1
|
Gerasimova Y, Ali H, Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J Pathol Clin Res 2024; 10:e70002. [PMID: 39289163 PMCID: PMC11407905 DOI: 10.1002/2056-4538.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Recent research has established that the microbiome plays potential roles in the pathogenesis of numerous chronic diseases, including carcinomas. This discovery has led to significant interest in clinical microbiome testing among physicians, translational investigators, and the lay public. As novel, inexpensive methodologies to interrogate the microbiota become available, research labs and commercial vendors have offered microbial assays. However, these tests still have not infiltrated the clinical laboratory space. Here, we provide an overview of the challenges of implementing microbiome testing in clinical pathology. We discuss challenges associated with preanalytical and analytic sample handling and collection that can influence results, choosing the appropriate testing methodology for the clinical context, establishing reference ranges, interpreting the data generated by testing and its value in making patient care decisions, regulation, and cost considerations of testing. Additionally, we suggest potential solutions for these problems to expedite the establishment of microbiome testing in the clinical laboratory.
Collapse
Affiliation(s)
- Yulia Gerasimova
- Department of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haroon Ali
- Department of Medicine, Woodland Heights Medical Center, Lufkin, TX, USA
| | - Urooba Nadeem
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Mauldin K, Pignotti GAP, Gieng J. Measures of nutrition status and health for weight-inclusive patient care: A narrative review. Nutr Clin Pract 2024; 39:751-771. [PMID: 38796769 DOI: 10.1002/ncp.11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
In healthcare, weight is often equated to and used as a marker for health. In examining nutrition and health status, there are many more effective markers independent of weight. In this article, we review practical and emerging clinical applications of technologies and tools used to collect non-weight-related data in nutrition assessment, monitoring, and evaluation in the outpatient setting. The aim is to provide clinicians with new ideas about various types of data to evaluate and track in nutrition care.
Collapse
Affiliation(s)
- Kasuen Mauldin
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
- Clinical Nutrition, Stanford Health Care, Stanford, California, USA
| | - Giselle A P Pignotti
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
| | - John Gieng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, California, USA
| |
Collapse
|
3
|
Yonatan Y, Kahn S, Bashan A. Interactions-based classification of a single microbial sample. CELL REPORTS METHODS 2024; 4:100775. [PMID: 38744286 PMCID: PMC11133833 DOI: 10.1016/j.crmeth.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
To address the limitation of overlooking crucial ecological interactions due to relying on single time point samples, we developed a computational approach that analyzes individual samples based on the interspecific microbial relationships. We verify, using both numerical simulations as well as real and shuffled microbial profiles from the human oral cavity, that the method can classify single samples based on their interspecific interactions. By analyzing the gut microbiome of people with autistic spectrum disorder, we found that our interaction-based method can improve the classification of individual subjects based on a single microbial sample. These results demonstrate that the underlying ecological interactions can be practically utilized to facilitate microbiome-based diagnosis and precision medicine.
Collapse
Affiliation(s)
- Yogev Yonatan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Shaya Kahn
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Amir Bashan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Hussein N, Rajasuriar R, Khan AM, Lim YAL, Gan GG. The Role of the Gut Microbiome in Hematological Cancers. Mol Cancer Res 2024; 22:7-20. [PMID: 37906201 DOI: 10.1158/1541-7786.mcr-23-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Humans are in a complex symbiotic relationship with a wide range of microbial organisms, including bacteria, viruses, and fungi. The evolution and composition of the human microbiome can be an indicator of how it may affect human health and susceptibility to diseases. Microbiome alteration, termed as dysbiosis, has been linked to the pathogenesis and progression of hematological cancers. A variety of mechanisms, including epithelial barrier disruption, local chronic inflammation response trigger, antigen dis-sequestration, and molecular mimicry, have been proposed to be associated with gut microbiota. Dysbiosis may be induced or worsened by cancer therapies (such as chemotherapy and/or hematopoietic stem cell transplantation) or infection. The use of antibiotics during treatment may also promote dysbiosis, with possible long-term consequences. The aim of this review is to provide a succinct summary of the current knowledge describing the role of the microbiome in hematological cancers, as well as its influence on their therapies. Modulation of the gut microbiome, involving modifying the composition of the beneficial microorganisms in the management and treatment of hematological cancers is also discussed. Additionally discussed are the latest developments in modeling approaches and tools used for computational analyses, interpretation and better understanding of the gut microbiome data.
