1
|
Saranya KR, Vimina ER. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Comput Biol Chem 2024; 112:108175. [PMID: 39191166 DOI: 10.1016/j.compbiolchem.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (rp) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - E R Vimina
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| |
Collapse
|
2
|
Wu M, Wang T, Ji N, Lu T, Yuan R, Wu L, Zhang J, Li M, Cao P, Zhao J, Li G, Li J, Li Y, Tang Y, Gao Z, Wang X, Cheng W, Ge M, Cui G, Li R, Wu A, You Y, Zhang W, Wang Q, Chen J. Multi-omics and pharmacological characterization of patient-derived glioma cell lines. Nat Commun 2024; 15:6740. [PMID: 39112531 PMCID: PMC11306361 DOI: 10.1038/s41467-024-51214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.
Collapse
Affiliation(s)
- Min Wu
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Yuan
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyuan Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Penghui Cao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiarui Zhao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Tang
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lau DK, Collin JP, Mariadason JM. Clinical Developments and Challenges in Treating FGFR2-Driven Gastric Cancer. Biomedicines 2024; 12:1117. [PMID: 38791079 PMCID: PMC11118914 DOI: 10.3390/biomedicines12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Recent advances in the treatment of gastric cancer (GC) with chemotherapy, immunotherapy, anti-angiogenic therapy and targeted therapies have yielded some improvement in survival outcomes; however, metastatic GC remains a lethal malignancy and amongst the leading causes of cancer-related mortality worldwide. Importantly, the ongoing molecular characterisation of GCs continues to uncover potentially actionable molecular targets. Among these, aberrant FGFR2-driven signalling, predominantly arising from FGFR2 amplification, occurs in approximately 3-11% of GCs. However, whilst several inhibitors of FGFR have been clinically tested to-date, there are currently no approved FGFR-directed therapies for GC. In this review, we summarise the significance of FGFR2 as an actionable therapeutic target in GC, examine the recent pre-clinical and clinical data supporting the use of small-molecule inhibitors, antibody-based therapies, as well as novel approaches such as proteolysis-targeting chimeras (PROTACs) for targeting FGFR2 in these tumours, and discuss the ongoing challenges and opportunities associated with their clinical development.
Collapse
Affiliation(s)
- David K. Lau
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Oncology, Monash Health, Clayton, VIC 3168, Australia
| | - Jack P. Collin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - John M. Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| |
Collapse
|
4
|
Salarinejad S, Seyfi S, Hayashi S, Moghimi S, Toolabi M, Taslimi P, Firoozpour L, Usui T, Foroumadi A. Design, synthesis, and biological evaluation of new biaryl derivatives of cycloalkyl diacetamide bearing chalcone moiety as type II c-MET kinase inhibitors. Mol Divers 2024:10.1007/s11030-024-10807-x. [PMID: 38466553 DOI: 10.1007/s11030-024-10807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024]
Abstract
Many human cancers have been associated with the deregulation of the mesenchymal-epithelial transition factor tyrosine kinase (MET) receptor, a promising drug target for anticancer drug discovery. Herein, we report the discovery of a novel structure of potent chalcone-based derivatives type II c-Met inhibitors which are comparable to Foretinib (IC50 = 14 nM) as a potent reference drug. Based on our design strategy, we also expected an anti-tubulin activity for the compounds. However, the weak inhibitory effects on microtubules were confirmed by cell cycle analyses implicated that the observed cytotoxicity against HeLa cells probably was not derived from tubulin inhibition. Compounds 14q and 14k with IC50 values of 24 nM and 45 nM, respectively, demonstrated favorable inhibition of MET kinase activity, and desirable bonding interactions in the ligand-MET enzyme complex stability in molecular docking studies.
Collapse
Affiliation(s)
- Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Seiko Hayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Eissa IH, Yousef RG, Asmaey MA, Elkady H, Husein DZ, Alsfouk AA, Ibrahim IM, Elkady MA, Elkaeed EB, Metwaly AM. Computer-assisted drug discovery (CADD) of an anti-cancer derivative of the theobromine alkaloid inhibiting VEGFR-2. Saudi Pharm J 2023; 31:101852. [PMID: 38028225 PMCID: PMC10663924 DOI: 10.1016/j.jsps.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.
