atlas analysis, with KIF21B expression levels being increased in HCC tissues compared to adjacent normal tissues. Univariate and multivariate analyses revealed KIF21B as an independent risk factor for overall survival and disease-free survival in patients with HCC after hepatectomy.
CONCLUSION Taken together, our results provide evidence that KIF21B plays an important role in HCC progression and may be a potential diagnostic and prognostic marker for HCC.
Collapse
Affiliation(s)
- Hui-Qi Zhao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Bao-Long Dong
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Min Zhang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Hua Dong
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Yu He
- School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Shi-Yong Chen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Gansu Province, China
| | - Biao Wu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Gansu Province, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
15
|
Lei Y, Zhou S, Hu Q, Chen X, Gu J. Carbohydrate response element binding protein (ChREBP) correlates with colon cancer progression and contributes to cell proliferation. Sci Rep 2020; 10:4233. [PMID: 32144313 PMCID: PMC7060312 DOI: 10.1038/s41598-020-60903-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Cancers are characterized by reprogrammed glucose metabolisms to fuel cell growth and proliferation. Carbohydrate response element binding protein (ChREBP) is a glucose-mediated transcription factor that strongly regulates glycolytic and lipogenic pathways. It has been shown to associate with metabolic diseases, such as obesity, diabetes and non-alcoholic fatty liver diseases. However, how it associates with cancers has not been well understood. In this study, ChREBP expression was assessed by immunohistochemistry in colon tissue arrays containing normal colon tissue and cancer tissue at different clinical stages. Tissue mRNA levels of ChREBP were also measured in a cohort of colon cancer patients. We found that ChREBP mRNA and protein expression were significantly increased in colon cancer tissue compared to healthy colon (p < 0.001), and their expression was positively correlated to colon malignancy (for mRNA, p = 0.002; for protein p < 0.001). Expression of lipogenic genes (ELOVL6 and SCD1) in colon cancer was also positively associated with colon malignancy (for both genes, p < 0.001). In vitro, ChREBP knockdown with siRNA transfection inhibited cell proliferation and induced cell cycle arrest without changes in apoptosis in colon cancer cell lines (HT29, DLD1 and SW480). Glycolytic and lipogenic pathways were inhibited but the p53 pathway was activated after ChREBP knockdown. Taken together, ChREBP expression is associated with colon malignancy and it might contribute to cell proliferation via promoting anabolic pathways and inhibiting p53. In addition, ChREBP might represent a novel clinical useful biomarker to evaluate the malignancy of colon cancer.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Shuling Zhou
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qiaoling Hu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
| |
Collapse
|
16
|
Singh AK, Tamrakar A, Jaiswal A, Kanayama N, Kodgire P. SRSF1-3, a splicing and somatic hypermutation regulator, controls transcription of IgV genes via chromatin regulators SATB2, UBN1 and histone variant H3.3. Mol Immunol 2020; 119:69-82. [DOI: 10.1016/j.molimm.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
|
17
|
Cai Y, Zhang W, Zhang R, Cui X, Fang J. Combined Use of Three Machine Learning Modeling Methods to Develop a Ten-Gene Signature for the Diagnosis of Ventilator-Associated Pneumonia. Med Sci Monit 2020; 26:e919035. [PMID: 32031163 PMCID: PMC7020762 DOI: 10.12659/msm.919035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to use three modeling methods, logistic regression analysis, random forest analysis, and fully-connected neural network analysis, to develop a diagnostic gene signature for the diagnosis of ventilator-associated pneumonia (VAP). MATERIAL AND METHODS GSE30385 from the Gene Expression Omnibus (GEO) database identified differentially expressed genes (DEGs) associated with patients with VAP. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment identified the molecular functions of the DEGs. The least absolute shrinkage and selection operator (LASSO) regression analysis algorithm was used to select key genes. Three modeling methods, including logistic regression analysis, random forest analysis, and fully-connected neural network analysis, also known as also known as the feed-forward multi-layer perceptron (MLP), were used to identify the diagnostic gene signature for patients with VAP. RESULTS Sixty-six DEGs were identified for patients who had VAP (VAP+) and who did not have VAP (VAP-). Ten essential or feature genes were identified. Upregulated genes included matrix metallopeptidase 8 (MMP8), arginase 1 (ARG1), haptoglobin (HP), interleukin 18 receptor 1 (IL18R1), and NLR family apoptosis inhibitory protein (NAIP). Down-regulated genes included complement factor D (CFD), pleckstrin homology-like domain family A member 2 (PHLDA2), plasminogen activator, urokinase (PLAU), laminin subunit beta 3 (LAMB3), and dual-specificity phosphatase 2 (DUSP2). Logistic regression, random forest, and MLP analysis showed receiver operating characteristic (ROC) curve area under the curve (AUC) values of 0.85, 0.86, and 0.87, respectively. CONCLUSIONS Logistic regression analysis, random forest analysis, and MLP analysis identified a ten-gene signature for the diagnosis of VAP.
