1
|
Yaghmaei H, Bahanesteh A, Soltanipur M, Takaloo S, Rezaei M, Siadat SD. The Role of Gut Microbiota Modification in Nonalcoholic Fatty Liver Disease Treatment Strategies. Int J Hepatol 2024; 2024:4183880. [PMID: 39444759 PMCID: PMC11498984 DOI: 10.1155/2024/4183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/25/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most common chronic liver diseases is nonalcoholic fatty liver disease (NAFLD), which affects many people around the world. Gut microbiota (GM) dysbiosis seems to be an influential factor in the pathophysiology of NAFLD because changes in GM lead to fundamental changes in host metabolism. Therefore, the study of the effect of dysbiosis on the pathogenicity of NAFLD is important. European clinical guidelines state that the best advice for people with NAFLD is to lose weight and improve their lifestyle, but only 40% of people can achieve this goal. Accordingly, it is necessary to provide new treatment approaches for prevention and treatment. In addition to dietary interventions and lifestyle modifications, GM modification-based therapies are of interest. These therapies include probiotics, synbiotics, fecal microbiota transplantation (FMT), and next-generation probiotics. All of these treatments have had promising results in animal studies, and it can be imagined that acceptable results will be obtained in human studies as well. However, further investigations are required to generalize the outcomes of animal studies to humans.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masood Soltanipur
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Takaloo
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Mahdi Rezaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Moreau GB, Naz F, Petri WA. Fecal microbiota transplantation stimulates type 2 and tolerogenic immune responses in a mouse model. Anaerobe 2024; 86:102841. [PMID: 38521227 DOI: 10.1016/j.anaerobe.2024.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. While previous work on fecal microbiota transplantation (FMT), a highly effective treatment for CDI, has focused on colonization resistance mounted against C. difficile by FMT-delivered commensals, the effects of FMT on host gene expression are relatively unexplored. This study aims to identify transcriptional changes associated with FMT, particularly changes associated with protective immune responses. METHODS Gene expression was assessed on day 2 and day 7 after FMT in mice after antibiotic-induced dysbiosis. Flow cytometry was also performed on colon and mesenteric lymph nodes at day 7 to investigate changes in immune cell populations. RESULTS FMT administration after antibiotic-induced dysbiosis successfully restored microbial alpha diversity to levels of donor mice by day 7 post-FMT. Bulk RNA sequencing of cecal tissue at day 2 identified immune genes, including both pro-inflammatory and Type 2 immune pathways as upregulated after FMT. RNA sequencing was repeated on day 7 post-FMT, and expression of these immune genes was decreased along with upregulation of genes associated with restoration of intestinal homeostasis. Immunoprofiling on day 7 identified increased colonic CD45+ immune cells that exhibited dampened Type 1 and heightened regulatory and Type 2 responses. These include an increased abundance of eosinophils, alternatively activated macrophages, Th2, and T regulatory cell populations. CONCLUSION These results highlight the impact of FMT on host gene expression, providing evidence that FMT restores intestinal homeostasis after antibiotic treatment and facilitates tolerogenic and Type 2 immune responses.
Collapse
Affiliation(s)
- G Brett Moreau
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Farha Naz
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Levy B, Fliss Isakov N, Ziv-Baran T, Leshno M, Maharshak N, Werner L. Economic and Chronologic Optimization of Fecal Donors Screening Process. MDM Policy Pract 2024; 9:23814683241254809. [PMID: 38873648 PMCID: PMC11171430 DOI: 10.1177/23814683241254809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/01/2024] [Indexed: 06/15/2024] Open
Abstract
Background. Fecal microbial transplantation (FMT) is the delivery of fecal microbiome, isolated from healthy donors, into a patient's gastrointestinal tract. FMT is a safe and efficient treatment for recurrent Clostridioides difficile infection. Donors undergo strict screening to avoid disease transmission. This consists of several blood and stool tests, which are performed in a multistage, costly process. We performed a cost-minimizing analysis to find the optimal order in which the tests should be performed. Methods. An algorithm to optimize the order of tests in terms of cost was defined. Performance analysis for disqualifying a potential healthy donor was carried out on data sets based on either the published literature or our real-life data. For both data sets, we calculated the total cost to qualify a single donor according to the optimal order of tests, suggested by the algorithm. Results. Applying the algorithm to the published literature revealed potential savings of 94.2% of the cost of screening a potential donor and 7.05% of the cost to qualify a single donor. In our cohort of 87 volunteers, 53 were not eligible for donation. Of 34 potential donors, 10 were disqualified due to abnormal lab tests. Applying our algorithm to optimize the order of tests, the average cost for screening a potential donor resulted in potential savings of 49.9% and a 21.3% savings in the cost to qualify a single donor. Conclusions. Improving the order and timing of the screening tests of potential FMT stool donors can decrease the costs by about 50% per subject. Highlights What is known:Fecal microbial transplantation (FMT) is the transfer of microbiome from healthy donors to patients.Fecal donors undergo multiple strict screening tests to exclude any transmissible disease.Screening tests of potential fecal donors is expensive and time consuming.FMT is the most efficient treatment for recurrent C difficile infection.What is new here:An algorithm to optimize the order of donors' screening tests in terms of cost was defined.Optimizing the order tests can save nearly 50% in costs of screening a potential donor.
Collapse
Affiliation(s)
- Bar Levy
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Moshe Leshno
- Coller School of Management, Tel Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Lael Werner
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Kummola L, González-Rodríguez MI, Marnila P, Nurminen N, Salomaa T, Hiihtola L, Mäkelä I, Laitinen OH, Hyöty H, Sinkkonen A, Junttila IS. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system : Effect of soil exposure on immune system. BMC Immunol 2023; 24:29. [PMID: 37689649 PMCID: PMC10492337 DOI: 10.1186/s12865-023-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.
Collapse
Affiliation(s)
- Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | | | - Pertti Marnila
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Lotta Hiihtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Iida Mäkelä
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland.
- Northern Finland Laboratory Centre (NordLab), Oulu, 90220, Finland.
- Research Unit of Biomedicine, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
5
|
Jati S, Mahata S, Das S, Chatterjee S, Mahata SK. Catestatin: Antimicrobial Functions and Potential Therapeutics. Pharmaceutics 2023; 15:1550. [PMID: 37242791 PMCID: PMC10220906 DOI: 10.3390/pharmaceutics15051550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The rapid increase in drug-resistant and multidrug-resistant infections poses a serious challenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides (AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential alternatives for antibiotic-resistant "superbugs". The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgA352-372; bCgA344-364) was initially identified in 1997 as an acute nicotinic-cholinergic antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that N-terminal 15 amino acids of bovine CST (bCST1-15 aka cateslytin) exert antibacterial, antifungal, and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1-15 (where L-amino acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against various bacterial strains. Beyond antimicrobial effects, D-bCST1-15 potentiated (additive/synergistic) antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1-15 neither triggered bacterial resistance nor elicited cytokine release. The present review will highlight the antimicrobial effects of CST, bCST1-15 (aka cateslytin), D-bCST1-15, and human variants of CST (Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their potential as a therapy for antibiotic-resistant "superbugs".