Collapse
Affiliation(s)
- Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Reda G. Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A. Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, 71524, Assiut, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Dalal Z. Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
6
|
Diniz F, Lamas S, Osório H, Aguiar P, Freitas D, Gärtner F, Sarmento B, Reis CA, Gomes J. Nanoparticles targeting Sialyl-Tn for efficient tyrosine kinase inhibitor delivery in gastric cancer. Acta Biomater 2023; 170:142-154. [PMID: 37586448 DOI: 10.1016/j.actbio.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery. Previously, a nanodelivery system composed of polymeric NPs functionalized with B72.3 antibody, which targets the tumor-associated antigen Sialyl-Tn (STn), has been developed. Herein, these NPs were loaded with FRT to evaluate its capacity in delivering the drug to multicellular tumors spheroids (MCTS) and mouse models. The data indicated that B72.3 functionalized FRT-loaded PLGA-PEG-COOH NPs (NFB72.3) specifically target gastric MCTS expressing the STn glycan (MKN45 SimpleCell (SC) cells), leading to a decrease in phospho-RTKs activation and reduced cell viability. In vivo evaluation using MKN45 SC xenograft mice revealed that NFB72.3 were able to decrease tumor growth, reduce cell proliferation and tumor necrosis. NFB72.3-treated tumors also showed inactivation of phospho-MET and phospho-RON. This study demonstrates the value of using NPs targeting STn for FRT delivery, highlighting its potential as a therapeutic application in GC. STATEMENT OF SIGNIFICANCE: Despite the advances in gastric cancer therapeutics, it remains one of the diseases with the highest incidence and mortality in the world. Combining targeted therapies with a controlled drug release is an attractive strategy to reduce drug cytotoxic effects and improve specific drug delivery efficiency to the cancer cells. Thus, we developed nanoparticles loaded with a tyrosine kinase inhibitor and targeting a specific tumor glycan exclusive of cancer cells. In in vivo gastric cancer xenograft mice models, these nanoparticles efficiently reduced tumor growth, cell proliferation and tumor necrosis area and inactivated phosphorylation of targeting receptors. This approach represents an innovative therapeutic strategy with high impact in gastric cancer.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela Freitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; FMUP - Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Joana Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
7
|
Wądzyńska J, Simiczyjew A, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. The impact of cellular elements of TME on melanoma biology and its sensitivity to EGFR and MET targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119549. [PMID: 37506884 DOI: 10.1016/j.bbamcr.2023.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Microenvironment of the melanoma consists of cellular elements like fibroblasts, adipocytes, and keratinocytes as well as extracellular matrix and physicochemical conditions. In our previous research, we have established that melanoma influences strongly above mentioned cells present in the tumor niche and recruits them to support cancer progression. In this work, we evaluated the impact of cancer-associated cells, namely fibroblasts (CAFs), adipocytes (CAAs), and keratinocytes (CAKs) on melanoma proliferation, signaling pathways activation, metabolism as well as the effectiveness of used anti-cancer therapy. Obtained results indicated elevated phosphorylation of STAT3, upregulated GLUT1 and GLUT3 as well as downregulated of MCT-1 expression level in melanoma cells under the influence of all examined cells present in the tumor niche. The proliferation of melanoma cells was increased after co-culture with CAFs and CAKs, while epithelial-mesenchymal transition markers' expression level was raised in the presence of CAFs and CAAs. The level of perilipin 2 and lipid content was elevated in melanoma cells under the influence of CAAs. Moreover, increased expression of CYP1A1, gene encoding drug metabolizing protein, in melanoma cells co-cultured with CAFs and CAKs prompted us to verify the effectiveness of the previously proposed by us anti-melanoma therapy based on combination of EGFR and MET inhibitors. Obtained results indicate that the designed therapy is still efficient, even if the fibroblasts, adipocytes, and keratinocytes, are present in the melanoma vicinity.