Collapse
Affiliation(s)
- Yunfang Cai
- Department of Anesthesia, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wen Zhang
- Department of Anesthesia, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Runze Zhang
- Department of Anesthesia, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoying Cui
- Department of Anesthesia, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jun Fang
- Department of Anesthesia, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
18
|
KIF3C is associated with favorable prognosis in glioma patients and may be regulated by PI3K/AKT/mTOR pathway. J Neurooncol 2020; 146:513-521. [DOI: 10.1007/s11060-020-03399-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/03/2023]
|
19
|
Nucleic acid-based theranostics in type 1 diabetes. Transl Res 2019; 214:50-61. [PMID: 31491371 DOI: 10.1016/j.trsl.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Application of RNAi interference for type 1 diabetes (T1D) therapy bears tremendous potential. This review will discuss vehicles for oligonucleotide delivery, imaging modalities used for delivery monitoring, therapeutic targets, and different theranostic strategies that can be applied for T1D treatment.
Collapse
|
20
|
Wang X, Wang M, Li XY, Li J, Zhao DP. KIFC1 promotes the proliferation of hepatocellular carcinoma in vitro and in vivo. Oncol Lett 2019; 18:5739-5746. [PMID: 31788047 PMCID: PMC6865703 DOI: 10.3892/ol.2019.10985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of malignant tumor worldwide with a high mortality rate. In the past 20 years, the morbidity rate of HCC has increased. Progress has been made in the clinical diagnosis and therapy for HCC. However, due to the high heterogeneity and metastasis targeted therapy for HCC exhibits great promise, and novel therapeutic targets for HCC are urgently required. Kinesin family member C1 (KIFC1) is a member of the kinesin superfamily of proteins. Previous studies have indicated a potential association between KIFC1 and cancer progression. However, the potential role of KIFC1 in the development of HCC remains unclear. The present study aimed to explore the function of KIFC1 in HCC. Immunohistochemical (IHC) assays were performed to explore the KIF15 expression levels in 74 samples of HCC and corresponding non-tumor tissues. The potential association between KIF15 expression levels and clinical features was analyzed, and the effects of KIF15 on cell proliferation of HCC were detected by colony formation and MTT assays. In addition, the proliferation-related proteins Ki67 and PCNA were detected by western blotting. The possible effects of KIF15 on tumor growth were measured in mice. The results demonstrated that a high expression level of KIFC1 was associated with poor prognosis of HCC. Further results indicated that KIFC1 promoted cell proliferation of HCC in vitro. In addition, knockdown of KIFC1 suppressed tumor formation and growth in mice. Therefore, these results provide a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Xing Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xing-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Dian-Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
21
|
Zhou L, Ouyang L, Chen K, Wang X. Research progress on KIF3B and related diseases. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:492. [PMID: 31700928 DOI: 10.21037/atm.2019.08.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kinesins constitute a protein superfamily that belongs to the motor protein group. Kinesins move along microtubules to exert their various functions, which include intracellular transportation, mitosis, and cell formation. Kinesins are responsible for the transport of various membrane organelles, protein complexes, mRNA and other material, as well as the regulation of intracellular molecular signal pathways. Cumulative studies have also indicated that kinesins are related to the development of a variety of human diseases. At present, there are 14 subfamilies of the kinesin superfamily (KIFs), comprising 45 members. KIF3 is the most common expression in KIFs. KIF3 is a complex composed of a KIF3A/3B heterodimer and a kinesin-related protein, known as KAP3. These complexes are organelles and protein complexes involved in membrane binding in various tissues and transport within cells (nerve cells, melanocytes, epithelial cells, etc.). As a member of the KIF3 subfamily, KIF3B is an essential protein that can regulate cell migration, and proliferation and has critical biological functions. During mitosis, KIF3B is responsible for vesicle transport and membrane expansion, thus regulating cell migration. In recent years, more and more attention has been paid to the relationship between KIF3B and the occurrence and development of diseases. This article reviews the recent advances in the study of KIF3B and its related diseases.