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sumana Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Soumita Das
- Department of Biomedical and Nutritional Science, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
6
|
Majait S, Nieuwdorp M, Kemper M, Soeters M. The Black Box Orchestra of Gut Bacteria and Bile Acids: Who Is the Conductor? Int J Mol Sci 2023; 24:ijms24031816. [PMID: 36768140 PMCID: PMC9916144 DOI: 10.3390/ijms24031816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Over the past decades the potential role of the gut microbiome and bile acids in type 2 diabetes mellitus (T2DM) has been revealed, with a special reference to low bacterial alpha diversity. Certain bile acid effects on gut bacteria concern cytotoxicity, or in the case of the microbiome, bacteriotoxicity. Reciprocally, the gut microbiome plays a key role in regulating the bile acid pool by influencing the conversion and (de)conjugation of primary bile acids into secondary bile acids. Three main groups of bacterial enzymes responsible for the conversion of bile acids are bile salt hydrolases (BSHs), hydroxysteroid dehydrogenases (HSDHs) and enzymes encoded in the bile acid inducible (Bai) operon genes. Interventions such as probiotics, antibiotics and fecal microbiome transplantation can impact bile acids levels. Further evidence of the reciprocal interaction between gut microbiota and bile acids comes from a multitude of nutritional interventions including macronutrients, fibers, prebiotics, specific individual products or diets. Finally, anatomical changes after bariatric surgery are important because of their metabolic effects. The heterogeneity of studies, diseases, bacterial species and (epi)genetic influences such as nutrition may challenge establishing specific and detailed interventions that aim to tackle the gut microbiome and bile acids.
Collapse
Affiliation(s)
- Soumia Majait
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Maarten Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
7
|
Quazi S. Anti-cancer activity of human gastrointestinal bacteria. Med Oncol 2022; 39:220. [PMID: 36175586 DOI: 10.1007/s12032-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Malignant neoplasm is one of the most incurable diseases among inflammatory diseases. Researchers have been studying for decades to win over this lethal disease and provide the light of hope to humankind. The gastrointestinal bacteria of human hold a complex ecosystem and maintain homeostasis. One hundred trillion microbes are residing in the gastrointestinal tract of human. Disturbances in the microbiota of human's gastrointestinal tract can create immune response against inflammation and also can develop diseases, including cancer. The bacteria of the gastrointestinal tract of human can secrete a variety of metabolites and bioproducts which aid in the preservation of homeostasis in the host and gut. During pathogenic dysbiosis, on the other hand, numerous microbiota subpopulations may increase and create excessive levels of toxins, which can cause inflammation and cancer. Furthermore, the immune system of host and the epithelium cell can be influenced by gut microbiota. Probiotics, which are bacteria that live in the gut, have been protected against tumor formation. Probiotics are now studied to see if they can help fight dysbiosis in cancer patients undergoing chemotherapy or radiotherapy because of their capacity to maintain gut homeostasis. Countless numbers of gut bacteria have demonstrated anti-cancer efficiency in cancer treatment, prevention, and boosting the efficiency of immunotherapy. The review article has briefly explained the anti-cancer immunity of gut microbes and their application in treating a variety of cancer. This review paper also highlights the pre-clinical studies of probiotics against cancer and the completed and ongoing clinical trials on cancers with the two most common and highly effective probiotics Lactobacillus and Bacillus spp.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, 560043, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
8
|
Wang X, Xing Y, Ji Y, Xi H, Liu X, Yang L, Lei L, Han W, Gu J. The Combination of Phages and Faecal Microbiota Transplantation Can Effectively Treat Mouse Colitis Caused by Salmonella enterica Serovar Typhimurium. Front Microbiol 2022; 13:944495. [PMID: 35875536 PMCID: PMC9301289 DOI: 10.3389/fmicb.2022.944495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the common causes of human colitis. In the present study, two lytic phages vB_SenS-EnJE1 and vB_SenS-EnJE6 were isolated and the therapeutic effect of the combination of phages and faecal microbiota transplantation (FMT) on S. Typhimurium-induced mouse colitis was investigated. The characteristics and genome analysis indicated that they are suitable phages for phage therapy. Results showed that vB_SenS-EnJE1 lysis 41/54 Salmonella strains of serotype O4, and vB_SenS-EnJE6 lysis 46/54 Salmonella strains of serotypes O4 and O9. Severe inflammatory symptoms and disruption of the intestinal barrier were observed in S. Typhimurium -induced colitis. Interestingly, compared with a single phage cocktail (Pc) or single FMT, the combination of Pc and FMT (PcFMT) completely removed S. Typhimurium after 72 h of treatment, and significantly improved pathological damage and restored the intestinal barrier. Furthermore, PcFMT effectively restored the intestinal microbial diversity, especially for Firmicutes/Bacteroidetes [predominantly bacterial phyla responsible for the production of short-chain fatty acids (SCFA)]. Additionally, we found that PcFMT treatment significantly increased the levels of SCFA. All these data indicated that the combination of phages and FMT possesses excellent therapeutic effects on S. Typhimurium -induced intestinal microbiota disorder diseases. Pc and FMT played roles in “eliminating pathogens” and “strengthening vital qi,” respectively. This study provides a new idea for the treatment of intestinal microbiota disorder diseases caused by specific bacterial infections.
Collapse
Affiliation(s)
- Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Yating Xing
- The Second Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaohe Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Li Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jingmin Gu,
| |
Collapse
|
9
|
Zheng L, Ji YY, Wen XL, Duan SL. Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives. World J Gastroenterol 2022; 28:2546-2560. [PMID: 35949351 PMCID: PMC9254144 DOI: 10.3748/wjg.v28.i23.2546] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of microbiology and metabolomics, the relationship between the intestinal microbiome and intestinal diseases has been revealed. Fecal microbiota transplantation (FMT), as a new treatment method, can affect the course of many chronic diseases such as metabolic syndrome, malignant tumor, autoimmune disease and nervous system disease. Although the mechanism of action of FMT is now well understood, there is some controversy in metabolic diseases, so its clinical application may be limited. Microflora transplantation is recommended by clinical medical guidelines and consensus for the treatment of recurrent or refractory Clostridium difficile infection, and has been gradually promoted for the treatment of other intestinal and extraintestinal diseases. However, the initial results are varied, suggesting that the heterogeneity of the donor stools may affect the efficacy of FMT. The success of FMT depends on the microbial diversity and composition of donor feces. Therefore, clinical trials may fail due to the selection of ineffective donors, and not to faulty indication selection for FMT. A new understanding is that FMT not only improves insulin sensitivity, but may also alter the natural course of type 1 diabetes by modulating autoimmunity. In this review, we focus on the main mechanisms and deficiencies of FMT, and explore the optimal design of FMT research, especially in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
10
|
González‐Rodríguez MI, Nurminen N, Kummola L, Laitinen OH, Oikarinen S, Parajuli A, Salomaa T, Mäkelä I, Roslund MI, Sinkkonen A, Hyöty H, Junttila IS. Effect of inactivated nature‐derived microbial composition on mouse immune system. Immun Inflamm Dis 2022; 10:e579. [PMID: 34873877 PMCID: PMC8926502 DOI: 10.1002/iid3.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction The hygiene hypothesis suggests that decrease in early life infections due to increased societal‐level hygiene standards subjects one to allergic and autoimmune diseases. In this report, we have studied the effect of sterilized forest soil and plant‐based material on mouse immune system and gut microbiome. Methods Inbred C57Bl/6 mice maintained in normal sterile environment were subjected to autoclaved forest soil‐derived powder in their bedding for 1 h a day for 3 weeks. Immune response was measured by immune cell flow cytometry, serum cytokine enzyme‐linked immunoassay (ELISA) and quantitative polymerase chain reaction (qPCR) analysis. Furthermore, the mouse gut microbiome was analyzed by sequencing. Results When compared to control mice, mice treated with soil‐derived powder had decreased level of pro‐inflammatory cytokines namely interleukin (IL)−17F and IL‐21 in the serum. Furthermore, splenocytes from mice treated with soil‐derived powder expressed less IL‐1b, IL‐5, IL‐6, IL‐13, and tumor necrosis factor (TNF) upon cell activation. Gut microbiome appeared to be stabilized by the treatment. Conclusions These results provide insights on the effect of biodiversity on murine immune system in sterile environment. Subjecting mice to soil‐based plant and microbe structures appears to elicit immune response that could be beneficial, for example, in type 2 inflammation‐related diseases, that is, allergic diseases.
