1
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Nordahl KML, Fedulov V, Holm A, Haanes KA. Intraocular Adeno-Associated Virus-Mediated Transgene Endothelin-1 Delivery to the Rat Eye Induces Functional Changes Indicative of Retinal Ischemia-A Potential Chronic Glaucoma Model. Cells 2023; 12:1987. [PMID: 37566067 PMCID: PMC10417058 DOI: 10.3390/cells12151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Endothelin-1 (ET-1) overactivity has been implicated as a factor contributing to glaucomatous neuropathy, and it has been utilized in animal models of retinal ischemia. The functional effects of long-term ET-1 exposure and possible compensatory mechanisms have, however, not been investigated. This was therefore the purpose of our study. ET-1 was delivered into rat eyes via a single intravitreal injection of 500 µM or via transgene delivery using an adeno-associated viral (AAV) vector. Retinal function was assessed using electroretinography (ERG) and the retinal expression of potentially compensatory genes was evaluated by means of qRT-PCR. Acute ET-1 delivery led to vasoconstriction and a significant reduction in the ERG response. AAV-ET-1 resulted in substantial transgene expression and ERG results similar to the acute ET-1 injections and comparable to other models of retinal ischemia. Compensatory changes were observed, including an increase in calcitonin gene-related peptide (CGRP) gene expression, which may both counterbalance the vasoconstrictive effects of ET-1 and provide neuroprotection. This chronic ET-1 ischemia model might be especially relevant to glaucoma research, mimicking the mild and repeated ischemic events in patients with long-term vascular dysfunction. The compensatory mechanisms, and particularly the role of vasodilatory CGRP in mitigating the retinal damage, warrant further investigation with the aim of evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Karin M. L. Nordahl
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| | - Vadim Fedulov
- Clinical and Medical Affairs, Radiometer, 2700 Brønshøj, Denmark;
| | - Anja Holm
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Kristian A. Haanes
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| |
Collapse
|
3
|
Bhatt Y, Hunt DM, Carvalho LS. The origins of the full-field flash electroretinogram b-wave. Front Mol Neurosci 2023; 16:1153934. [PMID: 37465364 PMCID: PMC10351385 DOI: 10.3389/fnmol.2023.1153934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The electroretinogram (ERG) measures the electrical activity of retinal neurons and glial cells in response to a light stimulus. Amongst other techniques, clinicians utilize the ERG to diagnose various eye diseases, including inherited conditions such as cone-rod dystrophy, rod-cone dystrophy, retinitis pigmentosa and Usher syndrome, and to assess overall retinal health. An ERG measures the scotopic and photopic systems separately and mainly consists of an a-wave and a b-wave. The other major components of the dark-adapted ERG response include the oscillatory potentials, c-wave, and d-wave. The dark-adapted a-wave is the initial corneal negative wave that arises from the outer segments of the rod and cone photoreceptors hyperpolarizing in response to a light stimulus. This is followed by the slower, positive, and prolonged b-wave, whose origins remain elusive. Despite a large body of work, there remains controversy around the mechanisms involved in the generation of the b-wave. Several hypotheses attribute the origins of the b-wave to bipolar or Müller glial cells or a dual contribution from both cell types. This review will discuss the current hypothesis for the cellular origins of the dark-adapted ERG, with a focus on the b-wave.