Collapse
Affiliation(s)
- Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Lian Ouyang
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Keying Chen
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| | - Xucan Wang
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, China
| |
Collapse
|
22
|
Liu ZH, Dong SX, Jia JH, Zhang ZL, Zhen ZG. KIF3B Promotes the Proliferation of Pancreatic Cancer. Cancer Biother Radiopharm 2019; 34:355-361. [PMID: 31157987 DOI: 10.1089/cbr.2018.2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zhi-Hu Liu
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Shu-Xiao Dong
- Department of Obstetrics, The Third People's Hospital in Xingtai City, Xingtai City, China
| | - Jun-Hong Jia
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Zhen-Liang Zhang
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| | - Zhong-Guang Zhen
- Hepatobiliary Surgery, Xingtai People's Hospital, The Affiliated Hospital of Hebei Medical University, Xingtai City, China
| |
Collapse
|
23
|
Kravtsov O, Hartley CP, Compérat EM, Iczkowski KA. KIF3B protein expression loss correlates with metastatic ability of prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:178-181. [PMID: 31317057 PMCID: PMC6627541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
UNLABELLED Kinesin family member 3B (KIF3B) is a microtubule motor kinesin involved in mitotic progression and vasculotropism. A novel therapeutic target, it is overexpressed in several cancers [PMID 29904055]. Its significance in prostate cancer (PC) was uncertain. METHODS 89 cases, including tissue microarrays from 70 prostatectomies comprising matched cancer and benign spots, 19 additional prostatectomy tissues, plus 16 prostate cancer metastases (7 nodal and 9 distant sites; 8 had matched primary PC) were stained with rabbit polyclonal KIF3B antibody. Cytoplasmic immunoreactivity was scored: 0 (negative) to 3+ (strong and diffuse). 39 patients had no nodal metastases, 31 had positive lymph nodes, and 19 had nodes not sampled. Gleason grade groups were 1 (9), 2 (28), 3 (39), 4 (1), and 5 (12). 15 cases had cribriform pattern. AJCC stages were 2 (48), 3 (29), unknown (12). RESULTS KIF3B in PC (mean 1.0) was higher than in benign prostate (mean 0.1, P<0.01, Student t-test). All 7 available nodal metastases of PC were negative. One-third of primary PCs with nodal metastases lost all expression, compared to retained expression in all but one PC without nodal metastasis (P<0.01, chi-square). The former group also had stronger staining (mean 1.0) than metastases (mean 0.3) (P<0.01, Student t-test) and had fewer cases with any positive (>0) expression compared to cases without metastases or with unsampled lymph nodes (P<0.01, chi-square test). Reactivity of paired metastatic tissue and primary PC correlated strongly (Pearson coefficient: +0.7). No significant trends were found by grade group, cribriform status, or stage. CONCLUSIONS KIF3B is a PC marker. Metastatic cancers showed less KIF3B expression than their primary PC counterparts, and primary cases with positive nodes demonstrated reduced positivity, suggesting use as a prognostic marker. It is possible that KIF3B protein becomes altered prior to metastases, preventing immunohistochemical detection.