Collapse
Affiliation(s)
| | - Noora Nurminen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Anirudra Parajuli
- Department of Medicine, Karolinska Institutet Center for infectious medicine (CIM) Huddinge Sweden
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Iida Mäkelä
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Marja I. Roslund
- Ecosystems and Environment Research Programme University of Helsinki Helsinki Finland
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Ilkka S. Junttila
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | | |
Collapse
|
11
|
Pession A, Zama D, Muratore E, Leardini D, Gori D, Guaraldi F, Prete A, Turroni S, Brigidi P, Masetti R. Fecal Microbiota Transplantation in Allogeneic Hematopoietic Stem Cell Transplantation Recipients: A Systematic Review. J Pers Med 2021; 11:100. [PMID: 33557125 PMCID: PMC7913807 DOI: 10.3390/jpm11020100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
The disruption of gut microbiota eubiosis has been linked to major complications in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Various strategies have been developed to reduce dysbiosis and related complications. Fecal microbiota transplantation (FMT) consists of the infusion of fecal matter from a healthy donor to restore impaired intestinal homeostasis, and could be applied in the allo-HSCT setting. We conducted a systematic review of studies addressing the use of FMT in allo-HSCT patients. In the 23 papers included in the qualitative synthesis, FMT was used for the treatment of recurrent Clostridioides difficile infections or as a therapeutic strategy for steroid-resistant gut aGvHD. FMT was also performed with a preventive aim (e.g., to decolonize from antibiotic-resistant bacteria). Additional knowledge on the biological mechanisms underlying clinical findings is needed in order to employ FMT in clinical practice. There is also concern regarding the administration of microbial consortia in immune-compromised patients with altered gut permeability. Therefore, the safety profile and efficacy of the procedure must be determined to better assess the role of FMT in allo-HSCT recipients.
Collapse
Affiliation(s)
- Andrea Pession
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Daniele Zama
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
| | - Federica Guaraldi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| |
Collapse
|
12
|
The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:191-203. [PMID: 33523449 PMCID: PMC9290759 DOI: 10.1007/978-981-15-6407-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune conditions affect 23 million Americans or 7% of the US population. There are more than 100 autoimmune disorders, affecting every major organ system in humans. This chapter aims to further explain Treg dysfunction autoimmune disorders, including monogenic primary immune deficiency such as immune dysregulation polyendocrinopathy, enteropathy, X-linked inheritance (IPEX) syndrome, and polygenic autoimmune diseases with Treg dysfunction such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and food allergy. These conditions are associated with an abnormal small intestinal and colonic microbiome. Some disorders clearly improve with therapies aimed at microbial modification, including probiotics and fecal microbiota transplantation (FMT). Approaches to prevent and treat these disorders will need to focus on the acquisition and maintenance of a healthy colonic microbiota, in addition to more focused approaches at immune suppression during acute disease exacerbations.
Collapse
|
13
|
Vural M, Gilbert B, Üstün I, Caglar S, Finckh A. Mini-Review: Human Microbiome and Rheumatic Diseases. Front Cell Infect Microbiol 2020; 10:491160. [PMID: 33304855 PMCID: PMC7693548 DOI: 10.3389/fcimb.2020.491160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis and spondyloarthropathy are the most common inflammatory rheumatic diseases. As the human microbiome is involved in the immune homeostasis, it has the potential to be a key factor in the development of autoimmune diseases and rheumatic diseases. In this article, we review the role of various human microbiota on the pathogenesis of rheumatic diseases, focusing on spondylarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Meltem Vural
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Benoit Gilbert
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Işıl Üstün
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Sibel Caglar
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Axel Finckh
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| |
Collapse
|
14
|
Schmidt AC, Leroux JC. Treatments of trimethylaminuria: where we are and where we might be heading. Drug Discov Today 2020; 25:1710-1717. [DOI: 10.1016/j.drudis.2020.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
15
|
Lahtinen P, Jalanka J, Hartikainen A, Mattila E, Hillilä M, Punkkinen J, Koskenpato J, Anttila VJ, Tillonen J, Satokari R, Arkkila P. Randomised clinical trial: faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. Aliment Pharmacol Ther 2020; 51:1321-1331. [PMID: 32343000 DOI: 10.1111/apt.15740] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/14/2019] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) has been associated with microbial dysbiosis. AIM To investigate the efficacy of faecal microbiota transplantation (FMT) in the treatment of IBS. METHODS Forty-nine IBS patients were randomised to receive autologous or allogenic FMT via colonoscopy. The primary endpoint was a sustained, minimum of 50-point, reduction in the IBS Symptom Severity Score. The secondary outcomes were levels of anxiety and depression, changes in quality of life, gut microbiota and faecal water content as assessed with validated questionnaires, intestinal microbiota composition and stool dry weight. RESULTS The primary endpoint was not achieved in either group. However, there was a transient reduction in the mean IBS Symptom Severity Score in the FMT group at 12 weeks after treatment as compared to baseline (P = 0.01). The groups did not differ in the number of patients achieving clinical response at 12 weeks. In the FMT-treated patients, microbial composition had changed to resemble that of the donor and the stool water content decreased significantly compared to baseline. The depression score decreased in patients with a reduction in IBS symptoms after FMT, but not in those placebo-treated patients who experienced a reduction in IBS symptoms. CONCLUSIONS FMT provided only a transient relief of symptoms, although it induced a sustained alteration in the microbiota of IBS patients. Therefore, FMT delivered by a single infusion via colonoscopy cannot be recommended as a treatment for IBS in clinical practice. ClinicalTrials.Org, Trial registration number: NCT03561519.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hartikainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Mattila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Markku Hillilä
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Gastroenterology, Helsinki University Hospital, Espoo, Finland
| | - Jari Punkkinen
- Department of Gastroenterology, Porvoo Hospital, Porvoo, Finland
| | - Jari Koskenpato
- Department of Gastroenterology, Aava Medical Centre, Helsinki, Finland
| | - Veli-Jukka Anttila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Arkkila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
16
|
McDonnell K, Waters N, Howley E, Abram F. Chordomics: a visualization tool for linking function to phylogeny in microbiomes. Bioinformatics 2020; 36:1309-1310. [PMID: 31539022 DOI: 10.1093/bioinformatics/btz711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The overarching aim of microbiome analysis is to uncover the links between microbial phylogeny and function in order to access ecosystem functioning. This can be done using several experimental strategies targeting different biomolecules, including DNA (metagenomics), RNA (metatranscriptomics) and proteins (metaproteomics). Despite the importance of linking microbial function to phylogeny there are currently no visualization tools that effectively integrate this information. Chordomics is a Shiny-based application for linked -omics data analysis, allowing users to visualize microbial function and phylogeny on a single plot and compare datasets across time and environments. AVAILABILITY AND IMPLEMENTATION Chordomics is available on GitHub: https://github.com/kevinmcdonnell6/chordomics; software is coded in R and JavaScript and a demonstration version is available at https://kmcd.shinyapps.io/ChordomicsDemo/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kevin McDonnell
- Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, Galway, Ireland.,Department of Information Technology, School of Computer Science, National University of Ireland Galway, Galway, Ireland
| | - Nicholas Waters
- Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, Galway, Ireland.,Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Enda Howley
- Department of Information Technology, School of Computer Science, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, Galway, Ireland
| |
Collapse
|
17
|
Fecal Microbial Transplantation for the Treatment of Persistent Multidrug-Resistant K lebsiella pneumoniae Infection in a Critically Ill Patient. Case Rep Infect Dis 2020; 2020:8462659. [PMID: 32099702 PMCID: PMC7038171 DOI: 10.1155/2020/8462659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Dysbiosis of the microbiome is a common finding in critically ill patients, who receive broad-spectrum antibiotics and various forms of organ support. Multidrug-resistant (MDR) organisms are a growing threat in all areas of medicine, but most markedly in the critically ill, where there is both loss of host defences and widespread use of broad spectrum antibiotics. We present a case of a critically ill patient with persistent MDR Klebsiella pneumoniae infection, successfully treated with fecal microbiota transplantation (FMT), using stool of a rigorously-screened, healthy donor. FMT for Clostridium difficile colitis has been well described in the literature and is an established therapy for recurrent infections with Clostridium difficile. The use of FMT for other multidrug-resistant organisms is less frequently described, particularly in the context of critically ill patients. In our case, we have culture-documented clearance of the MDR Klebsiella pneumoniae form a patient of FMT.
