1
|
Chen J, Song Y, Zeng W, Wang L, Qin J, Fang L, Ding Y. RESEARCH PROGRESS ON THE ROLE OF GUT MICROBIOTA AND ITS METABOLITES IN THE OCCURRENCE AND DEVELOPMENT OF SEPTIC-ASSOCIATED LIVER INJURY. Shock 2025; 63:4-10. [PMID: 39158846 DOI: 10.1097/shk.0000000000002441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction that occurs due to a dysregulated host response to infection. Septic-associated liver injury (SALI) has been closely linked to the prognosis and mortality of sepsis. Recent investigations have delved into the gut-liver axis and its association with SALI, identifying its pivotal role in the gut microbiota. Bacterial translocation and the onset of SALI can occur due to an imbalance in the gut microbiota, impairing the function of the gut barrier. Moreover, their metabolites might exacerbate or initiate SALI by modulating immune responses. Nevertheless, interventions to restore the balance of the gut microbiota, such as the administration of probiotics, fecal microbiota transplantation, or dietary adjustments, may ameliorate SALI and enhance the prognosis and survival rates of septic patients. This review aimed to elucidate the function of the gut microbiota in the genesis and procession of SALI and its potential therapeutic value, offering a deeper understanding of the pathogenesis and therapeutic avenues for SALI.
Collapse
Affiliation(s)
- Jiangtao Chen
- Department of Intensive Care Unit, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yu Song
- Department of Hepatology, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenqing Zeng
- Department of Intensive Care Unit, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Lei Wang
- Department of Intensive Care Unit, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Jinyan Qin
- Department of Intensive Care Unit, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Lexin Fang
- Department of Intensive Care Unit, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yueping Ding
- Department of Intensive Care Unit, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Shahid A, Chambers S, Scott-Thomas A, Bhatia M. Gut Microbiota and Liver Dysfunction in Sepsis: The Role of Inflammatory Mediators and Therapeutic Approaches. Int J Mol Sci 2024; 25:13415. [PMID: 39769181 PMCID: PMC11678143 DOI: 10.3390/ijms252413415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening complication caused by an uncontrolled immune response to infection that can lead to multi-organ dysfunction, including liver injury. Recent research has shown the critical role of gut microbiota in sepsis pathogenesis, with the gut-liver axis playing a crucial role in disease progression. Mechanisms such as the disruption of the gut barrier and liver injury pathways mediated by cytokines, chemokines, adhesion molecules, hydrogen sulfide (H2S). and substance P (SP) have been the focus of recent studies. Some potential biomarkers and gut microbiota-targeted therapies have shown promise as emerging tools for predicting and managing sepsis. This review describes the role of the gut-liver axis in sepsis and the potential of microbiota-targeted therapies and biomarker-driven interventions to improve sepsis outcomes.
Collapse
Affiliation(s)
| | | | | | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (A.S.); (S.C.); (A.S.-T.)
| |
Collapse
|
3
|
Cheng L, Shi J, Peng H, Tong R, Hu Y, Yu D. Probiotics and liver fibrosis: An evidence-based review of the latest research. J Funct Foods 2023; 109:105773. [DOI: 10.1016/j.jff.2023.105773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
4
|
Zaini A, Jawad HE, Hadi NR. Targeting VEGF using Bevacizumab attenuates sepsis-induced liver injury in a mouse model of cecal ligation and puncture. J Med Life 2023; 16:1488-1498. [PMID: 38313162 PMCID: PMC10835558 DOI: 10.25122/jml-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 02/06/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from an uncontrolled host response to infection, often leads to severe liver damage and remains a significant cause of mortality in critically ill patients despite advances in antibiotic therapy and resuscitation. Bevacizumab, a neutralizing antibody targeting vascular endothelial growth factor (VEGF), is approved for treating certain cancers. However, its potential impact on sepsis-related liver injury is not well understood. This study aimed to explore the potential hepatoprotective effect of Bevacizumab on sepsis-induced liver injury. Twenty-four mice were divided into four groups: a sham group subjected to a midline incision only, a cecal ligation and puncture induction (CLP) group, a vehicle-treated group that received a vehicle one hour before CLP induction, and a Bevacizumab-treated group that received Bevacizumab one hour before CLP induction. Blood samples were collected, and angiopoietin-2 (ANGPT2), alanine transaminase (ALT), and aspartate transaminase (AST) serum levels were measured. Liver tissue homogenates were analyzed for IL-6, TNFα, intracellular adhesion molecule (ICAM-1), macrophage inhibitory factor (MIF), vascular endothelial growth factor (VEGF), F2-isoprostane, and caspase-11 levels. A histological examination was performed to assess the extent of liver damage. Mice exposed to CLP had high levels of the biomarkers mentioned above with a high degree of liver injury compared to the sham group. In contrast, treatment with Bevacizumab notably reduced these markers and mitigated liver damage. In conclusion, Bevacizumab may be a protective agent against sepsis-induced liver injury.