Collapse
Affiliation(s)
| | | | - Eva-Maria Compérat
- Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie CurieParis, France
| | | |
Collapse
|
24
|
Spainhour JC, Lim HS, Yi SV, Qiu P. Correlation Patterns Between DNA Methylation and Gene Expression in The Cancer Genome Atlas. Cancer Inform 2019; 18:1176935119828776. [PMID: 30792573 PMCID: PMC6376553 DOI: 10.1177/1176935119828776] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background: DNA methylation is a form of epigenetic modification that has been shown to play a significant role in gene regulation. In cancer, DNA methylation plays an important role by regulating the expression of oncogenes. The role of DNA methylation in the onset and progression of various cancer types is now being elucidated as more large-scale data become available. The Cancer Genome Atlas (TCGA) provides a wealth of information for the analysis of various molecular aspects of cancer genetics. Gene expression data and DNA methylation data from TCGA have been used for a variety of studies. A traditional understanding of the effects of DNA methylation on gene expression has linked methylation of CpG sites in the gene promoter region with the decrease in gene expression. Recent studies have begun to expand this traditional role of DNA methylation. Results: Here we present a pan-cancer analysis of correlation patterns between CpG methylation and gene expression. Using matching patient data from TCGA, 33 cancer-specific correlations were calculated for each CpG site and the expression level of its corresponding gene. These correlations were used to identify patterns on a per-site basis as well as patterns of methylation across the gene body. Using these identified patterns, we found genes that contain conflicting methylation signals beyond the commonly accepted association between the promoter region methylation and silencing of gene expression. Beyond gene body methylation in whole, we examined individual CpG sites and show that, even in the same gene body, some sites can have a contradictory effect on gene expression in cancers. Conclusions: We observed that within promoter regions there was a substantial amount of positive correlation between methylation and gene expression, which contradicts the commonly accepted association. We observed that the correlation between CpG methylation and gene expression does not exhibit in a tissue-specific manner, suggesting that the effects of methylation on gene expression are largely tissue independent. The analysis of correlation associated with the location of the CpG site in the gene body has led to the identification of several different methylation patterns that affect gene expression, and several examples of methylation activating gene expression were observed. Distinctly opposing or conflicting effects were seen in close proximity on the gene body, where negative and positive correlations were seen at the neighboring CpG sites.
Collapse
Affiliation(s)
- John Cg Spainhour
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hong Seo Lim
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Dong XH, Yang XJ. Role of kinesin superfamily in gastrointestinal cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:1789-1794. [DOI: 10.11569/wcjd.v26.i31.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kinesins constitute a protein superfamily that belongs to motor proteins. Kinesins move along microtubules to exert their functions. They play a crucial role in intracellular transportation, mitosis, cell formation, and cell function. Kinesin are not only responsible for the transport of various membrane organelles, protein complexes, mRNA and so on to ensure the basic activity of cells, but also can regulate intracellular molecular signal pathways. Numerous studies have shown that kinesins are closely associated with the development of a variety of human diseases, especially the formation and development of gastrointestinal tumors. This article reviews the role of kinesins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
26
|
Ma H, Du X, Zhang S, Wang Q, Yin Y, Qiu X, Da P, Yue H, Wu H, Xu F. Achaete-scute complex homologue-1 promotes development of laryngocarcinoma via facilitating the epithelial-mesenchymal transformation. Tumour Biol 2017; 39:1010428317705752. [PMID: 28618959 DOI: 10.1177/1010428317705752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Laryngeal cancer is one of the most common fatal cancers among head and neck carcinomas, whose mechanism, however, remains unclear. The proneural basic-helix-loop-helix protein achaete-scute complex homologue-1, a member of the basic helix-loop-helix family, plays a very important role in many cancers. This study aims to explore the clinical value and mechanism of achaete-scute complex homologue-1 in laryngeal cancer. Methods including Cell Counting Kit-8, flow cytometry, Transwell invasion assays, and scratch assay were adopted to further explore the bio-function of achaete-scute complex homologue-1, whose expression was examined in fresh and paraffin chip of laryngeal carcinoma tissues by means of western blot and immunohistochemistry, after the interference of achaete-scute complex homologue-1; achaete-scute complex homologue-1, an overexpression in laryngeal carcinoma whose carcinogenicity potential was confirmed via western blot, was correlative with T classification (p = 0.002), histological differentiation (p = 0.000), lymph node metastasis (p = 0.000), and poor survival (p = 0.000). Multivariate analysis shows that achaete-scute complex homologue-1 overexpression is an independent prognostic factor unfavorable to laryngeal carcinoma patients (p = 0.000). Moreover, knocking down achaete-scute complex homologue-1 expression could significantly suppress the proliferation, migration, and invasion of laryngeal carcinoma cell in vitro and disorder epithelial-mesenchymal transformation-associated protein expression. Achaete-scute complex homologue-1 plays an important role in the genesis and progression of laryngeal carcinoma and may act as a potential biomarker for therapeutic target and prognostic prediction.