Collapse
Affiliation(s)
- Najihah Hussein
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gin Gin Gan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Liaghat A, Konsman JP. Methodological advice for the young at heart investigator: Triangulation to build better foundations. Brain Behav Immun 2024; 115:737-746. [PMID: 37972881 DOI: 10.1016/j.bbi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In medicine and science, one is typically taught the main theories in a discipline or field along with standard models before receiving more instructions on how to apply certain methods. The aim of this work is not to address one method, but rather methodology, the study and evaluation of methods, by taking a philosophy of science detour. In this, a critique of biomedicine will be used as a starting point to address some positions regarding reductionism, specifying notions such as systems and mechanisms, as well as regarding the mind-body problem discussing psychosomatic medicine and psychoneuroimmunology. Some recommendations to make science more pluralistic, robust and translationally-relevant will then be made as a way to foster constructive debates on reductionism and the mind-body problem and, in turn, favor more interdisciplinary research.
Collapse
Affiliation(s)
- Amirreza Liaghat
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France
| | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
6
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
7
|
Khiroya K, Sekyere E, McEwen B, Bayes J. Nutritional considerations in major depressive disorder: current evidence and functional testing for clinical practice. Nutr Res Rev 2023:1-12. [PMID: 37964733 DOI: 10.1017/s0954422423000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Depression is a multifaceted condition with diverse underlying causes. Several contributing and inter-related factors such as genetic, nutritional, neurological, physiological, gut-brain-axis, metabolic and psychological stress factors play a role in the pathophysiology of depression. This review aims to highlight the role that nutritional factors play in the aetiology of depression. Secondly, we discuss the biomedical and functional pathology tests which measure these factors, and the current evidence supporting their use. Lastly, we make recommendations on how practitioners can incorporate the latest evidence-based research findings into clinical practice. This review highlights that diet and nutrition greatly affect the pathophysiology of depression. Nutrients influence gene expression, with folate and vitamin B12 playing vital roles in methylation reactions and homocysteine regulation. Nutrients are also involved in the tryptophan/kynurenine pathway and the expression of brain-derived neurotrophic factor (BDNF). Additionally, diet influences the hypothalamic-pituitary-adrenal (HPA) response and the composition and diversity of the gut microbiome, both of which have been implicated in depression. A comprehensive dietary assessment, combined with appropriate evaluation of biochemistry and blood pathology, may help uncover contributing factors to depressive symptoms. By employing such an approach, a more targeted and personalised treatment strategy can be devised, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Kathryn Khiroya
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Eric Sekyere
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Bradley McEwen
- Faculty of Health, Southern Cross University, East Lismore, NSW, Australia
| | - Jessica Bayes
- National Centre for Naturopathic Medicine, Southern Cross University, East Lismore, NSW, Australia
| |
Collapse
|
8
|
Gates TJ, Yuan C, Shetty M, Kaiser T, Nelson AC, Chauhan A, Starr TK, Staley C, Subramanian S. Fecal Microbiota Restoration Modulates the Microbiome in Inflammation-Driven Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15082260. [PMID: 37190186 DOI: 10.3390/cancers15082260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic inflammation of the colon (colitis) is a known risk factor for inflammatory-driven colorectal cancers (id-CRCs), and intestinal microbiota has been implicated in the etiology of id-CRCs. Manipulation of the microbiome is a clinically viable therapeutic approach to limiting id-CRCs. To understand the microbiome changes that occur over time in id-CRCs, we used a mouse model of id-CRCs with the treatment of azoxymethane (AOM) and dextran sodium sulfate (DSS) and measured the microbiome over time. We included cohorts where the microbiome was restored using cage bedding swapping and where the microbiome was depleted using antibiotics to compare to untreated animals. We identified consistent increases in Akkermansia in mice receiving horizontal microbiome transfer (HMT) via cage bedding swapping, while the control cohort had consistent longitudinal increases in Anaeroplasma and Alistipes. Additionally, fecal lipocalin-2 (Lcn-2), a marker of intestinal inflammation, was elevated in unrestored animals compared to restored and antibiotic-treated counterparts following HMT. These observations suggest a potential role for Akkermansia, Anaeroplasma, and Alistipes in regulating colonic inflammation in id-CRCs.