Collapse
Affiliation(s)
- Aula Zaini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | | | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
5
|
Sun X, Cui Q, Ni J, Liu X, Zhu J, Zhou T, Huang H, OuYang K, Wu Y, Yang Z. Retracted and Republished from: "Gut Microbiota Mediates the Therapeutic Effect of Monoclonal Anti-TLR4 Antibody on Acetaminophen-Induced Acute Liver Injury in Mice". Microbiol Spectr 2023; 11:e0471522. [PMID: 36942972 PMCID: PMC10186863 DOI: 10.1128/spectrum.04715-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of acute liver injury (ALI) in Western countries. Many studies have shown that the gut microbiota plays an important role in liver injury. Currently, the only approved treatment for APAP-induced ALI is N-acetylcysteine; therefore, it is essential to develop new therapeutic agents and explore the underlying mechanisms. We developed a novel monoclonal anti-Toll-like receptor 4 (TLR4) antibody (ATAB) and hypothesized that it has therapeutic effects on APAP-induced ALI and that the gut microbiota may be involved in the underlying mechanism of ATAB treatment. Male C57BL/6 mice were treated with APAP and ATAB, which produced a therapeutic effect on ALI and altered the members of the gut microbiota and their metabolic pathways, such as Roseburia, Lactobacillus, Akkermansia, and the fatty acid pathway, etc. Furthermore, we verified that purified short-chain fatty acids (SCFAs) could alleviate ALI. Moreover, a separate group of mice that received feces from the ATAB group showed less severe liver injury than mice that received feces from the APAP group. ATAB therapy also improved gut barrier functions in mice and reduced the expression of the protein zonulin. Our results revealed that the gut microbiota plays an important role in the therapeutic effect of ATAB on APAP-induced ALI. IMPORTANCE In this study, we found that a monoclonal anti-Toll-like receptor 4 antibody can alleviate APAP-induced acute liver injury through changes in the gut microbiota, metabolic pathways, and gut barrier function. This work suggested that the gut microbiota can be a therapeutic target of APAP-induced acute liver injury, and we performed foundation for further research.