Collapse
Affiliation(s)
- Huaci Ma
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodong Du
- 2 Department of Otolaryngology/Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shu Zhang
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Wang
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Yin
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoxia Qiu
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Da
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Huijun Yue
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Wu
- 1 Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fenglei Xu
- 3 Department of Otolaryngology/Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Sorenson EC, Khanin R, Bamboat ZM, Cavnar MJ, Kim TS, Sadot E, Zeng S, Greer JB, Seifert AM, Cohen NA, Crawley MH, Green BL, Klimstra DS, DeMatteo RP. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One 2017; 12:e0176562. [PMID: 28486549 PMCID: PMC5423588 DOI: 10.1371/journal.pone.0176562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare variant of HCC that most frequently affects young adults. Because of its rarity and an absence of preclinical models, our understanding of FL-HCC is limited. Our objective was to analyze chromosomal alterations and dysregulated gene expression in tumor specimens collected at a single center during two decades of experience with FL-HCC. We analyzed 38 specimens from 26 patients by array comparative genomic hybridiziation (aCGH) and 35 specimens from 15 patients by transcriptome sequencing (RNA-seq). All tumor specimens exhibited genomic instability, with a higher frequency of genomic amplifications or deletions in metastatic tumors. The regions encoding 71 microRNAs (miRs) were deleted in at least 25% of tumor specimens. Five of these recurrently deleted miRs targeted the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) gene product, and a correlating 100-fold upregulation of IGF2BP1 mRNA was seen in tumor specimens. Transcriptome analysis demonstrated intrapatient tumor similarity, independent of recurrence site or time. The p53 tumor suppressor pathway was downregulated as demonstrated by both aCGH and RNA-seq analysis. Notch, EGFR, NRAS, and RB1 pathways were also significantly dysregulated in tumors compared with normal liver tissue. The findings illuminate the genomic and transcriptomic landscape of this rare disease and provide insight into dysregulated oncogenic pathways and potential therapeutic targets in FL-HCC.
Collapse
Affiliation(s)
- Eric C. Sorenson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Raya Khanin
- Department of Computational Biology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Zubin M. Bamboat
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Michael J. Cavnar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Teresa S. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eran Sadot
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Shan Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jonathan B. Greer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Adrian M. Seifert
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Noah A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Megan H. Crawley
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Benjamin L. Green
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Shen HQ, Xiao YX, She ZY, Tan FQ, Yang WX. A novel role of KIF3b in the seminoma cell cycle. Exp Cell Res 2017; 352:95-103. [PMID: 28161539 DOI: 10.1016/j.yexcr.2017.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
KIF3b is a protein of the kinesin-2 family which plays an important role in intraflagellar transport. Testis cancer is a common cancer among young men. Its diagnostic rate is increasing and over half of the cases are seminomas. Many aspects of the mechanism and gene expression background of this cancer remain unclear. Using western-blotting and semi-quantitative PCR we found high protein levels of KIF3b enrichment in seminoma tissue despite the mRNA levels remaining equivalent to that of normal testicular tissues. The distribution of KIF3b was mainly in cells with division potential. Wound-healing assays and cell counting kit assays showed that the knockdown of KIF3b significantly suppressed cell migration ability, viability and number in HeLa cells. Immunofluorescence images during the cell cycle revealed that KIF3b tended to gather at the spindles and was enriched at the central spindle. This indicated that KIF3b may also have direct impacts upon spindle formation and cytokinesis. By counting the numbers of nuclei, spindles and cells, we found that the rates of multipolar division and multi-nucleation were raised in KIF3b-knockdown cells. In this way we demonstrate that KIF3b functions importantly in mitosis and may be essential to seminoma cell division and proliferation as well as being necessary for normal cell division.
