1
|
Cortés-Martín A, Plaza-Diaz J. Exploring the therapeutic potential of glucagon-like peptide 1 agonists in metabolic disorders. World J Gastroenterol 2025; 31:101436. [PMID: 39877709 PMCID: PMC11718636 DOI: 10.3748/wjg.v31.i4.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024] Open
Abstract
This article comments on the work by Soresi and Giannitrapani. The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) is the use of glucagon-like peptide 1 receptor agonists, especially when used in combination therapy. However, despite their notable efficacy, these drugs were not initially designed to target MASLD directly. In a groundbreaking development, the Food and Drug Administration has recently approved resmetirom, the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis. Resmetirom, an orally administered, liver-directed thyroid hormone beta-selective agonist, acts directly on intrahepatic pathways, enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD. Furthermore, the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced. By incorporating dietary changes and regular physical exercise into treatment, patients may achieve improved outcomes, reducing the need for pharmacological interventions and/or improving treatment efficacy. As a complement to medical therapies, lifestyle factors should not be overlooked in the broader strategy for managing MASLD.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, University of Granada, Granada 18016, Andalusia, Spain
| | - Julio Plaza-Diaz
- School of Health Sciences, Universidad Internacional de La Rioja, Logroño 26006, La Rioja, Spain
| |
Collapse
|
2
|
Shukla S, Hsu CL. Alcohol Use Disorder and the Gut-Brain Axis: A Narrative Review of the Role of Gut Microbiota and Implications for Treatment. Microorganisms 2025; 13:67. [PMID: 39858835 PMCID: PMC11767426 DOI: 10.3390/microorganisms13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide and can lead to deleterious physical and social consequences. Recent research has highlighted not only the effect of alcohol on the gut microbiome, but also the role of the gut microbiome and the gut-brain axis in the development and maintenance of alcohol use disorder. This review provides an overview of the reciprocal relationship between alcohol consumption and the gut microbiome, including the effects of alcohol on gut microbial composition, changes in gut microbial metabolites in response to alcohol consumption, and how gut microbial metabolites may modulate alcohol use behavior. We also discuss the gut-mediated mechanisms of neuroinflammation that contribute to and result from AUD, including disruption of the intestinal barrier, toll-like receptor signaling, and the activation of glial cells and immune cells. Finally, we review the current evidence on gut microbial-directed therapies for AUD and discuss the implications of this research for our understanding of the pathophysiology of AUD and future research directions.
Collapse
Affiliation(s)
- Shikha Shukla
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cynthia L. Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
3
|
Kobe EA, Thakkar A, Matai S, Akkaya E, Pagidipati NJ, McGarrah RW, Bloomfield GS, Shah NP. Optimizing cardiometabolic risk in people living with human immunodeficiency virus: A deep dive into an important risk enhancer. Am J Prev Cardiol 2024; 20:100888. [PMID: 39552706 PMCID: PMC11566711 DOI: 10.1016/j.ajpc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Effective antiretroviral therapy (ART) is now nearly ubiquitous. However, the survival benefits conferred with ART contribute to an aging human immunodeficiency virus (HIV) population and increased risk of chronic diseases, like atherosclerotic cardiovascular disease (ASCVD). Furthermore, HIV is a known risk enhancer of ASCVD and acknowledged as such in the current 2018 AHA/ACC Blood Cholesterol guidelines [1]. This makes cardiovascular risk factor identification and modification among people living with HIV (PLWH) of increasing importance to prevent cardiovascular events. In this review, we aim to summarize the epidemiology and pathogenesis of how HIV is linked to atherogenesis and to discuss cardiometabolic risk factor modification specific to PLWH, covering obesity, hypertension, insulin resistance, metabolic dysfunction-associated steatotic liver disease, and dyslipidemia.