Collapse
|
18
|
The gut microbiome in epilepsy. Microb Pathog 2020; 139:103853. [DOI: 10.1016/j.micpath.2019.103853] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
19
|
Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis 2019; 39:613-627. [PMID: 31828683 DOI: 10.1007/s10096-019-03746-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the well-known disease of the liver in adults and children throughout the world. The main manifestations related to NAFLD are an unusual storage of lipid in hepatocytes (hepatic steatosis) and progression of inflammation for non-alcoholic steatohepatitis (NASH). NAFLD is described as a multifactorial complication due to the genetic predisposition, metabolic functions, inflammatory, gut microbiota (GM), and environmental factors. The GM dysregulation among these factors is correlated to NAFLD development. In recent decades, advanced microbial profiling methods are continuing to shed light on the nature of the changes in the GM caused by NASH and NAFLD. In the current review, we aim to perform a literature review in different library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly obtained. This will be done in order to provide an overview of the relation between GM and NAFLD, and the role of prebiotics, probiotics, and fecal microbiota transplantation (FMT), as potential therapeutic challenges for NAFLD.
Collapse
|
20
|
Hourigan SK, Ahn M, Gibson KM, Pérez-Losada M, Felix G, Weidner M, Leibowitz I, Niederhuber JE, Sears CL, Crandall KA, Oliva-Hemker M. Fecal Transplant in Children With Clostridioides difficile Gives Sustained Reduction in Antimicrobial Resistance and Potential Pathogen Burden. Open Forum Infect Dis 2019; 6:ofz379. [PMID: 31660343 PMCID: PMC6790402 DOI: 10.1093/ofid/ofz379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Fecal microbiota transplantation (FMT) treats Clostridioides difficile infection (CDI). Little is known regarding the changes in antimicrobial resistance (AMR) genes and potential pathogen burden that occur in pediatric recipients of FMT. The aim of this study was to investigate changes in AMR genes, potential pathogens, species, and functional pathways with FMT in children. Methods Nine children with recurrent CDI underwent FMT. Stool was collected from donor and recipient pre-FMT and longitudinally post-FMT for up to 24 weeks. Shotgun metagenomic sequencing was performed. Reads were analyzed using PathoScope 2.0. Results All children had resolution of CDI. AMR genes decreased post-FMT (P < .001), with a sustained decrease in multidrug resistance genes (P < .001). Tetracycline resistance genes increased post-FMT (P < .001). Very low levels of potential pathogens were identified in donors and recipients, with an overall decrease post-FMT (P < .001). Prevotella sp. 109 expanded in all recipients post-FMT, and no recipients had any clinical infection. Alpha diversity was lower in recipients vs donors pre-FMT (P < .001), with an increase post-FMT (P ≤ .002) that was sustained. Beta diversity differed significantly in pre- vs post-FMT recipient samples (P < .001). Bacterial species Faecalibacterium prausnitzii and Bacteroides ovatus showed higher abundance in donors than recipients (P = .008 and P = .040, respectively), with expansion post-FMT. Biosynthetic pathways predominated in the donor and increased in the recipient post-FMT. Conclusions FMT for CDI in children decreases AMR genes and potential pathogens and changes microbiota composition and function. However, acquisition of certain AMR genes post-FMT combined with low levels of potential pathogens found in donors suggests that further study is warranted regarding screening donors using metagenomics sequencing before FMT.
Collapse
Affiliation(s)
- Suchitra K Hourigan
- Inova Translational Medicine Institute, Falls Church, Virginia.,Inova Children's Hospital, Falls Church, Virginia.,Pediatric Specialists of Virginia, Fairfax, Virginia.,Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle Ahn
- Computational Biology Institute and, Washington, DC
| | | | - Marcos Pérez-Losada
- Computational Biology Institute and, Washington, DC.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Grace Felix
- Pediatric Specialists of Virginia, Fairfax, Virginia.,Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melissa Weidner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Leibowitz
- Pediatric Specialists of Virginia, Fairfax, Virginia
| | - John E Niederhuber
- Inova Translational Medicine Institute, Falls Church, Virginia.,Johns Hopkins University School of Medicine, Baltimore, Maryland.,Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Keith A Crandall
- Computational Biology Institute and, Washington, DC.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC
| | | |
Collapse
|
21
|
Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 2019; 97:1223-1241. [PMID: 31144383 DOI: 10.1002/jnr.24476] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The study of the gut microbiome has increasingly revealed an important role in modulating brain function and mental health. In this review, we underscore specific pathways and mechanisms by which the gut microbiome can promote the development of mental disorders such as depression and anxiety. First, we review the involvement of the stress response and immune system activation in the development of depression and anxiety. Then, we examine germ-free murine models used to uncover the role of the gut microbiome in developing and modulating pertinent activity in the brain and the immune system. We also document multiple pathways by which stress-induced inflammation harms brain function and ultimately affects mental health, and review how probiotic and prebiotic treatments have shown to be beneficial. Lastly, we provide an overview of gut microbiome-derived compounds (short-chain fatty acids, tryptophan catabolites, microbial pattern recognition) and related mechanisms (vagal nerve activity and fecal microbiota transplants) involved in mediating the influence of the gut microbiome to mental health. Overall, a picture of the gut microbiome playing a facilitating role between stress response, inflammation, and depression, and anxiety is emerging. Future research is needed to firmly establish the microbiome's causal role, to further elucidate the mechanisms by which gut microbes influence brain function and mental health, and to possibly develop treatments that improve mental health through microbiotic targets.