Collapse
Affiliation(s)
- Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
8
|
Mortazavi M, Eskandari M, Moosavi F, Damghani T, Khoshneviszadeh M, Pirhadi S, Saso L, Edraki N, Firuzi O. Novel quinazoline-1,2,3-triazole hybrids with anticancer and MET kinase targeting properties. Sci Rep 2023; 13:14685. [PMID: 37673888 PMCID: PMC10482942 DOI: 10.1038/s41598-023-41283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Oncogenic activation of receptor tyrosine kinases (RTKs) such as MET is associated with cancer initiation and progression. We designed and synthesized a new series of quinazoline derivatives bearing 1,2,3-triazole moiety as targeted anticancer agents. The MET inhibitory effect of synthesized compounds was assessed by homogeneous time-resolved fluorescence (HTRF) assay and western blot analysis. Sulforhodamine B assay was conducted to examine the antiproliferative effects of synthetic compounds against 6 cancer cell lines from different origins including MET-dependent AsPC-1, EBC-1 and MKN-45 cells and also Mia-Paca-2, HT-29 and K562 cells. The growth inhibitory effect of compounds in a three-dimensional spheroid culture was examined by acid phosphatase (APH) assay, while apoptosis induction was evaluated by Annexin V/propidium iodide method. Compound 8c bearing p-methyl benzyl moiety on the triazole ring exhibited the highest MET inhibitory capacity among tested agents that was further confirmed by western blot findings. Derivatives 8c and 8h exhibited considerable antiproliferative effects against all tested cell lines, with more inhibitory effects against MET-positive cells with IC50 values as low as 6.1 μM. These two agents also significantly suppressed cell growth in spheroid cultures and induced apoptosis in MET overexpressing AsPC-1 cells. Moreover, among a panel of 24 major oncogenic kinases, the PDGFRA kinase was identified as a target of 8c and 8h compounds. The docking study results of compounds 8c and 8h were in agreement with experimental findings. The results of the present study suggest that quinazoline derivatives bearing 1,2,3-triazole moiety may represent promising targeted anticancer agents.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Eskandari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
10
|
Pancreatic Cancer: Beyond Brca Mutations. J Pers Med 2022; 12:jpm12122076. [PMID: 36556296 PMCID: PMC9787452 DOI: 10.3390/jpm12122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths worldwide. The outcomes in patients with pancreatic cancer remain unsatisfactory. In the current review, we summarize the genetic and epigenetic architecture of metastatic pancreatic cancer beyond the BRCA mutations, focusing on the genetic alterations and the molecular pathology in pancreatic cancer. This review focuses on the molecular targets for the treatment of pancreatic cancer, with a correlation to future treatments. The potential approach addressed in this review may lead to the identification of a subset of patients with specific biological behaviors and treatment responses.
Collapse
|
11
|
Cronin SJF, Rao S, Tejada MA, Turnes BL, Licht-Mayer S, Omura T, Brenneis C, Jacobs E, Barrett L, Latremoliere A, Andrews N, Channon KM, Latini A, Arvanites AC, Davidow LS, Costigan M, Rubin LL, Penninger JM, Woolf CJ. Phenotypic drug screen uncovers the metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated neuropathic pain and lung cancer. Sci Transl Med 2022; 14:eabj1531. [PMID: 36044597 PMCID: PMC9985140 DOI: 10.1126/scitranslmed.abj1531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.