Collapse
Affiliation(s)
- Travis J Gates
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ce Yuan
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Thomas Kaiser
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Aastha Chauhan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Kindt S, Louis H, De Schepper H, Arts J, Caenepeel P, De Looze D, Gerkens A, Holvoet T, Latour P, Mahler T, Mokaddem F, Nullens S, Piessevaux H, Poortmans P, Rasschaert G, Surmont M, Vafa H, Van Malderen K, Vanuytsel T, Wuestenberghs F, Tack J. Belgian consensus on irritable bowel syndrome. Acta Gastroenterol Belg 2022; 85:360-382. [PMID: 35709780 DOI: 10.51821/85.2.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterised by recurrent abdominal pain related to defaecation or associated with altered stool frequency or consistency. Despite its prevalence, major uncertainties in the diagnostic and therapeutic management persist in clinical practice. METHODS A Delphi consensus was conducted by 20 experts from Belgium, and consisted of literature review and voting process on 78 statements. Grading of recommendations, assessment, development and evaluation criteria were applied to evaluate the quality of evidence. Consensus was defined as > 80 % agreement. RESULTS Consensus was reached for 50 statements. The Belgian consensus agreed as to the multifactorial aetiology of IBS. According to the consensus abdominal discomfort also represents a cardinal symptom, while bloating and abdominal distension often coexist. IBS needs subtyping based on stool pattern. The importance of a positive diagnosis, relying on history and clinical examination is underlined, while additional testing should remain limited, except when alarm features are present. Explanation of IBS represents a crucial part of patient management. Lifestyle modification, spasmolytics and water-solube fibres are considered first-line agents. The low FODMAP diet, selected probiotics, cognitive behavioural therapy and specific treatments targeting diarrhoea and constipation are considered appropriate. There is a consensus to restrict faecal microbiota transplantation and gluten-free diet, while other treatments are strongly discouraged. CONCLUSIONS A panel of Belgian gastroenterologists summarised the current evidence on the aetiology, symptoms, diagnosis and treatment of IBS with attention for the specificities of the Belgian healthcare system.
Collapse
Affiliation(s)
- S Kindt
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - H Louis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - H De Schepper
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - J Arts
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Gastroenterology, AZ Sint-Lucas, Brugge, Belgium
| | - P Caenepeel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Gastroenterology, Ziekenhuis Oost-Limburg, Campus Sint-Jan, Genk, Belgium
- UHasselt, Hasselt, Belgium
| | - D De Looze
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Gent, Belgium
| | - A Gerkens
- Boitsfort Medical Center, Brussels, Belgium
| | - T Holvoet
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Gent, Belgium
- Department of Gastroenterology, AZ Nikolaas, Sint Niklaas, Belgium
| | - P Latour
- Department of Gastroenterology, Hepatology and Digestive Oncology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - T Mahler
- Department of Pediatrics, Universitair Ziekenuis Brussel, Brussel, Belgium
| | - F Mokaddem
- Department of Gastroenterology and Hepatology, Vivalia-Centre Sud Luxembourg, Arlon, Belgium
| | - S Nullens
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - H Piessevaux
- Department of Hepato-gastroenterology, Cliniques universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium
| | - P Poortmans
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - G Rasschaert
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - M Surmont
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - H Vafa
- Department of Gastroenterology and Hepatology, Chirec-Site Delta, Brussels, Belgium
| | - K Van Malderen
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - T Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - F Wuestenberghs
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - J Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Corsato Alvarenga I, Jackson MI, Jewell DE, Aldrich CG. A Low to Medium-Shear Extruded Kibble with Greater Resistant Starch Increased Fecal Oligosaccharides, Butyric Acid, and Other Saccharolytic Fermentation By-Products in Dogs. Microorganisms 2021; 9:2293. [PMID: 34835419 PMCID: PMC8621988 DOI: 10.3390/microorganisms9112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to assess whether diets with increased resistant starch (RS) had a positive effect on markers of colonic health in dogs. Three identical diets were extruded with high, medium and low shear (HS, MS and LS) to incrementally increase RS, and fed to 24 dogs in a replicated 3 × 3 William's Latin square design for 28-day periods. Fasting blood and fresh feces were collected on the last week of each period. Fecal quality was maintained among treatments. Gut integrity markers were measured by ELISA. Fecal short-chain fatty acids (SCFAs) were measured by LC MS/MS. In addition, the microbiota of dogs was determined from fresh feces by 16s rRNA high throughput sequencing. Untargeted metabolomics of both feces and serum were determined by UPLC. Data were analyzed using mixed models. There were no treatment effects on satiety hormones or gut integrity markers. Dogs fed LS or MS diets had marginal evidence (p < 0.10) for decreased fecal pH and for higher concentration (p < 0.05) of butyric acid and fecal oligosaccharides, succinate and lactate. Also, dogs fed the MS or LS diets had a shift towards more saccharolytic bacteria.