Collapse
Affiliation(s)
- Xuewei Sun
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- Binzhou Medical University, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Juan Ni
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiaoguang Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Tingting Zhou
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - HuaYing Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Ke OuYang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Yulong Wu
- Binzhou Medical University, Yantai, China
| | - Zhan Yang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| |
Collapse
|
6
|
Yang R, Qi L, Liang W. Neohesperidin dihydrochalbazone protects against septic acute kidney injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154623. [PMID: 36608504 DOI: 10.1016/j.phymed.2022.154623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neohesperidin dihydrochalbazone (NHDC) shows a range of pharmacological actions, however, in septic acute kidney injury (AKI), the effect of NHDC is little known. PURPOSE To assess the role of NHDC against AKI and the possible mechanisms. METHODS In vivo, we used different concentration of NHDC (50, 100, and 200 mg/kg) treated septic AKI model of mice. Moreover, in vitro, in HK-2 cells, a lipopolysaccharide (LPS) induced cell model was treated with 10, 20, and 30 μM NHDC. Next, kidney tissue pathologic change, marker of renal injury, apoptosis, and inflammatory factors were assessed using hematoxylin and eosin staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling, and western blot. HK-2 cell apoptosis and viability were assessed via flow cytometry and cell counting kit-8. In HK-2 cells and tissues, NLRP3, caspase 1, ASC, and P38/ERK 1/2/JNK pathway related protein levels were tested using western blot. RESULTS NHDC (100 and 200 mg/kg) significantly attenuated kidney injury in caecal ligation and puncture (CLP)-treated mice. In CLP-treated mice, the level of BUN, Scr, KIM-1, and NAGL was reduced by 100 and 200 mg/kg NHDC. Furthermore, 100 and 200 mg/kg NHDC inhibited inflammation by reducing the production of IL-6, TNF-α, and IL-1β, and inhibited oxidative stress by regulating the change of MDA, SOD, GSH, and CAT. NHDC (100 and 200 mg/kg) inhibited renal cell apoptosis by increasing Bcl2 protein expression and inhibiting Bax and cleaved caspase-3 protein expression. Additionally, NHDC (100 and 200 mg/kg) inhibited the protein levels of phosphorylated (p)-P38, p-JNK, p-ERK 1/2, NLRP3, caspase 1, ASC. In vitro, in LPS-stimulated HK-2 cells, NHDC (20 and 30 μM) increased cell viability, reduced cell apoptosis, restrained inflammation by reducing the content of IL-6, TNF-α, and IL-1β, and inhibited the protein expression of caspase 1, NLRP3, ASC, p-P38, p-JNK, and p-ERK1/2. Importantly, the promotive effect of NHDC on HK-2 cell viability was reversed by DHR (an activator of P38 MAPK signaling pathway), and DHR reversed the inhibitive effects of NHDC on HK-2 cell apoptosis and inflammation. CONCLUSION For the first time, NHDC was found to inhibit oxidative stress, inflammation, and apoptosis in AKI model, which was related to the inhibition of P38 MAPK pathways. Our findings provided the theoretical basis for NHDC on the prevention of AKI.
Collapse
Affiliation(s)
- Ruihong Yang
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Lei Qi
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Wei Liang
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|
7
|
Probiotic Potential of the Marine Isolate Enterococcus faecium EA9 and In Vivo Evaluation of Its Antisepsis Action in Rats. Mar Drugs 2023; 21:md21010045. [PMID: 36662218 PMCID: PMC9860781 DOI: 10.3390/md21010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1β, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.
Collapse
|
8
|
Sun X, Cui Q, Ni J, Liu X, Zhu J, Zhou T, Huang H, OuYang K, Wu Y, Yang Z. Gut Microbiota Mediates the Therapeutic Effect of Monoclonal Anti-TLR4 Antibody on Acetaminophen-Induced Acute Liver Injury in Mice. Microbiol Spectr 2022; 10:e0064722. [PMID: 35536057 PMCID: PMC9241835 DOI: 10.1128/spectrum.00647-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of acute liver injury (ALI) in Western countries. Many studies show that the gut microbiota plays an important role in liver injury. Currently, the only approved treatment for APAP-induced ALI is N-acetylcysteine; therefore, it is essential to develop new therapeutic agents and explore the underlying mechanisms. We developed a novel monoclonal anti-Toll-like receptor 4 (TLR4) antibody (ATAB) and hypothesized that it has therapeutic effects on APAP-induced ALI and that gut microbiota may be involved in the underlying mechanism of ATAB treatment. Male C57BL/6 mice were treated with APAP and ATAB, which produced a therapeutic effect on ALI and altered the gut microbiota and their metabolic pathway, such as Roseburia, Lactobacillus, Akkermansia, and the fatty acid pathway, etc. Furthermore, we verified that purified short-chain fatty acids (SCFAs) could alleviate ALI. Moreover, a separate group of mice that received feces from the ATAB group showed less severe liver injury compared with the mice receiving feces from the APAP group. ATAB therapy also improved the gut barrier functions in mice and reduced the expression of protein zonulin. Our results revealed that gut microbiota plays an important role in the therapeutic effect of ATAB on APAP-induced ALI. IMPORTANCE In this study, we found the monoclonal anti-Toll-like receptor 4 antibody can alleviate APAP-induced acute liver injury through the change of the gut microbiota, metabolic pathways, and gut barrier function. This work suggested the gut microbiota can be the therapeutic target of the APAP-induced acute liver injury, and we performed the fundamental research for further research.