Collapse
Affiliation(s)
- Jason M Peirce
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas.,Honors College, Texas Tech University, Lubbock, Texas
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
22
|
A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. Inflammopharmacology 2019; 27:465-473. [PMID: 31054010 PMCID: PMC6554453 DOI: 10.1007/s10787-019-00595-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Background There is considerable interest in the possible importance of the gut microflora in the pathophysiology of the inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD). Probiotics offer a potential adjuvant treatment in these patients by modifying the intestinal milieu, but reports of their efficacy are conflicting. Aims To assess the efficacy of a multi-strain probiotic (Symprove™, Symprove Ltd, Farnham, United Kingdom) in quality of life issues and intestinal inflammation in patients with asymptomatic UC and CD. Methods A single-centre, randomised, double-blind, placebo-controlled trial of adult patients with asymptomatic IBD. Patients received 4 weeks of treatment with the probiotic or placebo (1 ml/kg/day). The primary efficacy measure was the difference in change in the IBD Quality of Life Questionnaire results (QOL) between probiotic vs. placebo at week 4. Secondary outcome measures included analyses of the change in laboratory findings, including faecal calprotectin (FCAL). Results Over 500 patients were recruited to the study and 81 and 61 patients with UC and CD, respectively were randomised and completed the study. There were no significant differences in IBD-QOL scores between placebo and the probiotic groups. Similarly, there were no significant changes observed in the laboratory data. However, the differences in FCAL between patients with UC before and after probiotics versus placebo approached statistical significance with a p value of 0.076. Post-hoc analyses showed that the FCAL levels were significantly (p < 0.015) reduced in the UC patients receiving the probiotic as opposed to placebo. No significant changes were seen in CD. No serious adverse events were observed. Conclusion This multi-strain probiotic is associated with decreased intestinal inflammation in patients with UC, but not in CD and is well tolerated. Further research is required to see if the probiotic reduces the incidence of clinical relapses in asymptomatic IBD patients.
Collapse
|
23
|
Suk KT, Kim DJ. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:193-204. [PMID: 30791767 DOI: 10.1080/17474124.2019.1569513] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common and increasing liver diseases worldwide with a prevalence of 20-33%. NAFLD may progress to fibrosis, compensated cirrhosis, advanced cirrhosis, or hepatocellular carcinoma. Despite the increasing prevalence of NAFLD, definitive medical treatment has not been established, with the exception of lifestyle modification with exercise. Because of the direct connection via portal vein between the intestines and the liver (gut-gut microbiota-liver axis), gut microbiota and associated dysbiosis have been known as regulators in the pathophysiology of NAFLD. Area covered: New therapeutic approaches for modulation of gut microbiota have been proposed and the effectiveness of new therapies including probiotics, prebiotics, synbiotics, bile acid regulation, absorbent, and fecal microbiota transplantation have been demonstrated in recent several studies. This review focuses on the available evidences for new therapies modulating gut microbiota in the management and the prevention of NAFLD. Expert commentary: Gut-gut microbiota-liver axis may play an important role in the etiology of many liver diseases, including NAFLD. It is logical to seek the manipulation of this axis, and further studies are required to understand the underlying precise mechanisms of microbiota-modulation on NAFLD.
Collapse
Affiliation(s)
- Ki Tae Suk
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| | - Dong Joon Kim
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| |
Collapse
|
24
|
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 2019; 11:cancers11010038. [PMID: 30609850 PMCID: PMC6356461 DOI: 10.3390/cancers11010038] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host’s health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host’s and gut’s homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, Tor Vergata University of Rome, 00133 Rome, Italy.
| | | | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico of Rome, 00128 Rome, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
25
|
Sasaki H, Kawamura K, Kawamura T, Odamaki T, Katsumata N, Xiao JZ, Suzuki N, Tanaka M. Distinctive subpopulations of the intestinal microbiota are present in women with unexplained chronic anovulation. Reprod Biomed Online 2018; 38:570-578. [PMID: 30773302 DOI: 10.1016/j.rbmo.2018.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
RESEARCH QUESTION Do gut microbiota associate with the ovulatory cycle in women showing normogonadotrophic anovulation? In humans, the gut microbiota affects diverse physiological functions and dysbiosis (microbial imbalance) may lead to pathological syndromes. However, there is comparatively little information on the relevance of gut microbiota to reproductive functions in women. Here, a group of women with idiopathic chronic anovulation were examined, who do not exhibit any apparent endocrinological disorder, as they are suitable for investigating the relationship between intestinal bacteria and ovulatory disorders. DESIGN A prospective observational cohort study was performed on two groups of women who did not exhibit apparent endocrinological disorders but showed either irregular menstrual cycles (IMC group) or normal menstrual cycles (controls). The bacterial composition of faeces from rectal swabs from the women was analysed using next-generation sequencing based on bacterial 16SrRNA genes. RESULTS A metagenomic analysis indicated that the two groups of women had significant differences in 28 bacterial taxa in their faeces. Prevotella-enriched microbiomes were more abundant in the IMC group, whereas Clostridiales, Ruminococcus and Lachnospiraceae (butyrate-producing bacteria) were present at lower levels in the IMC group. CONCLUSIONS Distinctive subpopulations of intestinal microbiota were identified in women with unexplained chronic anovulation. The results indicate that gut microbiota could be associated with ovarian functions.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University Graduate School of Medicine, 35 Shinanomachi, -Shinjyuku-ku, Tokyo 160-8582, Japan; Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Kazuhiro Kawamura
- Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; Advanced Reproductive Medicine Research Centre, International University Health and Welfare School of Medicine, 4-3 Kozunomori, Narita Shi, Chiba 286-8686, Japan.
| | - Toshihiro Kawamura
- Denentoshi Ladies Clinic Reproductive Centre, 2-3-10 Aobadai, Aobaku, Yokohama-shi, Kanagawa 227-0062, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Noriko Katsumata
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Nao Suzuki
- Reproduction and Infertility Centre, Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University Graduate School of Medicine, 35 Shinanomachi, -Shinjyuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
26
|
Greenberg SA, Youngster I, Cohen NA, Livovsky DM, Strahilevitz J, Israeli E, Melzer E, Paz K, Fliss-Isakov N, Maharshak N. Five years of fecal microbiota transplantation - an update of the Israeli experience. World J Gastroenterol 2018; 24:5403-5414. [PMID: 30598584 PMCID: PMC6305536 DOI: 10.3748/wjg.v24.i47.5403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate and describe the efficacy of fecal microbiota transplantation (FMT) for Clostridium difficile infection (CDI) in a national Israeli cohort.
METHODS All patients who received FMT for recurrent (recurrence within 8 wk of the previous treatment) or refractory CDI from 2013 through 2017 in all the five medical centers in Israel currently performing FMT were included. Stool donors were screened according to the Israeli Ministry of Health guidelines. Clinical and laboratory data of patients were collected from patients’ medical files, and they included indications for FMT, risk factors for CDI and disease severity. Primary outcome was FMT success (at least 2 mo free of CDI-related diarrhea post-FMT). Secondary outcomes included initial response to FMT (cessation of diarrhea within 7 d) and recurrence at 6 mo.