Collapse
Affiliation(s)
- Yashvi Bhatt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - David M. Hunt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| |
Collapse
|
4
|
Zhdanov A, Constable P, Manjur SM, Dolganov A, Posada-Quintero HF, Lizunov A. OculusGraphy: Signal Analysis of the Electroretinogram in a Rabbit Model of Endophthalmitis Using Discrete and Continuous Wavelet Transforms. Bioengineering (Basel) 2023; 10:708. [PMID: 37370639 DOI: 10.3390/bioengineering10060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The electroretinogram is a clinical test used to assess the function of the photoreceptors and retinal circuits of various cells in the eye, with the recorded waveform being the result of the summated response of neural generators across the retina. METHODS The present investigation involved an analysis of the electroretinogram waveform in both the time and time-frequency domains through the utilization of the discrete wavelet transform and continuous wavelet transform techniques. The primary aim of this study was to monitor and evaluate the effects of treatment in a New Zealand rabbit model of endophthalmitis via electroretinogram waveform analysis and to compare these with normal human electroretinograms. RESULTS The wavelet scalograms were analyzed using various mother wavelets, including the Daubechies, Ricker, Wavelet Biorthogonal 3.1 (bior3.1), Morlet, Haar, and Gaussian wavelets. Distinctive variances were identified in the wavelet scalograms between rabbit and human electroretinograms. The wavelet scalograms in the rabbit model of endophthalmitis showed recovery with treatment in parallel with the time-domain features. CONCLUSIONS The study compared adult, child, and rabbit electroretinogram responses using DWT and CWT, finding that adult signals had higher power than child signals, and that rabbit signals showed differences in the a-wave and b-wave depending on the type of response tested, while the Haar wavelet was found to be superior in visualizing frequency components in electrophysiological signals for following the treatment of endophthalmitis and may give additional outcome measures for the management of retinal disease.
Collapse
Affiliation(s)
- Aleksei Zhdanov
- Machine Learning and Data Analytics Lab, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Paul Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA 5042, Australia
| | | | - Anton Dolganov
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia
| | | | - Aleksander Lizunov
- Department of Functional Diagnostics, IRTC Eye Microsurgery Ekaterinburg Center, 620149 Yekaterinburg, Russia
| |
Collapse
|
5
|
Retinal Degeneration in a Murine Model of Retinal Ischemia by Unilateral Common Carotid Artery Occlusion. BIOMED RESEARCH INTERNATIONAL 2022; 2021:7727648. [PMID: 35005021 PMCID: PMC8741345 DOI: 10.1155/2021/7727648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023]
Abstract
Retinal degeneration is a progressive retinal damage in ocular vascular diseases. There are several reasons for this, such as occlusion of arteries or veins, diabetic retinopathy, or hereditary retinal diseases. To study pathological mechanisms of retinal degeneration, it is required to develop experimentally reproducible and clinically relevant models. In our previous studies, we developed a murine model of retinal hypoperfusion by unilateral common carotid artery occlusion (UCCAO) which mimics the pathophysiology of ocular ischemic syndrome (OIS) in humans, and described broad pathological mechanisms in the retina after UCCAO. However, there still remain missing pieces of the ocular pathologic process by UCCAO. In this study, we examined those unfound mechanisms. UCCAO was performed on adult mice. Ocular dysfunctions, histological deficits, and inflammation were examined after UCCAO, compared with sham-operated mice. Evaluation values were analyzed by electrophysiological, histological, and molecular biological methods. Eyelid drooping was permanently seen after UCCAO. Induction time point of acute reversible cataract under anesthesia was shortened. Retinal/visual dysfunctions were detected 2-4 weeks after UCCAO. Specifically, scotopic b-wave was more affected than a-wave, with the dysfunction of photopic b-wave. Impaired oscillatory potentials and visual evoked potential were constantly observed. Pathological Müller gliosis/inflammation was featured with NeuN-positive cell loss in the ganglion cell layer. Axial length, intraocular pressure, pupillary light reflex, and retinal pigment epithelium/choroidal thickness were not changed by UCCAO. A murine model of retinal ischemia by UCCAO can be useful for studying a series of degenerative process in the ischemic retina.
Collapse
|
6
|
Pasmanter N, Petersen-Jones SM. A review of electroretinography waveforms and models and their application in the dog. Vet Ophthalmol 2020; 23:418-435. [PMID: 32196872 DOI: 10.1111/vop.12759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/04/2023]
Abstract
Electroretinography (ERG) is a commonly used technique to study retinal function in both clinical and research ophthalmology. ERG responses can be divided into component waveforms, analysis of which can provide insight into the health and function of different types and populations of retinal cells. In dogs, ERG has been used in the characterization of normal retinal function, as well as the diagnosis of retinal diseases and measuring effects of treatment. While many components of the recorded waveform are similar across species, dogs have several notable features that should be differentiated from the responses in humans and other animals. Additionally, modifications of standard protocols, such as changing flash frequency and stimulus color, and mathematical models of ERG waveforms have been used in studies of human retinal function but have been infrequently applied to visual electrophysiology in dogs. This review provides an overview of the origins and applications of ERG in addition to potential avenues for further characterization of responses in the dog.
