1
|
Wu T, Orschell CM. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. Int J Radiat Biol 2023; 99:1066-1079. [PMID: 36862990 PMCID: PMC10330482 DOI: 10.1080/09553002.2023.2187479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Singh VK, Seed TM. The safety and efficacy of interleukin 11 for radiation injury. Expert Opin Drug Saf 2023; 22:105-109. [PMID: 36846931 DOI: 10.1080/14740338.2023.2185604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Singh VK, Seed TM. Radiation countermeasures for hematopoietic acute radiation syndrome: growth factors, cytokines and beyond. Int J Radiat Biol 2021; 97:1526-1547. [PMID: 34402734 DOI: 10.1080/09553002.2021.1969054] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE The intent of this article is to report the status of some of the pharmaceuticals currently in late stage development for possible use for individuals unwantedly and acutely injured as a result of radiological/nuclear exposures. The two major questions we attempt to address here are: (a) What medicinals are currently deemed by regulatory authorities (US FDA) to be safe and effective and are being stockpiled? (b) What additional agents might be needed to make the federal/state/local medicinal repositories more robust and useful in effectively managing contingencies involving radiation overexposures? CONCLUSIONS A limited number (precisely four) of medicinals have been deemed safe and effective, and are approved by the US FDA for the 'hematopoietic acute radiation syndrome (H-ARS).' These agents are largely recombinant growth factors (e.g. rhuG-CSF/filgrastim, rhuGM-CSF/sargramostim) that target and stimulate myeloid progenitors within bone marrow. Romiplostim, a small molecular agonist that enhances platelet production via stimulation of bone marrow megakaryocytes, has been recently approved and indicated for H-ARS. It is critical that additional agents for other major sub-syndromes of ARS (gastrointestinal-ARS) be approved. Future success in developing such medicinals will undoubtedly entail some form of a polypharmaceutical strategy, or perhaps novel, bioengineered chimeric agents with multiple, radioprotective/radiomitigative functionalities.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
5
|
Delayed effects of acute whole body lethal radiation exposure in mice pre-treated with BBT-059. Sci Rep 2020; 10:6825. [PMID: 32321983 PMCID: PMC7176697 DOI: 10.1038/s41598-020-63818-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
The threat of nuclear exposure is heightened and it is imperative to identify potential countermeasures for acute radiation syndrome. Currently no countermeasures have been approved for prophylactic administration. Effective countermeasures should function to increase survival in the short term as well as to increase the overall prognosis of an exposed individual long term. Here we describe the use of a promising radiation countermeasure, BBT-059, and the results of a long term mouse study (up to 12 months) in the male CD2F1 strain using 60Co gamma irradiation (~0.6 Gy/min, 7.5-12.5 Gy). We report the dose reduction factor of 1.28 for BBT-059 (0.3 mg/kg) compared to control administered 24 h prior to irradiation. In the long term study animals showed accelerated recovery in peripheral blood cell counts, bone marrow colony forming units, sternal cellularity and megakaryocyte numbers in drug treated mice compared to formulation buffer. In addition, increased senescence was observed in the kidneys of animals administered control or drug and exposed to the highest doses of radiation. Decreased levels of E-cadherin, LaminB1 and increased levels of Cyc-D and p21 in spleen lysates were observed in animals administered control. Taken together the results indicate a high level of protection following BBT-059 administration in mice exposed to lethal and supralethal doses of total body gamma-radiation.