RESULTS There were 111 FMTs for CDI, with a median age of 70 years [interquartile range (IQR): 53-82], and 42% (47) males. Fifty patients (45%) were treated via the lower gastrointestinal (LGI, represented only by colonoscopy) route, 37 (33%) via capsules, and 24 (22%) via the upper gastrointestinal (UGI) route. The overall success rate was 87.4% (97 patients), with no significant difference between routes of administration (P = 0.338). In the univariant analysis, FMT success correlated with milder disease (P = 0.01), ambulatory setting (P < 0.05) and lower Charlson comorbidity score (P < 0.05). In the multivariant analysis, only severe CDI [odd ratio (OR) = 0.14, P < 0.05] and inpatient FMT (OR = 0.19, P < 0.05) were each independently inversely related to FMT success. There were 35 (32%) patients younger than 60 years of age, and 14 (40%) of them had a background of inflammatory bowel disease.
CONCLUSION FMT is a safe and effective treatment for CDI, with capsules emerging as a successful and well-tolerated route. Severe CDI is less likely to respond to FMT.
Collapse
Affiliation(s)
- Sharon A Greenberg
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | | | - Nathaniel A Cohen
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Dan M Livovsky
- Digestive Diseases Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University, Jerusalem 91120, Israel
| | - Eran Israeli
- Department of Gastroenterology and Liver Diseases, Hadassah-Hebrew University, Jerusalem 91120, Israel
| | - Ehud Melzer
- Gastrointestinal and Liver Diseases Institute, Kaplan Medical Center, Rehovot 76100, Israel
| | - Kalman Paz
- Digestive Diseases Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Naomi Fliss-Isakov
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Bacteriotherapy Clinic, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| |
Collapse
|
27
|
Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol 2018; 9:1813. [PMID: 30618824 PMCID: PMC6305464 DOI: 10.3389/fphys.2018.01813] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine, University of León, León, Spain
| | - Esther Nistal
- Institute of Biomedicine, University of León, León, Spain.,Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | | | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
28
|
Wing AC, Kremenchutzky M. Multiple sclerosis and faecal microbiome transplantation: are you going to eat that? Benef Microbes 2018; 10:27-32. [PMID: 30525949 DOI: 10.3920/bm2018.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gut microbiome interaction goes beyond commensal function as vitamin production or support nutrients digestion. It also interplays with the host immune system and may be related to the development of immune-mediated diseases. Multiple sclerosis patients have dysbiosis compared to healthy individuals. But how this relates to disease development and severity is still uncertain. Dietary change including probiotic mixtures or ketogenic regimen has proven to change microbiome in multiple sclerosis (MS) subjects to one similar to healthy controls. However, proof of clinical benefits is lacking. We dissert on current knowledge about immune system and gut bacteria interactions. We discuss faecal microbial transplantation as a potential intervention to ameliorate gut dysbiosis in MS as well as the caveats of a clinical trial design.
Collapse
Affiliation(s)
- A C Wing
- 1 University of Western Ontario, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - M Kremenchutzky
- 1 University of Western Ontario, 339 Windermere Rd, London, ON N6A 5A5, Canada
| |
Collapse
|
29
|
Niederwerder MC. Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Vet Immunol Immunopathol 2018; 206:65-72. [PMID: 30502914 PMCID: PMC7173282 DOI: 10.1016/j.vetimm.2018.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
Fecal microbiota transplantation (FMT) is the process by which fecal microbiota are donated from a healthy individual and subsequently transplanted into a diseased or young individual. The mechanism by which FMT is effective is believed to be due to enhanced beneficial microbes, increased microbiome diversity, and restored normal flora. Beneficial gut microorganisms not only play a role in maintaining an intestinal barrier and metabolizing nutrients, but importantly, these microbes help regulate local and systemic immune function. Although FMT has been described for several centuries, only recently has it been utilized as a mainstream therapy in humans and significantly considered for applications in other species. In humans and animals, gastrointestinal diseases are by far the most widely accepted FMT-treatable conditions; however, recent research has shown exceptional promise for FMT being used to treat or prevent other conditions, including those outside of the gastrointestinal tract. Overall, FMT is likely an underutilized, widely-available, and inexpensive tool for improving the health and response to disease in animals. In this review, the effects of FMT on veterinary diseases and potential applications for FMT in animals are discussed.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, USA.
| |
Collapse
|
30
|
Abstract
Studies of the human intestinal microbiome in patients with inflammatory bowel disease (IBD) consistently show that there are differences (an abnormal or unbalanced microbiome, "dysbiosis") when compared to healthy subjects. We sought to describe changes in the microbiome in individual patients over time, and determine the clinical factors that are associated with significant alteration. Forty-two mucosal biopsies were collected from 20 patients that were spaced an average of 2.4 years apart. These were analysed using bacterial 16S rRNA gene high-throughput sequencing methods. Presence of active inflammation was determined endoscopically and histologically. Inferred metagenomics analysis was conducted using the PICRUSt package. We found that the differences in the microbiome over time in individual patients were greatest in the presence of ongoing intestinal inflammation, as determined by the Yue and Clayton theta distance between sample pairs (adjusted p = 0.00031). Samples from patients with previous abdominal surgery had lower alpha (within sample) diversity compared with those with no prior operations (mean Shannon index 2.083, 2.510 respectively, p = 0.017). There were no changes in the inferred bacterial metagenomic profile. The microbiome in IBD undergoes considerable fluctuation over time. These changes are greatest when there is histologically confirmed inflammation at both time-points.
Collapse
Affiliation(s)
- Christopher John Kiely
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,CONTACT Dr. Christopher John Kiely, MBBS IBD Research Laboratory, Level 5, Building 10, ANU Medical School, Canberra Hospital Campus, Yamba Drive, Garran, ACT, Australia, 2605
| | - Paul Pavli
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,Gastroenterology and Hepatology Unit, Canberra Hospital, ACT, Australia
| | - Claire Louise O'Brien
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,Gastroenterology and Hepatology Unit, Canberra Hospital, ACT, Australia
| |
Collapse
|
31
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
32
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
33
|
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154:204-219. [PMID: 29513402 PMCID: PMC5980185 DOI: 10.1111/imm.12922] [Citation(s) in RCA: 608] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jodie Stephenson
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Erik Nutma
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Paul van der Valk
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Sandra Amor
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| |
Collapse
|
34
|
Grönroos M, Parajuli A, Laitinen OH, Roslund MI, Vari HK, Hyöty H, Puhakka R, Sinkkonen A. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. Microbiologyopen 2018; 8:e00645. [PMID: 29808965 PMCID: PMC6436432 DOI: 10.1002/mbo3.645] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Immune‐mediated diseases have increased during the last decades in urban environments. The hygiene hypothesis suggests that increased hygiene level and reduced contacts with natural biodiversity are related to the increase in immune‐mediated diseases. We tested whether short‐time contact with microbiologically diverse nature‐based materials immediately change bacterial diversity on human skin. We tested direct skin contact, as two volunteers rubbed their hands with sixteen soil and plant based materials, and an exposure via fabric packets filled with moss material. Skin swabs were taken before and after both exposures. Next‐generation sequencing showed that exposures increased, at least temporarily, the total diversity of skin microbiota and the diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria and Alpha‐, Beta‐ and Gammaproteobacteria suggesting that contact with nature‐based materials modify skin microbiome and increase skin microbial diversity. Until now, approaches to cure or prevent immune system disorders using microbe‐based treatments have been limited to use of a few microbial species. We propose that nature‐based materials with high natural diversity, such as the materials tested here, might be more effective in modifying human skin microbiome, and eventually, in reducing immune system disorders. Future studies should investigate how long‐term changes in skin microbiota are achieved and if the exposure induces beneficial changes in the immune system markers.