Collapse
Affiliation(s)
- Isabella Corsato Alvarenga
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA; (I.C.A.); (D.E.J.)
| | | | - Dennis E. Jewell
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA; (I.C.A.); (D.E.J.)
| | - Charles G. Aldrich
- Department of Grain Science & Industry, Kansas State University, Manhattan, KS 66506, USA; (I.C.A.); (D.E.J.)
| |
Collapse
|
11
|
Deng J, Angulo MT, Saavedra S. Generalizing game-changing species across microbial communities. ISME COMMUNICATIONS 2021; 1:22. [PMID: 36737668 PMCID: PMC9723773 DOI: 10.1038/s43705-021-00022-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Microbes form multispecies communities that play essential roles in our environment and health. Not surprisingly, there is an increasing need for understanding if certain invader species will modify a given microbial community, producing either a desired or undesired change in the observed collection of resident species. However, the complex interactions that species can establish between each other and the diverse external factors underlying their dynamics have made constructing such understanding context-specific. Here we integrate tractable theoretical systems with tractable experimental systems to find general conditions under which non-resident species can change the collection of resident communities-game-changing species. We show that non-resident colonizers are more likely to be game-changers than transients, whereas game-changers are more likely to suppress than to promote resident species. Importantly, we find general heuristic rules for game-changers under controlled environments by integrating mutual invasibility theory with in vitro experimental systems, and general heuristic rules under changing environments by integrating structuralist theory with in vivo experimental systems. Despite the strong context-dependency of microbial communities, our work shows that under an appropriate integration of tractable theoretical and experimental systems, it is possible to unveil regularities that can then be potentially extended to understand the behavior of complex natural communities.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Marco Tulio Angulo
- CONACyT - Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, México.
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Thavamani A, Salem I, Sferra TJ, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021; 11:metabo11020123. [PMID: 33671639 PMCID: PMC7926988 DOI: 10.3390/metabo11020123] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal, multisystemic genetic disorder in Caucasians. Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) protein are responsible for impairment of epithelial anionic transport, leading to impaired fluid regulation and pH imbalance across multiple organs. Gastrointestinal (GI) manifestations in CF may begin in utero and continue throughout the life, resulting in a chronic state of an altered intestinal milieu. Inherent dysfunction of CFTR leads to dysbiosis of the gut. This state of dysbiosis is further perpetuated by acquired factors such as use of antibiotics for recurrent pulmonary exacerbations. Since the gastrointestinal microbiome and their metabolites play a vital role in nutrition, metabolic, inflammatory, and immune functions, the gut dysbiosis will in turn impact various manifestations of CF-both GI and extra-GI. This review focuses on the consequences of gut dysbiosis and its metabolic implications on CF disease and possible ways to restore homeostasis.
Collapse
Affiliation(s)
- Aravind Thavamani
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Iman Salem
- Center for Medial Mycology, Case Western Reserve University School of Medicine, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Thomas J. Sferra
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
- Correspondence: ; Tel.: +1-216-844-1765
| |
Collapse
|
13
|
Britton RA, Hoffmann DE, Khoruts A. Probiotics and the Microbiome-How Can We Help Patients Make Sense of Probiotics? Gastroenterology 2021; 160:614-623. [PMID: 33307023 DOI: 10.1053/j.gastro.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
The notion of probiotics as microbes that confer health benefits has its origins in the speculative ideas that are more than a century old, yet remain largely unsubstantiated by scientific evidence. The recent advances in microbiome science have highlighted the importance of intestinal microbes in human physiology and disease pathogenesis. These developments have provided a boost to the probiotics industry, which continues to experience exponential growth driven mainly by creative marketing. Consumers, patients, and most health care providers are not able to discern the underlying science or differentiate the permitted claims that promise vague health benefits from disease-specific claims reserved for drugs. No probiotic product has been able to satisfy the regulatory requirements to be categorized as a drug, a substance intended to cure, mitigate, or prevent disease. However, patients take probiotic products in the belief that they will help to treat their intestinal or systemic diseases. Thus far, the regulators have failed to create policies that would assist to inform the public in this area. In fact, the existing regulatory regime actually creates formidable barriers to research that could provide evidence for clinical efficacy of probiotic products. We propose a potential solution to this vexing problem, where a committee created through a partnership of academia, professional organizations, and industry, but free of potential conflicts of interest, would be charged with rigorous evaluation of specific probiotic products and the evidence in support of their different claims. Companies that would submit to this process would earn the trust of consumers and healthcare providers, as well as a distinction in the marketplace.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Dan Duncan Cancer Center Member, Baylor College of Medicine, Houston, Texas
| | - Diane E Hoffmann
- University of Maryland Francis King Carey School of Law, Baltimore, Maryland
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Bokulich NA, Ziemski M, Robeson MS, Kaehler BD. Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods. Comput Struct Biotechnol J 2020; 18:4048-4062. [PMID: 33363701 PMCID: PMC7744638 DOI: 10.1016/j.csbj.2020.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiomes are integral components of diverse ecosystems, and increasingly recognized for their roles in the health of humans, animals, plants, and other hosts. Given their complexity (both in composition and function), the effective study of microbiomes (microbiomics) relies on the development, optimization, and validation of computational methods for analyzing microbial datasets, such as from marker-gene (e.g., 16S rRNA gene) and metagenome data. This review describes best practices for benchmarking and implementing computational methods (and software) for studying microbiomes, with particular focus on unique characteristics of microbiomes and microbiomics data that should be taken into account when designing and testing microbiomics methods.