Collapse
Affiliation(s)
- Nathaniel Pasmanter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Abstract
Adenosine is a neuromodulator present in various areas of the central nervous system, including the retina. Adenosine may serve a neuroprotective role in the retina, based on electroretinogram (ERG) recordings from the rat retina. Our purpose was to assess the role of A2A and A3 adenosine receptors in the generation and modulation of the rat ERG. The flash ERG was recorded with corneal electrodes from Sprague Dawley rats. Agonists and antagonists for A2A and A3 receptors, and adenosine were injected (5 µl) into the vitreous. The effects on the components of the single flash scotopic and photopic ERGs were examined, and ERG flicker. Adenosine (0.5 mM) increased the mean amplitudes of the scotopic ERG a-waves (68 ± 8 to 97 ± 14 µV, P = 0.042), and b-waves (236 ± 38 µV to 305 ± 42 µV). A2A agonist CGS21680 (2 mM) reduced the mean amplitude of the ERG b-wave, from 298 ± 21 µV in response to the brightest stimulus to 212 ± 19 µV (P = 0.005), and mean scotopic oscillatory potentials (OPs) from 100 ± 9 µV to 47 ± 11 µV (P = 0.023). ZM241385 [4 mM], an A2A antagonist, decreased the scotopic b-wave of the ERG. A3 agonist 2-CI-IB-MECA (0.5 mM) increased the a-wave, while decreasing the scotopic and photopic ERG b-waves, and the scotopic OPs. A3 antagonist VUF5574 (1 mM) increased the mean amplitude of the scotopic a-wave (66 ± 8 to 140 ± 29 µV, P = 0.046) and b-wave (224 ± 20 to 312 ± 39 µV, P = 0.0037). No significant effects on ERG flicker were found. We conclude that retinal neurons containing A2A and/or A3 adenosine receptors contribute to the generation of the ERG a- and b-waves and OPs.
Collapse
|
8
|
Dai J, He J, Wang G, Wang M, Li S, Yin ZQ. Contribution of GABAa, GABAc and glycine receptors to rat dark-adapted oscillatory potentials in the time and frequency domain. Oncotarget 2017; 8:77696-77709. [PMID: 29100418 PMCID: PMC5652335 DOI: 10.18632/oncotarget.20770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/29/2017] [Indexed: 02/02/2023] Open
Abstract
Retinal oscillatory potentials (OPs) consist of a series of relatively high-frequency rhythmic wavelets, superimposed onto the ascending phase of the b-wave of the electroretinogram (ERG). However, the origin of OPs is uncertain and methods of measurement of OPs are diverse. In this study, we first isolated OPs from the rat ERG and fitted them with Gabor functions and found that the envelope of the OP contained information about maximum amplitude and time-to-peak to enable satisfactory quantification of the later OPs. And the OP/b-wave ratio should be evaluated to exclude an effect of the b-wave on the OPs. Next, we recorded OPs after intravitreal injection of 2-amino-4-phosphonobutyric acid (APB), tetrodotoxin (TTX), γ-aminobutyric acid (GABA), strychnine (STR), SR95531 (SR), isoguvacine (ISO), (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) and GABA+TPMPA. We showed that GABA and APB only removed the later OPs, when compared to control eyes. TTX delayed the peak time, and STR, SR and ISO reduced the amplitude of OPs. TPMPA delayed the peak time but increased the ratio of OPs to b-wave. Furthermore, administration of combined GABA and TPMPA caused the later OPs to increase in amplitude with time, compared with those after delivery of GABA alone. Finally, we observed that GABAc and glycine receptors contributed to a low-frequency component of the OPs, while GABAa contributed to both components. These results suggest that the early components of the OPs are mainly generated by the photoreceptors, whilst the later components are mainly regulated by GABAa, GABAc and glycine receptors.