Collapse
Affiliation(s)
- Elizabeth A. Kobe
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
| | - Aarti Thakkar
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
| | - Sarina Matai
- Raleigh Charter High School, 1307 Glenwood Ave, Raleigh, NC 27605, USA
| | - Esra Akkaya
- Duke University School of Medicine, 8 Searle Center Dr, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, 300 N Duke St, Durham, NC 27701, USA
| | - Neha J. Pagidipati
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
- Duke University School of Medicine, 8 Searle Center Dr, Durham, NC 27710, USA
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC 27701, USA
| | - Robert W. McGarrah
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
- Duke University School of Medicine, 8 Searle Center Dr, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, 300 N Duke St, Durham, NC 27701, USA
| | - Gerald S. Bloomfield
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC 27701, USA
- Duke Global Health Institute, 310 Trent Dr, Durham, NC 27710, USA
| | - Nishant P. Shah
- Duke University Hospitals, 2301 Erwin Road, Suite 7400, Cubicle 13, Durham, NC 27710, USA
- Duke University School of Medicine, 8 Searle Center Dr, Durham, NC 27710, USA
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC 27701, USA
| |
Collapse
|
4
|
Yang Y, Schnabl B. Gut Bacteria in Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:663-679. [PMID: 39362714 PMCID: PMC11450261 DOI: 10.1016/j.cld.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) poses a significant global public health challenge, with high patient mortality rates and economic burden. The gut microbiome plays an important role in the onset and progression of alcohol-associated liver disease. Excessive alcohol consumption disrupts the intestinal barrier, facilitating the entry of harmful microbes and their products into the liver, exacerbating liver damage. Dysbiosis, marked by imbalance in gut bacteria, correlates with ALD severity. Promising microbiota-centered therapies include probiotics, phages, and fecal microbiota transplantation. Clinical trials demonstrate the potential of these interventions to improve liver function and patient outcomes, offering a new frontier in ALD treatment.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
5
|
Sánchez V, Baumann A, Kromm F, Yergaliyev T, Brandt A, Scholda J, Kopp F, Camarinha-Silva A, Bergheim I. Oral supplementation of choline attenuates the development of alcohol-related liver disease (ALD). Mol Med 2024; 30:181. [PMID: 39425011 PMCID: PMC11488139 DOI: 10.1186/s10020-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic alcohol intake is associated with alterations of choline metabolism in various tissues. Here, we assessed if an oral choline supplementation attenuated the development of alcohol-related liver disease (ALD) in mice. METHODS Female C57BL/6 J mice (n = 8/group) were either pair-fed a liquid control diet, or a Lieber DeCarli liquid diet (5% ethanol) ± 2.7 g choline/kg diet for 29 days. Liver damage, markers of intestinal permeability and intestinal microbiota composition were determined. Moreover, the effects of choline on ethanol-induced intestinal permeability were assessed in an ex vivo model. RESULTS ALD development as determined by liver histology and assessing markers of inflammation (e.g., nitric oxide, interleukin 6 and 4-hydroxynonenal protein adducts) was attenuated by the supplementation of choline. Intestinal permeability in small intestine being significantly higher in ethanol-fed mice was at the level of controls in ethanol-fed mice receiving choline. In contrast, no effects of the choline supplementation were found on intestinal microbiota composition. Choline also significantly attenuated the ethanol-induced intestinal barrier dysfunction in small intestinal tissue ex vivo, an effect almost entirely abolished by the choline oxidase inhibitor dimbunol. CONCLUSION Our results suggest that an oral choline supplementation attenuates the development of ALD in mice and is related to a protection from intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Timur Yergaliyev
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria.
| |
Collapse
|
6
|
Zeng S, Schnabl B. Gut mycobiome alterations and implications for liver diseases. PLoS Pathog 2024; 20:e1012377. [PMID: 39116092 PMCID: PMC11309506 DOI: 10.1371/journal.ppat.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Chronic liver disease and its complications are a significant global health burden. Changes in fungal communities (mycobiome), an integral component of the gut microbiome, are associated with and contribute to the development of liver disease. Fungal dysbiosis can induce intestinal barrier dysfunction and allow fungal products to translocate to the liver causing progression of disease. This review explores recent progress in understanding the compositional and functional diversity of gut mycobiome signatures across different liver diseases. It delves into causative connections between gut fungi and liver diseases. We emphasize the significance of fungal translocation, with a particular focus on fungal-derived metabolites and immune cells induced by fungi, as key contributors to liver disease. Furthermore, we review the potential impact of the intrahepatic mycobiome on the progression of liver diseases.
Collapse
Affiliation(s)
- Suling Zeng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
7
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Hsu CL, Loomba R. From NAFLD to MASLD: implications of the new nomenclature for preclinical and clinical research. Nat Metab 2024; 6:600-602. [PMID: 38383845 PMCID: PMC11262457 DOI: 10.1038/s42255-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Non-alcoholic liver disease (NAFLD) is now metabolic dysfunction-associated steatotic liver disease (MASLD), emphasizing the key metabolic factors of obesity, insulin resistance, vascular dysfunction, and dyslipidemia. Here, we discuss impacts on the existing body of clinical and preclinical liver disease research and research moving forward.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
- MASLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Wen Y, Zhang T, Zhang B, Wang F, Wei X, Wei Y, Ma X, Tang X. Comprehensive bibliometric and visualized analysis of research on gut-liver axis published from 1998 to 2022. Heliyon 2024; 10:e27819. [PMID: 38496853 PMCID: PMC10944270 DOI: 10.1016/j.heliyon.2024.e27819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.
Collapse
Affiliation(s)
- Yongtian Wen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuxiu Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
11
|
Wegermann K, Moylan C, Naggie S. Fatty Liver Disease: Enter the Metabolic Era. Curr HIV/AIDS Rep 2023; 20:405-418. [PMID: 37882965 DOI: 10.1007/s11904-023-00669-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the recent literature linking HIV to metabolic dysfunction-associated steatotic liver disease (MASLD). This is a pressing issue due to the scale of the MASLD epidemic and the urgent need for preventive and therapeutic strategies for MASLD in PWH. RECENT FINDINGS The prevalence of MASLD in PWH is higher than previously appreciated, approaching 50% depending on the population and definition of MASLD. MASLD in PWH is likely multifactorial due to risk factors present in the general population such as metabolic syndrome, and features unique to HIV including systemic inflammation and ART. Statin therapy results in a significant reduction in major adverse cardiovascular events in PWH. PWH are at high risk for MASLD. Screening PWH with metabolic syndrome features could enable earlier interventions to reduce morbidity and mortality associated with MASLD in PWH.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Cynthia Moylan
- Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, NC, USA
- Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Susanna Naggie
- Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC, USA.