Collapse
|
6
|
Satyamitra M, Cary L, Dunn D, Holmes-Hampton GP, Thomas LJ, Ghosh SP. CDX-301: a novel medical countermeasure for hematopoietic acute radiation syndrome in mice. Sci Rep 2020; 10:1757. [PMID: 32019942 PMCID: PMC7000413 DOI: 10.1038/s41598-020-58186-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023] Open
Abstract
Bone marrow failure and hematopoietic damage is one of the major consequences of irradiation-induced lethality. There is an immediate need to develop medical countermeasures (MCMs) to combat irradiation-induced lethality. We tested the efficacy of CDX-301, developed by Celldex Therapeutics Inc., in mice exposed to Co-60 gamma total body irradiation (TBI). The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to TBI. A single dose of CDX-301 administered 24 h prior to 24 h post–exposure conferred significant survival. Accelerated recovery from irradiation-induced peripheral blood cytopenia, bone marrow damage as well as apoptosis in sternum was observed in mice pre-treated with CDX-301. Analysis of splenocytes revealed alterations in T cell profiles that were dependent on the time of drug administration. Prophylactic treatment of CDX-301 resulted in increased splenic CD3+ T cells, specifically CD4+T helper cells, compared to splenocytes from non-irradiated mice. These results indicate that CDX-301 is a promising radiation countermeasure and demonstrate its capability to protect cells within hematopoietic organs. These data support potential use of CDX-301, both pre- and post-radiation, against hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.
Collapse
Affiliation(s)
- Merriline Satyamitra
- Radiation and Nuclear Countermeasure Program, DAIT, NIAID, 5601 Fishers Lane, Rockville, MD, 20892, USA
| | - Lynnette Cary
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Bethesda, Bethesda, MD, 20889, USA
| | - Dylan Dunn
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Bethesda, Bethesda, MD, 20889, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Bethesda, Bethesda, MD, 20889, USA
| | | | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences Bethesda, Bethesda, MD, 20889, USA.
| |
Collapse
|
7
|
Sharma NK, Stone S, Kumar VP, Biswas S, Aghdam SY, Holmes-Hampton GP, Fam CM, Cox GN, Ghosh SP. Mitochondrial Degeneration and Autophagy Associated With Delayed Effects of Radiation in the Mouse Brain. Front Aging Neurosci 2020; 11:357. [PMID: 31956306 PMCID: PMC6951400 DOI: 10.3389/fnagi.2019.00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are linked with various radiation responses, including mitophagy, genomic instability, apoptosis, and the bystander effect. Mitochondria play an important role in preserving cellular homeostasis during stress responses, and dysfunction in mitochondrial contributes to aging, carcinogenesis and neurologic diseases. In this study, we have investigated the mitochondrial degeneration and autophagy in the hippocampal region of brains from mice administered with BBT-059, a long-acting interleukin-11 analog, or its formulation buffer 24 h prior to irradiation at different radiation doses collected at 6 and 12 months post-irradiation. The results demonstrated a higher number of degenerating mitochondria in 12 Gy BBT-059 treated mice after 6 months and 11.5 Gy BBT-059 treated mice after 12 months as compared to the age-matched naïve (non-irradiated control animals). Apg5l, Lc3b and Sqstm1 markers were used to analyze the autophagy in the brain, however only the Sqstm1 marker exhibited significantly reduced expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to naïve. Immunohistochemistry (IHC) results of Bcl2 also demonstrated a decrease in expression after 12 months in 11.5 Gy BBT-059 treated mice as compared to other groups. In conclusion, our results demonstrated that higher doses of ionizing radiation (IR) can cause persistent upregulation of mitochondrial degeneration. Reduced levels of Sqstm1 and Bcl2 can lead to intensive autophagy which can lead to degradation of cellular structure.