Collapse
Affiliation(s)
- Jiaman Dai
- College of Bioengineering, Chongqing University, Chongqing 400030, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Juncai He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gang Wang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Min Wang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiying Li
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zheng Qin Yin
- College of Bioengineering, Chongqing University, Chongqing 400030, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
9
|
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. J Comp Neurol 2014; 522:900-20. [PMID: 23982969 DOI: 10.1002/cne.23452] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520-8024
| | | | | | | |
Collapse
|
10
|
Contribution of retinal ganglion cells to the mouse electroretinogram. Doc Ophthalmol 2014; 128:155-68. [DOI: 10.1007/s10633-014-9433-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/06/2014] [Indexed: 01/21/2023]
|
11
|
Robson JG, Frishman LJ. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res 2013; 39:1-22. [PMID: 24355774 DOI: 10.1016/j.preteyeres.2013.12.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity.
Collapse
Affiliation(s)
- John G Robson
- College of Optometry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
12
|
Smith BJ, Tremblay F, Côté PD. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 2013; 116:279-90. [DOI: 10.1016/j.exer.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
13
|
Identifying cell class specific losses from serially generated electroretinogram components. BIOMED RESEARCH INTERNATIONAL 2013; 2013:796362. [PMID: 24089688 PMCID: PMC3781995 DOI: 10.1155/2013/796362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating “amplification” (P < 0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Collapse
|
14
|
Abstract
PURPOSE To determine whether there is an age-dependent susceptibility in retinal function in response to repeated anterior chamber cannulation with or without intraocular pressure (IOP) elevation. METHODS Baseline electroretinograms were measured in 3- and 18-month-old Sprague-Dawley rats (n = 16 each group). Following baseline assessment, eyes were randomly assigned to undergo a 60-min anterior chamber cannulation with IOP either left at baseline (sham, 15 mm Hg) or elevated to 60 mm Hg. This was repeated three additional times, with each episode separated by 1 week. At weeks 1 to 3, dark-adapted retinal function was assessed immediately before cannulation, with final functional assessment at week 4. RESULTS Both sham and IOP elevated eyes of older rats showed retinal dysfunction, which became more pronounced with the number of repeated insults. This effect was largest for responses arising from the inner retina. Repeated insult in younger eyes did not produce a change in amplitude but an increase in the sensitivity to light of photoreceptoral and bipolar cell components of the electroretinogram. CONCLUSIONS Repeated trauma, not IOP, produces permanent retinal dysfunction in older eyes. Younger eyes appear to be able to withstand this type of injury by upregulating sensitivity of outer and middle retinal responses to maintain normal inner retinal function.
Collapse
|
15
|
Sustained and Transient Contributions to the Rat Dark-Adapted Electroretinogram b-Wave. J Ophthalmol 2013; 2013:352917. [PMID: 23533706 PMCID: PMC3606803 DOI: 10.1155/2013/352917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
The most dominant feature of the electroretinogram, the b-wave, is thought to reflect ON-bipolar cell responses. However, a number of studies suggest that the b-wave is made up of several components. We consider the composition of the rat b-wave by subtracting corneal negative components obtained using intravitreal application of pharmacological agents to remove postreceptoral responses. By analyzing the intensity-response characteristic of the PII across a range of fixed times during and after a light step, we find that the rat isolated PII has 2 components. The first has fast rise and decay characteristics with a low sensitivity to light. GABAc-mediated inhibitory pathways enhance this transient-ON component to manifest increased and deceased sensitivity to light at shorter (<160 ms) and longer times, respectively. The second component has slower temporal characteristics but is more sensitive to light. GABAc-mediated inhibition enhances this sustained-ON component but has little effect on its sensitivity to light. After stimulus offset, both transient and sustained components return to baseline, and a long latency sustained positive component becomes apparent. The light sensitivities of transient-ON and sustained-OFF components are consistent with activity arising from cone ON- and OFF-bipolar cells, whereas the sustained-ON component is likely to arise from rod bipolar cells.