Collapse
Affiliation(s)
- Shane J. F. Cronin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Miguel A. Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Takao Omura
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Christian Brenneis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Emily Jacobs
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee Barrett
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery and Neuroscience, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nick Andrews
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Keith M. Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Anthony C. Arvanites
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Lance S. Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Josef M. Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
- Department of Medical Genetics, Life Sciences Institute, UBC, Vancouver, BC V6T 1Z3, Canada
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Receptor Tyrosine Kinases Amplified in Diffuse-Type Gastric Carcinoma: Potential Targeted Therapies and Novel Downstream Effectors. Cancers (Basel) 2022; 14:cancers14153750. [PMID: 35954414 PMCID: PMC9367326 DOI: 10.3390/cancers14153750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Diffuse-type gastric carcinoma (DGC) is an aggressive subtype of gastric carcinoma with an extremely poor prognosis due to frequent peritoneal metastasis and high probability of recurrence. Its pathogenesis is poorly understood, and consequently, no effective molecular targeted therapy is available. The importance of oncogenic receptor tyrosine kinase (RTK) signaling has been recently demonstrated in the malignant progression of DGC. In particular, RTK gene amplification appears to accelerate peritoneal metastasis. In this review, we provide an overview of RTK gene amplification in DGC and the potential of related targeted therapies. Abstract Gastric cancer (GC) is a major cause of cancer-related death worldwide. Patients with an aggressive subtype of GC, known as diffuse-type gastric carcinoma (DGC), have extremely poor prognoses. DGC is characterized by rapid infiltrative growth, massive desmoplastic stroma, frequent peritoneal metastasis, and high probability of recurrence. These clinical features and progression patterns of DGC substantially differ from those of other GC subtypes, suggesting the existence of specific oncogenic signals. The importance of gene amplification and the resulting aberrant activation of receptor tyrosine kinase (RTK) signaling in the malignant progression of DGC is becoming apparent. Here, we review the characteristics of RTK gene amplification in DGC and its importance in peritoneal metastasis. These insights may potentially lead to new targeted therapeutics.
Collapse
|
13
|
Chen J, Huang J, Liao Y, Zhu L, Cai H. Identify Multiple Gene-Drug Common Modules Via Constrained Graph Matching. IEEE J Biomed Health Inform 2022; 26:4794-4805. [PMID: 35788454 DOI: 10.1109/jbhi.2022.3188503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Identifying gene-drug interactions is vital to understanding biological mechanisms and achieving precise drug repurposing. High-throughput technologies produce a large amount of pharmacological and genomic data, providing an opportunity to explore the associations between oncogenic genes and therapeutic drugs. However, most studies only focus on "one-to-one" or "one-to-many" interactions, ignoring the multivariate patterns between genes and drugs. In this article, a high-order graph matching model with hypergraph constraints is proposed to discover the gene-drug common regulatory modules. Moreover, the prior knowledge is formulated into hypergraph constraints to reveal their multiple correspondences, penalizing the tensor matching process. The experimental results on the synthetic data demonstrate the proposed model is robust to noise contamination and outlier corruption, achieving a better performance than four state-of-the-art methods. We then evaluate the statistical power of our proposed method on the pharmacogenomics data. Our identified gene-drug common modules not only show significantly enriched pathways associated with cancer but also manifest the highly close gene-drug interactions.
Collapse
|
14
|
Malekan M, Ebrahimzadeh MA. Vascular Endothelial Growth Factor Receptors [VEGFR] as Target in Breast Cancer Treatment: Current Status in Preclinical and Clinical Studies and Future Directions. Curr Top Med Chem 2022; 22:891-920. [PMID: 35260067 DOI: 10.2174/1568026622666220308161710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/09/2022]
Abstract