Collapse
Affiliation(s)
- Neel K Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sasha Stone
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Saeed Y Aghdam
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - George N Cox
- Bolder Biotechnology, Inc., Boulder, CO, United States
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Yu KM, Yiu-Nam Lau J, Fok M, Yeung YK, Fok SP, Hu TL, Tsai YJ, Choo QL. Pharmacokinetic and Pharmacodynamic Evaluation of Different PEGylated Human Interleukin-11 Preparations in Animal Models. J Pharm Sci 2018; 107:2755-2763. [PMID: 30005986 DOI: 10.1016/j.xphs.2018.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022]
Abstract
Treating thrombocytopenia induced by chemotherapy remains an unmet-medical need. The use of recombinant human interleukin-11 (rhIL-11) requires repeated injections and induces significant fluid retention in some patients. Modification of human interleukin-11 with chemically inert polyethylene glycol polymer (PEG) may extend the peripheral circulation half-life leading to an improved pharmacokinetic and pharmadynamic profile. In this study, a number of rhIL-11 PEG conjugates were created to determine the optimal approach to prolong circulating half-life with the most robust pharmacological effect. The lead candidate was found to be a single 40-kDa Y-shaped PEG linked to the N-terminus, which produced a long-lasting circulating half-life, enhanced efficacy and alleviated side effect of dilutional anemia in healthy rat models. This candidate was also shown to be effective in myelosuppressive rats in preventing the occurrence of severe thrombocytopenia while ameliorating dilutional anemia, compared to rats receiving daily administration of unmodified rhIL-11 at the same dose. These data indicated that a single injection of the selected modified rhIL-11 for each cycle of chemotherapy regimen is potentially feasible. This approach may also be useful in treating patients of acute radiation syndrome when frequent administration is not feasible in a widespread event of a major radiation exposure.
Collapse
Affiliation(s)
- Kuo-Ming Yu
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Johnson Yiu-Nam Lau
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Manson Fok
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong; Faculty of Health Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yuk-Keung Yeung
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Siu-Ping Fok
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Tsan-Lin Hu
- Biomedical Technology and Device Research Labs, Industrial Technology and Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu, Taiwan 31040
| | - Yuan-Jang Tsai
- Biomedical Technology and Device Research Labs, Industrial Technology and Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu, Taiwan 31040
| | - Qui-Lim Choo
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| |
Collapse
|
9
|
Kumar VP, Biswas S, Sharma NK, Stone S, Fam CM, Cox GN, Ghosh SP. PEGylated IL-11 (BBT-059): A Novel Radiation Countermeasure for Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2018; 115:65-76. [PMID: 29787432 PMCID: PMC5967654 DOI: 10.1097/hp.0000000000000841] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interleukin-11 was developed to reduce chemotherapy-induced thrombocytopenia; however, its clinical use was limited by severe adverse effects in humans. PEGylated interleukin-11 (BBT-059), developed by Bolder Biotechnology, Inc., exhibited a longer half-life in rodents and induced longer-lasting increases in hematopoietic cells than interleukin-11. A single dose of 1.2 mg kg of BBT-059, administered subcutaneously to CD2F1 mice (12-14 wk, male) was found to be safe in a 14 d toxicity study. The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to Co gamma total-body irradiation. A single dose of 0.3 mg kg, administered either 24 h pre-, 4 h post-, or 24 h postirradiation increased the survival of mice to 70-100% from lethal doses of radiation. Preadministration (-24 h) of the drug conferred a significantly (p < 0.05) higher survival compared to 24 h post-total-body irradiation. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pretreated with BBT-059. The drug also increased bone marrow cellularity and megakaryocytes and accelerated multilineage hematopoietic recovery. In addition, BBT-059 inhibited the induction of radiation-induced hematopoietic biomarkers, thrombopoietin, erythropoietin, and Flt-3 ligand. These results indicate that BBT-059 is a promising radiation countermeasure, demonstrating its potential to be used both pre- and postirradiation for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.