Collapse
Affiliation(s)
- Xuewei Sun
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- Binzhou Medical Universitygrid.440653.0, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Juan Ni
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiaoguang Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Tingting Zhou
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - HuaYing Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Ke OuYang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Yulong Wu
- Binzhou Medical Universitygrid.440653.0, Yantai, China
| | - Zhan Yang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| |
Collapse
|
9
|
Liu X, Zhu H. Curcumin Improved Intestinal Epithelial Barrier Integrity by Up-Regulating ZO-1/Occludin/Claudin-1 in Septic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2884522. [PMID: 35711494 PMCID: PMC9197639 DOI: 10.1155/2022/2884522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the protective effect and mechanism of curcumin on intestinal barrier function in rats with enterogenic sepsis. Methods Rats were divided into Sham group (Sham), Model group (Model), low-dose curcumin group (100 mg/kg), and high-dose curcumin group (200 mg/kg), with 10 rats in each group. Sepsis model was established in model group, low-dose curcumin group, and high-dose curcumin group. After drug intervention, hematoxylin-eosin (HE) staining was used to observe the histopathological changes of small intestine in each group. The levels of TNF-α, IL-1β, and IL-6 in serum and intestinal tissues of rats were determined by ELISA. The expression of ZO-1, occludin, and claudin-1 in ileum was detected by QRT-PCR and Western blot. Western blotting was used to detect the expression of ERK/JNK signaling pathway, NF-κB p65, apoptosis-related proteins Caspase-3, and TNF-α in rat intestinal tissues. Results HE staining showed that curcumin treatment reduced epithelial cell shedding, interstitial edema, and apoptosis. Compared with model group, DAO activity, serum intestinal fatty acid binding protein (I-FABP), TNF-α, IL-6, and IL-1β expression in curcumin group were decreased in a dose-dependent manner. Curcumin can upregulate the mRNA and protein expression levels of ZO-1, occludin, and claudin-1 in ileum of CLP-induced rats. In addition, curcumin inhibits NF-κB p65 activation and apoptosis by regulating ERK/JNK signaling pathway. Conclusion Curcumin can reduce inflammatory response and upregulate the expression of intestinal tight junction proteins ZO-1, occludin, and claudin-1 in rats with enterogenic sepsis, and protect intestinal barrier function.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Hongquan Zhu
- Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
10
|
Zanetta P, Ormelli M, Amoruso A, Pane M, Azzimonti B, Squarzanti DF. Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci 2022; 23:ijms23073489. [PMID: 35408849 PMCID: PMC8998608 DOI: 10.3390/ijms23073489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Angela Amoruso
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| |
Collapse
|
11
|
Pharmacological Effects of Marine-Derived Enterococcus faecium EA9 against Acute Lung Injury and Inflammation in Cecal Ligated and Punctured Septic Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5801700. [PMID: 34912891 PMCID: PMC8668278 DOI: 10.1155/2021/5801700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Microorganisms obtained from the marine environment may represent a potential therapeutic value for multiple diseases. This study explored the possible protective role of marine-derived potential probiotic Enterococcus faecium EA9 (E. faecium) against pulmonary inflammation and oxidative stress using the cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Animals were pretreated with E. faecium for 10 days before either sham or CLP surgeries. Animals were sacrificed 72 hours following the surgical intervention. The histological architecture of lung tissues was evaluated as indicated by the lung injury score. In addition, the extend of pulmonary edema was determined as wet/dry weight ratio. The inflammatory cytokines were estimated in lung tissues, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) using the enzyme-linked-immunosorbent-assay (ELISA) technique. Moreover, markers for lipid peroxidation such as thiobarbituric acid reaction substances (TBARs), and endogenous antioxidants, including reduced glutathione (GSH) were determined in lung tissues. Finally, the enzymatic activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were assayed in the lungs. Pretreatment with E. faecium markedly attenuated CLP-induced lung injury and pulmonary edema. Markers for inflammation, including TNF-α, IL-6, and IL-1β were augmented in the lung tissues of CLP animals, while E. faecium ameliorated their augmented levels. E. faecium pretreatment also restored the elevated TBARS levels and the prohibited CAT, SOD, and GPx enzymatic activities in CLP animals. GSH levels were corrected by E. faecium in CLP animals. The inflammatory and lipid peroxidation mediators were positively correlated, while antioxidant enzymatic activities were negatively correlated with CLP-induced lung injury and pulmonary edema. Collectively, marine-derived Enterococcus faecium EA9 might be considered as a prospective therapeutic tool for the management of pulmonary dysfunction associated with sepsis.