Collapse
Affiliation(s)
- Hao-Qing Shen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
29
|
NF-YC in glioma cell proliferation and tumor growth and its role as an independent predictor of patient survival. Neurosci Lett 2016; 631:40-49. [DOI: 10.1016/j.neulet.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022]
|
30
|
Lu T, Bao Z, Wang Y, Yang L, Lu B, Yan K, Wang S, Wei H, Zhang Z, Cui G. Karyopherinβ1 regulates proliferation of human glioma cells via Wnt/β-catenin pathway. Biochem Biophys Res Commun 2016; 478:1189-97. [PMID: 27568288 DOI: 10.1016/j.bbrc.2016.08.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/14/2016] [Indexed: 11/28/2022]
Abstract
Karyopherinβ1 (KPNB1), one of the cytosolic factors involved in the selective protein transport across nucleus, docked at nuclear pore complex and transported through nuclear envelope in an ATP-dependent style, assisting proteins to be recognized as import substrates. It has been reported to be bound up with the origination and progress of lung cancer, cervical cancer, head and neck cancer and hepatocellular carcinoma. In current study, we demonstrated for the first time that the role of KPNB1 in human glioma. KPNB1 was over-expressed as the well-known trend of Ki-67(p < 0.01) and tightly closed to poor prognosis, as an independent prognostic factor. In vitro, up-regulation of KPNB1 was accompanied by certain rising levels of proliferation markers, employing U251 and U87MG cells as serum-starve models. Silencing KPNB1 in U251 and U87MG led to G1 phase arrested directly via flow cytometry analysis. In the nucleus of KPNB1-depletion cell models, the decreasing expression of KPNB1 and β-catenin was detected respectively, which indicated that KPNB1 functioned via β-catenin signal. Besides, the interaction between KPNB1 and β-catenin was proved clearly by immunoprecipitation. Taken together, it showed that KPNB1 might enhance human glioma proliferation via Wnt/β-Catenin Pathway.
Collapse
Affiliation(s)
- Ting Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Zhen Bao
- Department of Neurosurgery, The Affiliated Dushuhu Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Lixiang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Bing Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ke Yan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Shaozhen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - He Wei
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
31
|
Li Y, Zong Y, Xiao Z, Zhu M, Xiao H, Qi J, Liu K, Wang H. Developmental Stage-Specific Embryonic Induction of HepG2 Cell Differentiation. Dig Dis Sci 2016; 61:1098-106. [PMID: 26668056 DOI: 10.1007/s10620-015-3966-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/07/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Although hepatocellular carcinoma cells can sometimes undergo differentiation in an embryonic microenvironment, the mechanism is poorly understood. AIM The developmental stage-specific embryonic induction of tumor cell differentiation was investigated. METHODS Both chick and mouse liver extracts and hepatoblast-enriched cells at different developmental stages were used to treat human hepatoma HepG2 cells, and the effects on the induction of differentiation were evaluated. The nuclear factors controlling differentiation, hepatocyte nuclear factor (HNF)-4α, HNF-1α, HNF-6 and upstream stimulatory factor-1 (USF-1), and the oncogene Myc and alpha-fetoprotein (AFP) were measured. HNF-4α RNA interference was used to verify the role of HNF-4α. Embryonic induction effects were further tested in vivo by injecting HepG2 tumor cells into immunodeficient nude mice. RESULTS The 9-11-days chick liver extracts and 13.5-14.5-days mouse hepatoblast-enriched cells could inhibit proliferation and induce differentiation of HepG2 cells, leading to either death or maturation to hepatocytes. The maturation of surviving HepG2 cells was confirmed by increases in the expressions of HNF-4α, HNF-1α, HNF-6, and USF-1, and decreases in Myc and AFP. The embryonic induction of HepG2 cell maturation could be attenuated by HNF-4α RNA interference. Furthermore, the 13.5-days mouse hepatoblast culture completely eliminated HepG2 tumors with inhibited Myc and induced HNF-4α, confirming this embryonic induction effect in vivo. CONCLUSIONS This study demonstrated that developmental stage-specific embryonic induction of HepG2 cell differentiation might help in understanding embryonic differentiation and oncogenesis.