Collapse
|
16
|
Johnson LE, Larsen M, Perez MT. Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes. PLoS One 2013; 8:e55456. [PMID: 23408985 PMCID: PMC3568153 DOI: 10.1371/journal.pone.0055456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/02/2013] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Glucose concentrations are elevated in retinal cells in undiagnosed and in undertreated diabetes. Studies of diabetic patients suggest that retinal function adapts, to some extent, to this increased supply of glucose. The aim of the present study was to examine such adaptation in a model of type 2 diabetes and assess how the retina responds to the subsequent institution of glycemic control. METHODS Electroretinography (ERG) was conducted on untreated Zucker diabetic fatty (ZDF) rats and congenic controls from 8-22 weeks of age and on ZDFs treated with daily insulin from 16-22 weeks of age. Retinal sections from various ages were prepared and compared histologically and by immunocytochemistry. PRINCIPAL FINDINGS/CONCLUSIONS Acute hyperglycemia did not have an effect on control rats while chronic hyperglycemia in the ZDF was associated with scotopic ERG amplitudes which were up to 20% higher than those of age-matched controls. This change followed the onset of hyperglycemia with a delay of over one month, supporting that habituation to hyperglycemia is a slow process. When glycemia was lowered, an immediate decrease in ZDF photoreceptoral activity was induced as seen by a reduction in a-wave amplitudes and maximum slopes of about 30%. A direct effect of insulin on the ERG was unlikely since the expression of phosphorylated Akt kinase was not affected by treatment. The electrophysiological differences between untreated ZDFs and controls preceded an activation of Müller cells in the ZDFs (up-regulation of glial fibrillary acidic protein), which was attenuated by insulin treatment. There were otherwise no signs of cell death or morphological alterations in any of the experimental groups. These data show that under chronic hyperglycemia, the ZDF retina became abnormally sensitive to variations in substrate supply. In diabetes, a similar inability to cope with intensive glucose lowering could render the retina susceptible to damage.
Collapse
Affiliation(s)
- Leif E Johnson
- Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark.
| | | | | |
Collapse
|
17
|
Bui BV, He Z, Vingrys AJ, Nguyen CTO, Wong VHY, Fortune B. Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J Ophthalmol 2013; 2013:262467. [PMID: 23431417 PMCID: PMC3570935 DOI: 10.1155/2013/262467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022] Open
Abstract
Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG.
Collapse
Affiliation(s)
- Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Algis J. Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brad Fortune
- Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
18
|
Smith BJ, Côté PD. Reduced Retinal Function in the Absence of Na(v)1.6. PLoS One 2012; 7:e31476. [PMID: 22355369 PMCID: PMC3280295 DOI: 10.1371/journal.pone.0031476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
Background Mice with a function-blocking mutation in the Scn8a gene that encodes Nav1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the retinal function of these mice in light adapted conditions has not been studied. Methodology/Principal Findings In the present report we reveal that during light adaptation these animals are shown to have electroretinograms with significant decreases in the amplitude of the a- and b-waves. The percent decrease in the a- and b-waves substantially exceeds the acute effect of VGSC block by tetrodotoxin in control littermates. Intravitreal injection of CoCl2 or CNQX to isolate the a-wave contributions of the photoreceptors in littermates revealed that at high background luminance the cone-isolated component of the a-wave is of the same amplitude as the a-wave of mutants. Conclusions/Significance Our results indicate that Scn8a mutant mice have reduced function in both rod and the cone retinal pathways. The extent of the reduction in the cone pathway, as quantified using the ERG b-wave, exceeds the reduction seen in control littermates after application of TTX, suggesting that a defect in cone photoreceptors contributes to the reduction. Unless the postreceptoral component of the a-wave is increased in Scn8a mutant mice, the reduction in the b-wave is larger than can be accounted for by reduced photoreceptor function alone. Our data suggests that the reduction in the light adapted ERG of Scn8a mutant mice is caused by a combination of reduced cone photoreceptor function and reduced depolarization of cone ON bipolar cells. This raises the possibility that Nav1.6 augments signaling in cone bipolar cells.
Collapse
Affiliation(s)
- Benjamin J. Smith
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrice D. Côté
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
19
|
Wong VHY, Vingrys AJ, Bui BV. Glial and neuronal dysfunction in streptozotocin-induced diabetic rats. J Ocul Biol Dis Infor 2011; 4:42-50. [PMID: 23275800 DOI: 10.1007/s12177-011-9069-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022] Open
Abstract
Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
Collapse
Affiliation(s)
- Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010 Victoria Australia
| | | | | |
Collapse
|