Collapse
|
12
|
Gong Y, Li K, Qin Y, Zeng K, Liu J, Huang S, Chen Y, Yu H, Liu W, Ye L, Yang Y. Norcholic Acid Promotes Tumor Progression and Immune Escape by Regulating Farnesoid X Receptor in Hepatocellular Carcinoma. Front Oncol 2021; 11:711448. [PMID: 34888230 PMCID: PMC8648605 DOI: 10.3389/fonc.2021.711448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence shows a close association between various types of bile acids (BAs) and hepatocellular carcinoma (HCC), and they have been revealed to affect tumor immune response and progression mainly by regulating Farnesoid X receptor (FXR). Nevertheless, the roles of Norcholic acid(NorCA) in HCC progression remain unknown yet. In this study, herein we demonstrate that NorCA can promote HCC cell proliferation, migration and invasion through negatively regulating FXR. Additionally, NorCA can increase PD-L1 level on the surfaces of HCC cells and their exosomes, and NorCA-induced exosomes dramatically dampen the function of CD4+T cells, thereby inducing an immunosuppressive microenvironment. Meanwhile, a negative correlation between PD-L1 and FXR expression in human HCC specimens was identified, and HCC patients with FXRlowPD-L1high expression exhibit a rather dismal survival outcome. Importantly, FXR agonist (GW4064) can synergize with anti-PD-1 antibody (Ab) to inhibit HCC growth in tumor-bearing models. Taken together, NorCA can promote HCC progression and immune invasion by inhibiting FXR signaling, implying a superiority of the combination of FXR agonist and anti-PD-1 Ab to the monotherapy of immune checkpoint inhibitor in combating HCC. However, more well-designed animal experiments and clinical trials are warranted to further confirm our findings in future due to the limitations in our study.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Department of Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaining Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianrong Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaozhuo Huang
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yewu Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Kasti AN, Synodinou KD, Pyrousis IA, Nikolaki MD, Triantafyllou KD. Probiotics Regulating Inflammation via NLRP3 Inflammasome Modulation: A Potential Therapeutic Approach for COVID-19. Microorganisms 2021; 9:2376. [PMID: 34835501 PMCID: PMC8624812 DOI: 10.3390/microorganisms9112376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammasomes are cytoplasmic multiprotein complexes formed by the host's immune system as a response to microbial infection and cellular damage. Many studies have revealed various regulators of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation, while it has been recently shown that NLRP3 is implicated in COVID-19 pathogenesis. At the same time, probiotics counteract the inflammatory process and modulate cytokine release, thus influencing both innate and adaptive immune systems. Herein, we review the immunomodulatory potential of probiotics on the assembly of NLRP3 inflammasome, as well as the pathophysiological mechanisms supporting the use of probiotic bacteria for SARS-CoV-2 infection management, presenting evidence from preclinical studies of the last decade: in vivo, ex vivo, and mixed trials. Data show that probiotics intake is related to NLRP3 inflammasome attenuation and lower levels of inflammation markers, highlighting the beneficial effects of probiotics on inflammatory conditions. Currently, none of the ongoing clinical trials evaluating the effectiveness of probiotics intake in humans with COVID-19 has been completed. However, evidence from preclinical studies indicates that probiotics may block virus invasion and replication through their metabolites, bacteriocins, and their ability to block Angiotensin-Converting Enzyme 2 (ACE2), and by stimulating the immune response through NLRP3 inflammasome regulation. In this review, the beneficial effects of probiotics in the inflammatory process through NLRP3 inflammasome attenuation are presented. Furthermore, probiotics may target SARS-CoV-2 both by blocking virus invasion and replication and by stimulating the immune response through NLRP3 inflammasome regulation. Heterogeneity of the results-due to, among others, different bacterial strains and their metabolites, forms, dosage, and experimental designs-indicates the need for more extensive research.