Breast cancer [BC] is one of the most common cancers among women, one of the leading causes of a considerable number of cancer-related death globally. Among all procedures leading to the formation of breast tumors, angiogenesis has an important role in cancer progression and outcomes. Therefore, various anti-angiogenic strategies have developed so far to enhance treatment's efficacy in different types of BC. Vascular endothelial growth factors [VEGFs] and their receptors are regarded as the most well-known regulators of neovascularization. VEGF binding to vascular endothelial growth factor receptors [VEGFRs] provides cell proliferation and vascular tissue formation by the subsequent tyrosine kinase pathway. VEGF/VEGFR axis displays an attractive target for anti-angiogenesis and anti-cancer drug design. This review aims to describe the existing literature regarding VEGFR inhibitors, focusing on BC treatment reported in the last two decades.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Liu J, Liu F, Li Z, Li C, Wu S, Shen J, Wang H, Du S, Wei H, Hou Y, Ding S, Chen Y. Novel 4-phenoxypyridine derivatives bearing imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide moieties: Design, synthesis and biological evaluation as potent antitumor agents. Bioorg Chem 2022; 120:105629. [DOI: 10.1016/j.bioorg.2022.105629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
16
|
Fogli S, Tabbò F, Capuano A, Re MD, Passiglia F, Cucchiara F, Scavone C, Gori V, Novello S, Schmidinger M, Danesi R. The expanding family of c-Met inhibitors in solid tumors: a comparative analysis of their pharmacologic and clinical differences. Crit Rev Oncol Hematol 2022; 172:103602. [DOI: 10.1016/j.critrevonc.2022.103602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
|
17
|
Crawford K, Bontrager E, Schwarz MA, Chaturvedi A, Lee DD, Md Sazzad H, von Holzen U, Zhang C, Schwarz RE, Awasthi N. Targeted FGFR/VEGFR/PDGFR inhibition with dovitinib enhances the effects of nab-paclitaxel in preclinical gastric cancer models. Cancer Biol Ther 2021; 22:619-629. [PMID: 34882068 DOI: 10.1080/15384047.2021.2011642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Standard chemotherapy regimens for gastric adenocarcinoma (GAC) have limited efficacy and considerable toxicity profiles. Nab-paclitaxel has shown promising antitumor benefits in previous GAC preclinical studies. Dovitinib inhibits members of the receptor tyrosine kinase family including FGFR, VEGFR and PDGFR, and has exhibited antitumor effects in many solid tumors including GAC. Based on the antimitotic, antistromal and EPR effects of nab-paclitaxel, we investigated augmentation of nab-paclitaxel response by dovitinib in multiple GAC preclinical models. In MKN-45 subcutaneous xenografts, inhibition in tumor growth by nab-paclitaxel and dovitinib was 75% and 76%, respectively. Dovitinib plus nab-paclitaxel had an additive effect on tumor growth inhibition and resulted in tumor regression (85% of its original value). Dovitinib monotherapy resulted in minimal improvement in animal survival (25 days) compared to control (23 days), while nab-paclitaxel monotherapy or dovitinib plus nab-paclitaxel combination therapy led to a clinically significant lifespan extension of 83% (42 days) and 187% (66 days), respectively. IHC analysis of subcutaneous tumors exhibited reduced tumor cell proliferation and tumor vasculature by dovitinib. In vitro studies demonstrated that dovitinib and nab-paclitaxel individually reduced tumor cell proliferation, with an additive effect from combination therapy. Immunoblot analyses of MKN-45 and KATO-III cells revealed that dovitinib decreased phospho-FGFR, phospho-AKT, phospho-ERK, phospho-p70S6K, phospho-4EBP1, Bcl-2 and increased cleaved PARP-1, cleaved-caspase-3, p27, Bax, Bim, with an additive effect from combination therapy. These results demonstrate that the FGFR/VEGFR/PDGFR inhibitor, dovitinib, has the potential to augment the antitumor effects of nab-paclitaxel, with implications for use in the advancement of clinical GAC therapy.
Collapse
Affiliation(s)
- Kate Crawford
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Erin Bontrager
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Apurva Chaturvedi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Daniel D Lee
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA
| | - Hassan Md Sazzad
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | | | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Roderich E Schwarz
- University at Buffalo, Buffalo, Ny, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
18
|
Murie VE, Nicolino PV, Dos Santos T, Gambacorta G, Nishimura RHV, Perovani IS, Furtado LC, Costa-Lotufo LV, Moraes de Oliveira A, Vessecchi R, Baxendale IR, Clososki GC. Synthesis of 7-Chloroquinoline Derivatives Using Mixed Lithium-Magnesium Reagents. J Org Chem 2021; 86:13402-13419. [PMID: 34553940 DOI: 10.1021/acs.joc.1c01521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared a library of functionalized quinolines through the magnesiation of 7-chloroquinolines under mild conditions, employing both batch and continuous flow conditions. The preparation involved the generation of mixed lithium-magnesium intermediates, which were reacted with different electrophiles. Mixed lithium-zinc reagents allowed the synthesis of halogenated and arylated derivatives. Some of the synthesized 4-carbinol quinolines have shown interesting antiproliferative properties, their hydroxyl group being a suitable amino group bioisostere. We also report a two-step approach for optically active derivatives.