Collapse
Affiliation(s)
- Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yanhong Zong
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Zhigang Xiao
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Mengxuan Zhu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Hui Xiao
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Jinsheng Qi
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| | - Kun Liu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| |
Collapse
|
32
|
Bao Z, Duan C, Gong C, Wang L, Shen C, Wang C, Cui G. Protein phosphatase 1γ regulates the proliferation of human glioma via the NF-κB pathway. Oncol Rep 2016; 35:2916-26. [PMID: 26936744 DOI: 10.3892/or.2016.4644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1γ (PP1γ), a member of mammalian protein phosphatases, serine/threonine phosphatases, catalyzes the majority of protein dephosphorylation events and regulates diverse cellular processes, such as neuronal signaling, muscle contraction, glycogen synthesis, and cell proliferation. However, its expression and potential functions in human glioma is unclear. In this study, we detected the high expression of PP1γ and phosphorylated p65 (p-p65) in human glioma tissues. Besides, we demonstrated that upregulation of PP1γ was tightly related to poor 5-year survival via systemic statistical analysis. Employing serum-starved and re-feeding models of U251 and U87MG, we observed the increasing expression of PP1γ and p-p65 were accompanied by the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen (PCNA). Employing depletion-PP1γ models, we found downregulated PP1γ and p-p65 compared with upregulated IκBα, which indicates the inhibition of NF-κB pathway, and flow cytometry analysis confirmed the weakened cell proliferation. Moreover, we found that the translocation of p65 into the nucleus was impaired. Collectively, we identified the positive correlation between upregulation of PP1γ and human glioma cell proliferation and that knock-down of PP1γ alleviated the glioma proliferation by reducing p65 transportation into the nucleus. The results showed that PP1γ could accelerate human glioma proliferation via the NF-κB pathway.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Chengwei Duan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Chaoyan Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Cheng Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
33
|
Bao Z, Qiu X, Wang D, Ban N, Fan S, Chen W, Sun J, Xing W, Wang Y, Cui G. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells. Pathol Res Pract 2016; 212:264-73. [PMID: 26810579 DOI: 10.1016/j.prp.2015.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/26/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiaojun Qiu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Donglin Wang
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Na Ban
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Shaochen Fan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wenjuan Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jie Sun
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Weikang Xing
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
34
|
Knocking down the expression of TRA2β inhibits the proliferation and migration of human glioma cells. Pathol Res Pract 2015; 211:731-9. [DOI: 10.1016/j.prp.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/04/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
|
35
|
Wang C, Wang C, Wei Z, Li Y, Wang W, Li X, Zhao J, Zhou X, Qu X, Xiang F. Suppression of motor protein KIF3C expression inhibits tumor growth and metastasis in breast cancer by inhibiting TGF-β signaling. Cancer Lett 2015; 368:105-114. [PMID: 26272184 DOI: 10.1016/j.canlet.2015.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cause of death among women. KIF3C, a member of kinesin superfamily, functions as a motor protein involved in axonal transport in neuronal cells. To explore the expression, regulation and mechanism of KIF3C in breast cancer, 4 breast cancer cell lines and 93 cases of primary breast cancer and paired adjacent tissues were examined. Immunohistochemistry, Real Time Polymerase Chain Reaction (RT-PCR), Western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques and xenograft mice model were used. We found that KIF3C was over-expressed in breast cancer tissues and such high KIF3C expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3C by shRNA inhibited epithelial-mesenchymal transition and metastasis by inhibiting TGF-β signaling and suppressed breast cancer cell proliferation through inducing G2/M phase arrest. The tumor size was smaller and the number of lung metastatic nodules was less in KIF3C depletion MDA-MB-231 cell xenograft mice than in negative control group. These results suggested that high expression of KIF3C in breast cancer may be associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Chengqin Wang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China.