Collapse
Affiliation(s)
- Arezina N. Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (K.D.S.); (I.A.P.); (M.D.N.)
| | - Kalliopi D. Synodinou
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (K.D.S.); (I.A.P.); (M.D.N.)
| | - Ioannis A. Pyrousis
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (K.D.S.); (I.A.P.); (M.D.N.)
- Medical School, University of Patras, 26504 Patras, Greece
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (K.D.S.); (I.A.P.); (M.D.N.)
| | - Konstantinos D. Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| |
Collapse
|
14
|
Xu S, Zhao M, Wang Q, Xu Z, Pan B, Xue Y, Dai Z, Wang S, Xue Z, Wang F, Xu C. Effectiveness of Probiotics and Prebiotics Against Acute Liver Injury: A Meta-Analysis. Front Med (Lausanne) 2021; 8:739337. [PMID: 34621765 PMCID: PMC8490661 DOI: 10.3389/fmed.2021.739337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Acute liver injury (ALI) is a clinical syndrome characterized by rapid loss of liver function, which may progress to life-threatening liver failure. We conducted this meta-analysis to examine the evidence on the effects of probiotics or prebiotics on ALI. Methods and Results: Several databases, including PubMed, EMBASE, and Cochrane Library, were scrutinized from the inception through February 2021 by combining key search terms, yielding 26 eligible studies, which concluded that modulation of gut microbiota significantly decreased aspartate transaminase [standardized mean difference (SMD): −1.51, 95% confidence interval (CI): −2.03 to −1.00], alanine aminotransferase (SMD: −1.42, 95% CI: −1.85 to −0.98), and bilirubin (SMD: −0.91, 95% CI: −1.33 to −0.49). In addition, administration of probiotics or prebiotics also promoted proliferation of Bifidobacterium (SMD: 1.21, 95% CI: −0.18 to 2.60) and inhibited Enterococcus (SMD: −1.00, 95% CI: −1.39 to −0.61), contributing to lower levels of endotoxin (SMD: −2.14, 95% CI: −2.91 to −1.37). Tight junction protein ZO-1 (SMD: 1.95, 95% CI: 0.14 to 3.76) was upregulated after intervention, thereby reducing bacterial translocation to the liver [odds ratio (OR) = 0.23, 95% CI: 0.13–0.44] and mesenteric lymph node (OR = 0.14, 95% CI: 0.08 to 0.26), with decreased tumor necrosis factor-α (SMD: −2.84, 95% CI: −3.76 to −1.93) and interleukin-6 (SMD: −2.62, 95% CI: −4.14 to −1.10). Oxidative stress was also relieved by reducing malondialdehyde (SMD: −1.83, 95% CI: −2.55 to −1.10) while elevating superoxide dismutase (SMD: 1.78, 95% CI: 1.00–2.55) and glutathione (SMD: 1.83, 95% CI: 0.76–2.91). Conclusion: Our findings suggest that probiotics and prebiotics could be a promising therapeutic strategy in ALI and possess a potential for clinical applications. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=255888, CRD42021255888.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Zhao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinjian Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilang Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zebin Dai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Deoxynivalenol exposure induces liver damage in mice: Inflammation and immune responses, oxidative stress, and protective effects of Lactobacillus rhamnosus GG. Food Chem Toxicol 2021; 156:112514. [PMID: 34400200 DOI: 10.1016/j.fct.2021.112514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Deoxynivalenol (DON), one of the most common environmental pollutants, substantially affects human and animal health. Much attention has been paid to the ability of probiotics to modulate inflammation and immune responses. In this work, the toxic effects of DON on the liver and the protective effects of Lactobacillus rhamnosus GG (LGG) were investigated. We treated mice with oral gavage of DON (2.4 mg/kg bw/day), LGG (1 × 109 CFU/mouse/day) or both for 28 days. The results showed that DON triggered liver inflammation, reflected by pathological changes and liver function damage but LGG oral administration significantly attenuated these changes. Notably, DON treatment activated the TLR4/NF-κB signaling pathway which contribute to produce inflammatory cytokines, but oral administration of LGG inhibited all the effects of DON. DON treatment can also induce oxidative stress and activate Keap1-Nrf2 signaling pathway, leading to the activation of Nrf2 and the downstream genes, while LGG treatment can improve the antioxidant capacity of liver and protected mice from DON injury. In conclusion, LGG was able to negate the detrimental effects of DON on the liver and may contribute as a potential dietary intervention strategy to reduce mycotoxicity.