Collapse
Affiliation(s)
- Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889
| | - Neel K. Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889
| | - Sasha Stone
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889
| | | | | | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889
| |
Collapse
|
10
|
Yu KM, Lau JYN, Fok M, Yeung YK, Fok SP, Zhang S, Ye P, Zhang K, Li X, Li J, Xu Q, Wong WT, Choo QL. Preclinical evaluation of the mono-PEGylated recombinant human interleukin-11 in cynomolgus monkeys. Toxicol Appl Pharmacol 2018; 342:39-49. [PMID: 29407773 DOI: 10.1016/j.taap.2018.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
The mono-PEGylated recombinant human interleukin-11 (rhIL-11) was evaluated for its pharmacology and toxicology profile in non-human primates. This PEGylated IL-11 (PEG-IL11) showed a much prolonged circulating half-life of 67h in cynomolgus monkeys as compared to its un-PEGylated counterpart (~3h) through subcutaneous administration, implicating that a single injection of the recommended dose will effectively enhance thrombopoiesis in humans for a much longer period of time compared to rhIL-11 in humans (t1/2=6.9h). The toxicokinetics study of single dose and multiple doses showed that systemic exposure was positively correlated with the dosing level, implying that efficacy and toxicity were mechanism-based. A single high dose at 6.25mg/kg through subcutaneous route revealed tolerable and transient toxicity. Multiple-dose in monkeys receiving 0.3mg/kg weekly of the drug developed only mild to moderate toxicity. Major adverse events and immunogenicity in monkeys were only observed in the overdose groups. Bones were positively impacted; while reversible toxicities in heart, liver, kidney and lung observed were likely to be consequences of fluid retention. In summary, the PEG moiety on rhIL-11 did not elicit additional toxicities, and the drug under investigation was found to be well tolerated in monkeys after receiving a single effective dose of 0.1-0.3mg/kg through subcutaneous delivery, which may be allometrically scaled to a future clinical dose at 30-100μg/kg, creating a potential long acting, safer, and more convenient treatment approach based on rhIL-11.
Collapse
Affiliation(s)
- Kuo-Ming Yu
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China; Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong.
| | - Johnson Yiu-Nam Lau
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Manson Fok
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Yuk-Keung Yeung
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Siu-Ping Fok
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Suxing Zhang
- KG Pharma Limited, Wuhua Road, Zhangcha Subdistrict, Foshan 528000, China
| | - Peizhen Ye
- KG Pharma Limited, Wuhua Road, Zhangcha Subdistrict, Foshan 528000, China
| | - Kezhi Zhang
- KG Pharma Limited, Wuhua Road, Zhangcha Subdistrict, Foshan 528000, China
| | - Xiaobo Li
- New South Center for Safety Evaluation of Drugs, 436, Chentai Road, Baiyun District, Guangzhou, China
| | - Juan Li
- New South Center for Safety Evaluation of Drugs, 436, Chentai Road, Baiyun District, Guangzhou, China
| | - Qin Xu
- New South Center for Safety Evaluation of Drugs, 436, Chentai Road, Baiyun District, Guangzhou, China; Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, China
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong
| | - Qui-Lim Choo
- Nansha Biologics (Hong Kong) Ltd., Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong, China
| |
Collapse
|
11
|
Singh VK, Garcia M, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part II. Countermeasures for limited indications, internalized radionuclides, emesis, late effects, and agents demonstrating efficacy in large animals with or without FDA IND status. Int J Radiat Biol 2017; 93:870-884. [DOI: 10.1080/09553002.2017.1338782] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Melissa Garcia
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
12
|
Shepelkova G, Evstifeev V, Majorov K, Bocharova I, Apt A. Therapeutic Effect of Recombinant Mutated Interleukin 11 in the Mouse Model of Tuberculosis. J Infect Dis 2016; 214:496-501. [PMID: 27190186 DOI: 10.1093/infdis/jiw176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Earlier we demonstrated that blocking of interleukin 11 (IL-11) by systemic administration of anti-IL-11 antibodies attenuates severity of Mycobacterium tuberculosis infection in mice. The substitution W147A in the IL-11 molecule creates the form of cytokine capable to disrupt gp130/IL11R signaling complex formation, thus serving as a high-affinity specific antagonist of IL-11-mediated signaling. We hypothesized that this mutant form of IL-11 may serve as an effective tool for inhibition of native IL-11 activity in vivo. We established the recombinant W147A mutant form of IL-11 in an optimized Escherichia coli expression system and administered it as the aerosol in the lungs of M. tuberculosis-susceptible I/St mice infected with M. tuberculosis Our results show that this therapeutic approach markedly inhibits tuberculous inflammation in lungs, increases the survival time of infected animals, and decreases expression of key inflammatory factors at the RNA and protein levels. These findings are a step toward clinical evaluation of the anti-IL-11 therapy for tuberculosis.
Collapse
Affiliation(s)
- Galina Shepelkova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Vladimir Evstifeev
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Konstantin Majorov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Irina Bocharova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|