| | - Chenggang Wang
- Department of Emergency, Binzhou Center Hospital, Binzhou, China
| | - Zhimin Wei
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhong Wang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China
| | - Xia Li
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Zhou
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Fenggang Xiang
- Department of Pathology, Medical College of Qingdao University, Qingdao, China; Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
36
|
Luo Y, Ren F, Liu Y, Shi Z, Tan Z, Xiong H, Dang Y, Chen G. Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med 2015; 8:10235-10247. [PMID: 26379815 PMCID: PMC4565198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The relationship between Ki-67 labeling index (LI) and clinical outcome in hepatocellular carcinoma (HCC) has been investigated by various studies, but no consistent result has been concluded. To define the prognostic significance of Ki-67 LI in patients with HCC, we performed a meta-analysis. METHODS We searched for literatures in the following databases: PubMed, ISI Web of Science, EMBASE, Cochrane Central Register of Controlled Trials, Science Direct, Wiley Online Library, Google Scholar, China National Knowledge Infrastructure (CNKI), Chinese VIP and WanFang Databases. Our search ended on April 6th, 2015. Data were extracted from eligible studies and the correlation between Ki-67 LI and clinicopathological features of HCC was analyzed and pooled hazard ratios (HRs) for eligible studies were calculated by STATA 11.0 (STATA Corp., College, TX). RESULTS In total, 54 studies involving 4996 patients were included in the current meta-analysis. The meta-analysis provided evidence that high Ki-67 LI was closely associated with histological grade, tumor size, number of tumor nodes, the status of metastasis, cirrhosis and vein invasion in HCC patients. The pooled HRs showed that high Ki-67 LI had an unfavorable impact on disease-free survival (DFS) (HR=1.626, 95% confidence interval (CI): 1.364-1.939, P<0.001), relapse-free survival (RFS) (HR=1.820, 95% CI: 1.215-2.725, P=0.004) and overall survival (OS) (HR=1.170, 95% CI: 1.102-1.243, P<0.001), respectively. Additionally, subgroup analysis indicated that high Ki-67 LI was related to poorer DFS, RFS and OS independent of regions, treatment strategies or statistical methods, except that no statistical significance was found on RFS (HR=2.413, 95% CI: 0.523-11.142, P=0.259) and OS (HR=1.998, 95% CI: 0.797-5.009, P=0.14) in patients with liver transplantation. CONCLUSIONS Our meta-analysis suggests that higher Ki-67 LI confers a fast progression and poor prognosis for HCC patients.
Collapse
Affiliation(s)
- Yihuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fanghui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yongru Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhenhong Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhong Tan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Huojie Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
37
|
Niu ZS, Niu XJ, Wang M. Management of hepatocellular carcinoma: Predictive value of immunohistochemical markers for postoperative survival. World J Hepatol 2015; 7:7-27. [PMID: 25624992 PMCID: PMC4295195 DOI: 10.4254/wjh.v7.i1.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for over 90% of all primary liver cancers. With an ever increasing incidence trend year by year, it has become the third most common cause of death from cancer worldwide. Hepatic resection is generally considered to be one of the most effective therapies for HCC patients, however, there is a high risk of recurrence in postoperative HCC. In clinical practice, there exists an urgent need for valid prognostic markers to identify patients with prognosis, hence the importance of studies on prognostic markers in improving the prediction of HCC prognosis. This review focuses on the most promising immunohistochemical prognostic markers in predicting the postoperative survival of HCC patients.
Collapse
|
38
|
Guo J, Yang L, Huang J, Liu X, Qiu X, Tao T, Liu Y, He X, Ban N, Fan S, Sun G. Knocking down the expression of SYF2 inhibits the proliferation of glioma cells. Med Oncol 2014; 31:101. [PMID: 24985881 DOI: 10.1007/s12032-014-0101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023]
|