- Division of Infectious Diseases, Department of Medicine, Duke University Health System, Durham, NC, USA.
| |
Collapse
|
12
|
Hsu CL, Schnabl B. The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 2023; 21:719-733. [PMID: 37316582 PMCID: PMC10794111 DOI: 10.1038/s41579-023-00904-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
The trillions of microorganisms in the human intestine are important regulators of health, and disruptions in the gut microbial communities can cause disease. The gut, liver and immune system have a symbiotic relationship with these microorganisms. Environmental factors, such as high-fat diets and alcohol consumption, can disrupt and alter microbial communities. This dysbiosis can lead to dysfunction of the intestinal barrier, translocation of microbial components to the liver and development or progression of liver disease. Changes in metabolites produced by gut microorganisms can also contribute to liver disease. In this Review, we discuss the importance of the gut microbiota in maintenance of health and the alterations in microbial mediators that contribute to liver disease. We present strategies for modulation of the intestinal microbiota and/or their metabolites as potential treatments for liver disease.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
13
|
Ma MH, Gao LL, Chen CB, Gu FL, Wu SQ, Li F, Han BX. Dendrobium huoshanense Polysaccharide Improves High-Fat Diet Induced Liver Injury by Regulating the Gut-Liver Axis. Chem Biodivers 2023; 20:e202300980. [PMID: 37831331 DOI: 10.1002/cbdv.202300980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Dendrobium huoshanense is an important Traditional Chinese medicine that thickens the stomach and intestines. Its active ingredient Dendrobium huoshanense polysaccharide (DHP), was revealed to relieve the symptoms of liver injury. However, its mechanism of action remains poorly understood. This study aimed to investigate the mechanism of DHP in protecting the liver. The effects of DHP on lipid levels, liver function, and intestinal barrier function were investigated in mice with high-fat diet-induced liver damage. Changes in the gut flora and their metabolites were analyzed using 16S rRNA sequencing and metabolomics. The results showed that DHP reduced lipid levels, liver injury, and intestinal permeability. DHP altered the intestinal flora structure and increased the relative abundance of Bifidobacterium animalis and Clostridium disporicum. Furthermore, fecal metabolomics revealed that DHP altered fecal metabolites and significantly increased levels of gut-derived metabolites, spermidine, and indole, which have been reported to inhibit liver injury and improve lipid metabolism and the intestinal barrier. Correlation analysis showed that spermidine and indole levels were significantly negatively correlated with liver injury-related parameters and positively correlated with the intestinal species B. animalis enriched by DHP. Overall, this study confirmed that DHP prevented liver injury by regulating intestinal microbiota dysbiosis and fecal metabolites.
Collapse
Affiliation(s)
- Meng-Hua Ma
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| | - Lei-Lei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Chuang-Bo Chen
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang-Li Gu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
| | - Si-Qi Wu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang Li
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Bang-Xing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| |
Collapse
|
14
|
Hartmann P, Lang S, Schierwagen R, Klein S, Praktiknjo M, Trebicka J, Schnabl B. Fecal cytolysin does not predict disease severity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int 2023; 22:474-481. [PMID: 37198098 PMCID: PMC10797562 DOI: 10.1016/j.hbpd.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cirrhosis with acute decompensation (AD) and acute-on-chronic liver failure (ACLF) are characterized by high morbidity and mortality. Cytolysin, a toxin from Enterococcus faecalis (E. faecalis), is associated with mortality in alcohol-associated hepatitis (AH). It is unclear whether cytolysin also contributes to disease severity in AD and ACLF. METHODS We studied the role of fecal cytolysin in 78 cirrhotic patients with AD/ACLF. Bacterial DNA from fecal samples was extracted and real-time quantitative polymerase chain reaction (PCR) was performed. The association between fecal cytolysin and liver disease severity in cirrhosis with AD or ACLF was analyzed. RESULTS Fecal cytolysin and E. faecalis abundance did not predict chronic liver failure (CLIF-C) AD and ACLF scores. Presence of fecal cytolysin was not associated with other liver disease markers, including Fibrosis-4 (FIB-4) index, 'Age, serum Bilirubin, INR, and serum Creatinine (ABIC)' score, Child-Pugh score, model for end-stage liver disease (MELD) nor MELD-Na scores in AD or ACLF patients. CONCLUSIONS Fecal cytolysin does not predict disease severity in AD and ACLF patients. The predictive value of fecal cytolysin positivity for mortality appears to be restricted to AH.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Sabine Klein
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
15
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|