Collapse
Affiliation(s)
- Valter E Murie
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Paula V Nicolino
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thiago Dos Santos
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Guido Gambacorta
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Rodolfo H V Nishimura
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Icaro S Perovani
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Luciana C Furtado
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-900, Brazil
| | - Leticia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-900, Brazil
| | - Anderson Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Giuliano C Clososki
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| |
Collapse
|
19
|
El-Wakil MH, Teleb M. Transforming Type II to Type I c-Met kinase inhibitors via combined scaffold hopping and structure-guided synthesis of new series of 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives. Bioorg Chem 2021; 116:105304. [PMID: 34534756 DOI: 10.1016/j.bioorg.2021.105304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
Novel 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives 3a-e, 4a-f and 5a-f were designed as Type I c-Met kinase inhibitors based on scaffold hopping of our previous Type II c-Met kinase lead. Target compounds were then synthesized under the guidance of molecular docking analysis to identify the potential inhibitors that fit the binding pocket of c-Met kinase in the characteristic manner as the reported Type I c-Met kinase inhibitors. All synthesized derivatives were evaluated for their c-Met kinase inhibitory activity at 10 µM concentration, where 3d, 5d and 5f displayed >80% inhibition. Further IC50 investigation of these compounds identified 5d as the most potent c-Met kinase inhibitor with IC50 value of 1.95 µM. Moreover, 5d showed selective antitumor activity against c-Met over-expressing colon HCT-116 and lung A549 adenocarcinoma cells with IC50 values of 6.18 and 10.6 µg/ml, respectively. More significantly, 5d effectively inhibited c-Met phosphorylation in the Western blot experiment. Also, 5d induced cellular apoptosis in HCT-116 cancer cells as well as cell cycle arrest with accumulation of cells in G2/M phase. Finally, kinase selectivity profiling of 5d against nine oncogenic kinases revealed its selectivity to only Tyro3 kinase (% inhibition = 80%, IC50 = 3 µM). All these experimental findings clearly demonstrate that 5d is a potential dual acting inhibitor against c-Met and Tyro3 kinases, standing out as a viable lead that deserves further investigation and development to new generation of antitumor agents.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
20
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
21
|
KSCN and K2CO3 mediated one-pot synthesis of cyclopropanyl coumarin derivatives. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Zhang Q, Liu X, Gan W, Wu J, Zhou H, Yang Z, Zhang Y, Liao M, Yuan P, Xu S, Zheng P, Zhu W. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors. ACS OMEGA 2020; 5:16482-16490. [PMID: 32685812 PMCID: PMC7364574 DOI: 10.1021/acsomega.0c00838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 05/29/2023]
Abstract
Two series of novel triazolo-pyridazine/-pyrimidine derivatives were designed, synthesized, and evaluated for their inhibitory activity against c-Met kinase, as well as three c-Met overexpressed cancer cell lines (A549, MCF-7, and HeLa) and one normal human hepatocytes cell line LO2 in vitro. The pharmacological data indicated that most of the tested compounds showed moderate cytotoxicity, and the most promising compound 12e exhibited significant cytotoxicity against A549, MCF-7, and HeLa cell lines with IC50 values of 1.06 ± 0.16, 1.23 ± 0.18, and 2.73 ± 0.33 μM, respectively. Moreover, the inhibitory activity of compound 12e against c-Met kinase (IC50 = 0.090 μM) was equal to that of Foretinib (IC50 = 0.019 μM). The result of the acridine orange (AO) single staining test demonstrated that compound 12e could remarkably induce apoptosis of A549 cells. The results of apoptosis and cycle distribution of cells showed that compound 12e could induce late apoptosis of A549 cells and stimulate A549 cells arresting in the G0/G1 phase. Structure-activity relationships (SARs), pharmacological results, and docking studies indicated that the introduction of 5-methylthiazole fragment to the five-atom moiety was beneficial for the activity. So far, the existing data indicated that compound 12e may become a potential class II c-Met inhibitor.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xiaobo Liu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wenhui Gan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jinjin Wu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Hualan Zhou
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Zunhua Yang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Yiling Zhang
- College