Collapse
Affiliation(s)
- Nicholas A. Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zurich, Switzerland
| | - Michal Ziemski
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition, and Health, ETH Zurich, Switzerland
| | - Michael S. Robeson
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, Little Rock, AR, USA
| | | |
Collapse
|
15
|
Preliminary insights into the impact of primary radiochemotherapy on the salivary microbiome in head and neck squamous cell carcinoma. Sci Rep 2020; 10:16582. [PMID: 33024215 PMCID: PMC7538973 DOI: 10.1038/s41598-020-73515-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients’ well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation (“after”). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.
Collapse
|
16
|
Gupta VK, Kim M, Bakshi U, Cunningham KY, Davis JM, Lazaridis KN, Nelson H, Chia N, Sung J. A predictive index for health status using species-level gut microbiome profiling. Nat Commun 2020; 11:4635. [PMID: 32934239 PMCID: PMC7492273 DOI: 10.1038/s41467-020-18476-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Providing insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, we introduce the Gut Microbiome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting the likelihood of disease independent of the clinical diagnosis. GMHI is formulated upon 50 microbial species associated with healthy gut ecosystems. These species are identified through a multi-study, integrative analysis on 4347 human stool metagenomes from 34 published studies across healthy and 12 different nonhealthy conditions, i.e., disease or abnormal bodyweight. When demonstrated on our population-scale meta-dataset, GMHI is the most robust and consistent predictor of disease presence (or absence) compared to α-diversity indices. Validation on 679 samples from 9 additional studies results in a balanced accuracy of 73.7% in distinguishing healthy from non-healthy groups. Our findings suggest that gut taxonomic signatures can predict health status, and highlight how data sharing efforts can provide broadly applicable discoveries. A biologically-interpretable and robust metric that provides insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, the authors introduce a species-level index that predicts the likelihood of having a disease.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Utpal Bakshi
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin Y Cunningham
- Graduate Research Education Program (GREP), Mayo Clinic, Rochester, MN, 55905, USA.,Department of Computer Science and Engineering, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Heidi Nelson
- Emeritus Chair, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA. .,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
18
|
Abstract
Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.
Collapse
|
19
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
20
|
|
21
|
Selway CA, Eisenhofer R, Weyrich LS. Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:97-106. [PMID: 31944633 PMCID: PMC7164373 DOI: 10.1002/cjp2.151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
The human microbiome can play key roles in disease, and diagnostic testing will soon have the ability to examine these roles in the context of clinical applications. Currently, most diagnostic testing in pathology applications focuses on a small number of disease‐causing microbes and dismisses the whole microbial community that causes or is modulated by disease. Microbiome modifications have already provided clinically relevant insights in gut and oral diseases, such as irritable bowel disease, but there are currently limitations when clinically examining microbiomes outside of these body sites. This is critical, as the majority of microbial samples used in pathology originate from body sites that contain low concentrations of microbial DNA, including skin, tissue, blood, and urine. These samples, also known as low microbial biomass samples, are difficult to examine without careful consideration and precautions to mitigate contamination and biases. Here, we present the limitations when analysing low microbial biomass samples using current protocols and techniques and highlight the advantages that microbiome testing can offer diagnostics in the future, if the proper precautions are implemented. Specifically, we discuss the sources of contamination and biases that may result in false assessments for these sample types. Finally, we provide recommendations to mitigate contamination and biases from low microbial biomass samples during diagnostic testing, which will be especially important to effectively diagnose and treat patients using microbiome analyses.
Collapse
Affiliation(s)
- Caitlin A Selway
- Australian Centre for Ancient DNA, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Raphael Eisenhofer
- Australian Centre for Ancient DNA, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Laura S Weyrich
- Australian Centre for Ancient DNA, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.,Department of Anthropology, Pennsylvania State University, University Park, PA, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|