Collapse
|
16
|
Probiotics for the Management of Sepsis: Advances in Animal Models and Intensive Care Unit Environments. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sepsis frequently leads to multiple organ failure and is a major cause of morbidity and mortality in critically ill patients. Although intensive care protocols and antibiotic therapy have improved sepsis treatment, specific management is lacking with respect to efficient protection from tissue damage and long-term outcomes. Probiotics are live microbes that modulate the immune system and inflammation and colonize the gut. In this narrative review, we have traced the evolution of the administration of probiotics in an animal model of sepsis and treatment alternatives in the intensive care unit setting. First, probiotics are categorized by species before describing their modulation of the microbiota, repair of tissue-specific damage, immune response, and molecular pathways to prevent complications. The impact on therapy for infant and adult patients is also addressed. Finally, we have emphasized the challenges and gaps in current studies as well as future perspectives for further investigation. The present review can open up avenues for new strategies that employ promising probiotic strains for the treatment of sepsis and discusses their ability to prevent disease-associated long-term complications.
Collapse
|
17
|
Abstract
Although the probiotic Lactobacillus acidophilus LA14 is used worldwide, its effect on liver diseases remains unelucidated. Here, 32 rats were divided into four groups, gavaged with L. acidophilus LA14 (3 × 109 CFU) or phosphate-buffered saline for 7 days, and then intraperitoneally injected with d-galactosamine or saline. After 24 h, blood, liver, ileum, and feces samples were collected for liver injury, inflammation, intestinal barrier, gut microbiota, metabolome, and transcriptome analyses. Pretreatment with L. acidophilus LA14 alleviated the d-galactosamine-induced elevation of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and bile acids; mitigated the histological injury to the liver and gut; and suppressed the inflammatory cytokines macrophage inflammatory protein 1α (MIP-1α), MIP-3α, and MCP-1. L. acidophilus LA14 also ameliorated the d-galactosamine-induced dysbiosis of the gut microbiota and metabolism, such as the enrichment of Bacteroides sp. strain dnLKV3 and the depletion of Streptococcus, butanoic acid, and N-acetyl-d-glucosamine. The underlying mechanism of L. acidophilus LA14 included prevention of not only the d-galactosamine-induced upregulation of infection- and tumor-related pathways but also the d-galactosamine-induced downregulation of antioxidation-related pathways during this process, as reflected by the liver transcriptome and proteome analyses. Furthermore, the administration of L. acidophilus LA14 to healthy rats did not alter the tested liver indicators but significantly enriched the beneficial Lactobacillus and Bifidobacterium species, promoted metabolism and regulated pathways to improve immunity. The ability of L. acidophilus LA14 to alleviate liver injury was further confirmed with an acetaminophen-induced mouse model. These results might provide a reference for future studies on the application of L. acidophilus LA14 for the prevention of liver injury. IMPORTANCE The probiotic Lactobacillus acidophilus LA14 is widely used, but its effect on liver diseases has not been elucidated. We explored the protective effect of L. acidophilus LA14 on the liver using rats with d-galactosamine-induced liver injury. Pretreatment with L. acidophilus LA14 alleviated the d-galactosamine-induced elevation of serum ALT, AST, ALP, and bile acids, mitigated the histological injury to the liver and gut, and suppressed the inflammatory cytokines MIP-1α, MIP-3α, and MCP-1. These effects were correlated with the modulations of the gut microbiome, metabolome, and hepatic gene expression induced by L. acidophilus LA14. Moreover, the ability of L. acidophilus LA14 to alleviate liver injury was further confirmed with an acetaminophen-induced mouse model. These results might provide a reference for future studies on the application of L. acidophilus LA14 for the prevention of liver injury.