Collapse
Affiliation(s)
- Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Olli H Laitinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
35
|
Nurminen N, Lin J, Grönroos M, Puhakka R, Kramna L, Vari HK, Viskari H, Oikarinen S, Roslund M, Parajuli A, Tyni I, Cinek O, Laitinen O, Hyöty H, Sinkkonen A. Nature-derived microbiota exposure as a novel immunomodulatory approach. Future Microbiol 2018; 13:737-744. [PMID: 29771153 DOI: 10.2217/fmb-2017-0286] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM Current attempts to modulate the human microbiota and immune responses are based on probiotics or human-derived bacterial transplants. We investigated microbial modulation by soil and plant-based material. MATERIALS & METHODS We performed a pilot study in which healthy adults were exposed to the varied microbial community of a soil- and plant-based material. RESULTS The method was safe and feasible; exposure was associated with an increase in gut microbial diversity. CONCLUSION If these findings are reproduced in larger studies nature-derived microbial exposure strategies could be further developed for testing their efficacy in the treatment and prevention of immune-mediated diseases.
Collapse
Affiliation(s)
- Noora Nurminen
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Jake Lin
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland.,Computational Biology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Lenka Kramna
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University & University Hospital Motol, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Hanna Viskari
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Teiskontie 35, 33520 Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Marja Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Iiris Tyni
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Ondrej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University & University Hospital Motol, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Olli Laitinen
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine & Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520 Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Arvo Ylpön katu 4, 33520 Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| |
Collapse
|
36
|
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15:595-609. [PMID: 29706647 PMCID: PMC6079090 DOI: 10.1038/cmi.2018.7] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial cells significantly outnumber human cells in the body, and the microbial flora at mucosal sites are shaped by environmental factors and, less intuitively, act on host immune responses, as demonstrated by experimental data in germ-free and gnotobiotic studies. Our understanding of this link stems from the established connection between infectious bacteria and immune tolerance breakdown, as observed in rheumatic fever triggered by Streptococci via molecular mimicry, epitope spread and bystander effects. The availability of high-throughput techniques has significantly advanced our capacity to sequence the microbiome and demonstrated variable degrees of dysbiosis in numerous autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, multiple sclerosis and autoimmune liver disease. It remains unknown whether the observed differences are related to the disease pathogenesis or follow the therapeutic and inflammatory changes and are thus mere epiphenomena. In fact, there are only limited data on the molecular mechanisms linking the microbiota to autoimmunity, and microbial therapeutics is being investigated to prevent or halt autoimmune diseases. As a putative mechanism, it is of particular interest that the apoptosis of intestinal epithelial cells in response to microbial stimuli enables the presentation of self-antigens, giving rise to the differentiation of autoreactive Th17 cells and other T helper cells. This comprehensive review will illustrate the data demonstrating the crosstalk between intestinal microbiome and host innate and adaptive immunity, with an emphasis on how dysbiosis may influence systemic autoimmunity. In particular, a gut–liver axis involving the intestinal microbiome and hepatic autoimmunity is elucidated as a paradigm, considering its anatomic and physiological connections.
Collapse
Affiliation(s)
- Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - M E Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China.
| |
Collapse
|
37
|
Damman JL, Rodriguez EA, Ali AH, Buness CW, Cox KL, Carey EJ, Lindor KD. Review article: the evidence that vancomycin is a therapeutic option for primary sclerosing cholangitis. Aliment Pharmacol Ther 2018; 47:886-895. [PMID: 29411404 DOI: 10.1111/apt.14540] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS PSC is an autoimmune biliary inflammatory disorder that is often associated with inflammatory bowel disease (IBD), with 50%-75% of patients with PSC having coexisting IBD, most commonly ulcerative colitis. Currently, no medical therapies have been shown to improve the disease course or slow its progression. However, ongoing research has resulted in a growing interest in the use of antibiotics for treatment of PSC, of which vancomycin is the most studied. In this review, we summarise the current evidence on the use of vancomycin in PSC and comment on future research areas of interest. METHODS A comprehensive PUBMED and EMBASE literature search for articles on vancomycin, PSC, therapeutic options and microbiome was performed. RESULTS Two randomised clinical trials, three case series and two case reports were included in the study. These include uncontrolled data from at least 98 patients that include promising improvements in biochemistry and imaging. Optimal dosing regimens are unclear. CONCLUSION Vancomycin is one of the most studied antibiotics used in the treatment of PSC with promising results. There is not currently sufficient evidence to support treatment recommendations. Further research is needed to establish if vancomycin is a PSC treatment.
Collapse
Affiliation(s)
- J L Damman
- Pediatrics/Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - E A Rodriguez
- Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
| | - A H Ali
- Hepatology, Mayo Clinic, Arizona, USA
| | - C W Buness
- National Patient Advocate Foundation, Paradise Valley, AZ, USA
| | - K L Cox
- Pediatric Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - E J Carey
- Gastroenterology and Hepatology, Mayo Clinic, Arizona, USA
| | - K D Lindor
- Gastroenterology and Hepatology, Arizona State University and Mayo Clinic, Arizona, USA
| |
Collapse
|
38
|
Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2018; 115:3102-3107. [PMID: 29511100 DOI: 10.1073/pnas.1718712115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bacterial pathogen Streptococcus pneumoniae is a major public health concern, being responsible for more than 1.5 million deaths annually through pneumonia, meningitis, and septicemia. Available vaccines target only a subset of serotypes, so vaccination is often accompanied by a rise in the frequency of nonvaccine serotypes. Epidemiological studies suggest that such a change in serotype frequencies is often coupled with an increase of antibiotic resistance among nonvaccine serotypes. Building on previous multilocus models for bacterial pathogen population structure, we have developed a theoretical framework incorporating variation of serotype and antibiotic resistance to examine how their associations may be affected by vaccination. Using this framework, we find that vaccination can result in a rapid increase in the frequency of preexisting resistant variants of nonvaccine serotypes due to the removal of competition from vaccine serotypes.
Collapse
|
39
|
Cosola C, Rocchetti MT, Cupisti A, Gesualdo L. Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease. Pharmacol Res 2018. [PMID: 29518493 DOI: 10.1016/j.phrs.2018.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In chronic kidney disease (CKD), cardiovascular (CV) damage is present in parallel which leads to an increased risk of CV disease. Both traditional and non-traditional risk factors contribute to CV damage in CKD. The systemic role of the microbiota as a central player in the pathophysiology of many organs is progressively emerging in the literature: the microbiota is indeed involved in a complex, bi-directional network between many organs, including the kidney and heart connection, although many of these relationships still need to be elucidated through in-depth mechanistic studies. The aim of this review is to provide evidence that microbiota metabolites influence non-traditional risk factors, such as inflammation and endothelial dysfunction in CKD-associated CV damage. Here, we report our current understanding and hypotheses on the gut-kidney and gut-heart axes and provide details on the potential mechanisms mediated by microbial metabolites. More specifically, we summarize some novel hypotheses linking the microbiota to blood pressure regulation and hypertension. We also emphasise the idea that the nutritional management of CKD should be redesigned and include the new findings from research on the intrinsic plasticity of the microbiota and its metabolites in response to food intake. The need is felt to integrate the classical salt and protein restriction approach for CKD patients with foods that enhance intestinal wellness. Finally, we discuss the new perspectives, especially the importance of taking care of the microbiota in order to prevent the risk of developing CKD and hypertension, as well as the still not tested but very promising CKD innovative treatments, such as postbiotic supplementation and bacteriotherapy. This interesting area of research offers potential complementary approaches to the management of CKD and CV damage assuming that the causal mechanisms underlying the gut-kidney and gut-heart axes are clarified. This will pave the way to the design of new personalized therapies targeting gut microbiota.
Collapse
Affiliation(s)
- Carmela Cosola
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy.
| | - Maria Teresa Rocchetti
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy.
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy.
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
40
|
Abstract
Abstract
Majority of rheumatic diseases are complex and multifactorial in etiology. Emerging studies has suggested that the change of human microbiota, especially in the gut, play a pivotal role in its pathogenesis. Dysequilibrium of the gut microbiota triggers the imbalance between pro- and anti- inflammatory immune responses and results in different rheumatic manifestations, such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). In this article, current and future role of the human gut microbiota in rheumatic diseases are discussed.
Collapse
|
41
|
Lahtinen P, Mattila E, Anttila VJ, Tillonen J, Teittinen M, Nevalainen P, Salminen S, Satokari R, Arkkila P. Faecal microbiota transplantation in patients with Clostridium difficile and significant comorbidities as well as in patients with new indications: A case series. World J Gastroenterol 2017; 23:7174-7184. [PMID: 29093626 PMCID: PMC5656465 DOI: 10.3748/wjg.v23.i39.7174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is effective in recurrent Clostridium difficile infection (rCDI). Knowledge of the safety and efficacy of FMT treatment in immune deficient patients is scarce. FMT has been suggested as a potential method for an increasing number of new indications besides rCDI. Among our FMT-treated rCDI patients, we reviewed those with major comorbidities: two human immunodeficiency virus patients, six haemodialysis patients, two kidney transplant patients, two liver transplant patients and a patient with chronic lymphatic leukaemia. We also reviewed those treated with FMT for indications other than rCDI: Salmonella carriage (two patients), trimethylaminuria (two patients), small intestinal bacterial overgrowth (SIBO; one patient), and lymphocytic colitis (one patient), as well as a common variable immunodeficiency patient with chronic norovirus infection and ESBL-producing Escherichia coli (E. coli) carriage. Of the thirteen rCDI patients treated with FMT, eleven cleared the CDI. The observed adverse events were not directly attributable to FMT. Concerning the special indications, both Salmonellas and ESBL-producing E. coli were eradicated. One trimethylaminuria patient and one SIBO-patient reported a reduction of symptoms. Three patients did not experience a benefit from FMT: chronic norovirus, lymphocytic colitis and the other fish malodour syndrome. There were no reported side effects in this group. FMT appeared to be safe and effective for immunocompromised patients with rCDI. FMT showed promise for the eradication of antibiotic-resistant bacteria, but further research is warranted.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15850, Finland
| | - Eero Mattila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki 00029, Finland
| | - Veli-Jukka Anttila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki 00029, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15850, Finland
| | - Matti Teittinen
- Department of Medicine, Hyvinkää Hospital 05850, Hyvinkää, Finland
| | - Pasi Nevalainen
- Department of Medicine, Tampere University Hospital 33521, Tampere, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku 20014, Finland
| | - Reetta Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Hospital, Helsinki 00029, Finland
| |
Collapse
|
42
|
Thaiss CA, Elinav E. The remedy within: will the microbiome fulfill its therapeutic promise? J Mol Med (Berl) 2017; 95:1021-1027. [PMID: 28656322 DOI: 10.1007/s00109-017-1563-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/07/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
The last decade of research has witnessed a tremendous upsurge in our understanding of the intestinal microbiome and its role in a large range of human diseases, which has incited hopes for a rapid clinical utilization of the new insights for the development of microbiome-based therapies. Nonetheless, only a single microbiome-targeted therapy has so far found its way into clinical routine: fecal microbiota transplantation for patients suffering from recurrent Clostridium difficile infections. Herein, we discuss the current hopes, advances, challenges, and obstacles for translating basic microbiome research into therapeutic applications for a larger number of diseases and provide an outline of how such clinical applications might emerge.
Collapse
Affiliation(s)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize potential modulations of the intestinal microbiome aimed at preventing or delaying progression to overt type 1 diabetes in the light of recently identified perturbations of the gut microbiota associated with the development of type 1 diabetes. RECENT FINDINGS Accumulated data suggest that the gut microbiota is involved at two different steps in the evolution of type 1 diabetes. At the first step, the intestinal tract is colonized by a microbial community unable to provide an adequate education of the immune system. As a consequence, the infant acquires susceptibility to immune-mediated diseases, type 1 diabetes included. At the other step, the young child seroconverts to positivity for diabetes-associated autoantibodies. This is preceded or accompanied by a decrease in the diversity of the intestinal microbiota and an increased abundance of Bacteroides species. These changes will affect the disease process promoting progression toward overt type 1 diabetes. By providing specific probiotics, one can affect the colonization of the intestinal tract in the newborn infant or strengthen the immune education in early life. Human milk oligosaccharides function as nutrients for "healthy" bacteria. Dietary interventions applying modified starches can influence the numbers and activities of both autoreactive and regulatory T cells and provide protection against autoimmune diabetes in non-obese diabetic mice. Modulation of the intestinal microbiome holds the promise of effective protection against human type 1 diabetes.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI, -00014, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Jarno Honkanen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
45
|
Abstract
OPINION STATEMENT PURPOSE OF REVIEW: This article will review current literature describing fecal microbiota transplantation (FMT) in the treatment of various diseases, and its potential role in elderly patients (age ≥ 65 years). RECENT FINDINGS Research on FMT has blossomed in the last decade and its pivotal role in the treatment of recurrent Clostridium difficile infection (CDI) has been recognized by the American College of Gastroenterology in the latest guidelines. There is also emerging evidence that FMT may be beneficial in the treatment of severe and/or complicated CDI refractory to medical therapy, resulting in decreased rates of colectomy and mortality. In the elderly, CDI is associated with markedly higher rates of mortality and colectomy; outcomes are even worse when patients have underlying inflammatory bowel disease (IBD). While the majority of patients who receive FMT for CDI are older, only a handful of studies focused specifically on FMT treatment outcomes and safety in this age group. Current data corroborate the efficacy and safety profile of FMT, while also supporting its use for recurrent, severe, and/or complicated CDI in the elderly population. FMT is recommended for the treatment of recurrent, severe, and/or complicated CDI in patients older than 65 years of age. It may be prudent to offer FMT earlier in the disease course, possibly after just the second recurrence and for the first episode of severe CDI to avert complications including colectomy and end-organ failure that elderly patients are more prone to developing.
Collapse
|