Collapse
|
18
|
Mu S, Zhang J, Du S, Zhu M, Wei W, Xiang J, Wang J, Han Y, Zhao Y, Zheng H, Tong C, Song Z. Gut microbiota modulation and anti-inflammatory properties of Xuanbai Chengqi decoction in septic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113534. [PMID: 33137434 DOI: 10.1016/j.jep.2020.113534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai Chengqi decoction (XBCQ), a traditional Chinese medicine formulation, was reported to have a protective role in a variety of pulmonary infection diseases. However, its mechanism remains uncertain. In the current study, we investigated the potential mechanism of XBCQ, its therapeutic effects on organ injuries induced by sepsis and gut microbiota modulation. MATERIAL AND METHODS 80 Male Sprague Dawley rats were performed cecal ligation and puncture (CLP) for sepsis model and 60 of them were treated with different doses of XBCQ (3.78, 7.56, 15.12 g/Kg, 20 rats per group) twice per day. After the most valid dose was determined, another 40 rats were divided randomly into four groups: sham group, sham + XBCQ group, sepsis group, sepsis + XBCQ group. The sepsis + XBCQ group was treated with XBCQ by intragastric administration and then twice per day. Feces of the rats were collected and the gut microbiota constituents were analyzed by 16S rDNA sequencing. Histological changes were observed by H&E staining. Occludin content in the colon was determined by immunohistochemical analysis. The concentrations of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) kits. RESULTS The survival rate of septic rats was increased significantly at the dose of 7.56 g/Kg from 50% to 80% at 72 h. The gut microbiota richness and composition were disturbed in septic rats. XBCQ altered the gut microbiota, involving alpha diversity changes, significantly reducing the relative abundance of Bacteroidaceae and ClostridiumXI and increasing that of Firmicutes and Actinobacteria. Furthermore, the relative abundances of Lactobacillus, Butyricicoccus and Bifidobacterium were increased by XBCQ. Moreover, the gut barrier dysfunction was improved by XBCQ through restoring the impaired tight conjunction protein Occludin. The concentration of diamine oxidase was decreased, while the D-lactate level was elevated. Meanwhile, the level of myeloperoxidase (MPO) in the lung tissue of the XBCQ-treated group was reduced. Lung injury was also alleviated by decreased levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 10 (IL-10) in bronchoalveolar lavage fluids (BALFs). The relative abundance of potential microbial biomarkers in four groups significantly correlated with the concentration of inflammatory factors in BALFs. CONCLUSIONS Our results suggested that XBCQ had a protective role against sepsis by modulating the gut microbiota, restoring the intestinal epithelial barrier and decreasing inflammatory responses.
Collapse
Affiliation(s)
- Sucheng Mu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jin Zhang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Shilin Du
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Ming Zhu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Wei Wei
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jianli Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Yi Han
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Yingjun Zhao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Huajun Zheng
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, 2140 Xietu Road, Shanghai, 200032, PR China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China.
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China.
| |
Collapse
|
19
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 907] [Impact Index Per Article: 181.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|