of Pharmacy, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Min Liao
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Ping Yuan
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi
Provincial Key Laboratory of Drug Design and Evaluation, School of
Pharmacy, Jiangxi Science & Technology
Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
23
|
Guo N, Zhang A, Zhuang H, Zhang C. LC-MS/MS assay for the quantification of foretinib in rat plasma and its application to preclinical pharmacokinetic study. Biomed Chromatogr 2020; 34:e4862. [PMID: 32307722 DOI: 10.1002/bmc.4862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/20/2023]
Abstract
A simple and sensitive ultra-high-performance liquid chromatography tandem mass spectrometric method was developed and validated for the determination of foretinib in rat plasma. The analyte and internal standard were extracted from the bio-samples with acetonitrile and then separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% formic acid aqueous and acetonitrile as mobile phase, at a flow rate of 0.4 ml/min. The mass detection was performed in positive selected reaction monitoring mode with precursor-to-product transitions at m/z 317.1 > 128.1 for foretinib and m/z 502.2 > 323.1 for internal standard. The assay was demonstrated to be linear in the concentration range of 0.5-1000 ng/ml, with correlation coefficient >0.999. The mean extraction recovery of foretinib from rat plasma was within the range of 84.55-88.09%, while the matrix effect was in the range of 88.56-99.21%. The intra- and inter-day precisions were <12.95% and the accuracy ranged from -7.55 to 8.57%. Foretinib was stable in rat plasma under the tested storage conditions. The validated assay was successfully applied to the pharmacokinetic study of foretinib in the rats. The results revealed that foretinib showed moderate elimination half-life, low clearance and dose-independent pharmacokinetic profiles inrats.
Collapse
Affiliation(s)
- Nan Guo
- Department of Quality Control, Yantai Central Blood Station, Yantai, Shandong Province, China
| | - Aiying Zhang
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Hui Zhuang
- Department of Clinical Laboratory, Yantai Central Blood Station, Yantai, Shandong Province, China
| | - Changzhen Zhang
- Department of Pharmacy, Jining Municipal Government Hospital, Jining, Shandong Province, China
| |
Collapse
|
24
|
Liu H, Duan Y, Xiong H, Zhang J, Huang S, Chen T, Zheng P, Tang Q. Discovery of novel pyrrolo[2,3-b]pyridine derivatives bearing 4-oxoquinoline moiety as potential antitumor inhibitor. Bioorg Med Chem Lett 2020; 30:126848. [PMID: 31836443 DOI: 10.1016/j.bmcl.2019.126848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
A series of pyrrolo[2,3-b]pyridine derivatives bearing 4-oxoquinoline moiety were designed, synthesized and evaluated for the anti-proliferative on three cancer cell lines (A549, HepG2 and MCF-7) in vitro. Most of the compounds showed moderate to high potency. Some excellent compounds were tested for the inhibitory activity of c-Met kinase. Compound 34 (c-Met IC50 = 17 nM) was investigated the selectivity against Flt-3, c-Kit, VEGFR-2, ALK, PDGFR-β and RON. Structure-activity relationship studies indicated that hydrogen, fluorine atom, and mono-electron-withdrawing groups (mono-EWGs, such as R2 = F) on R, R1 and R2, respectively, were beneficial for the anti-proliferative activities of the target compounds. Besides, we have took further study on the combined mode between compound 34 and c-Met kinase through molecular docking.
Collapse
Affiliation(s)
- Huimin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology; Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, Shanghai 201418, PR China
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Hehua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Jianqing Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shunmin Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ting Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
25
|
Hassan MS, Williams F, Awasthi N, Schwarz MA, Schwarz RE, Li J, von Holzen U. Combination effect of lapatinib with foretinib in HER2 and MET co-activated experimental esophageal adenocarcinoma. Sci Rep 2019; 9:17608. [PMID: 31772236 PMCID: PMC6879590 DOI: 10.1038/s41598-019-54129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that HER2 and MET receptor tyrosine kinases are co-overexpressed in a subset esophageal adenocarcinoma (EAC). We therefore studied the usefulness of combining HER2 and MET targeting by small-molecule inhibitors lapatinib and foretinib, respectively, both in in-vitro and in-vivo models of experimental EAC. We characterized MET and HER2 activation in a panel of human EAC cell lines, and the differential susceptibility of these EAC cell lines to single agent or combination of foretinib and lapatinib. We then explored the antitumor efficacy with survival advantage following foretinib and lapatinib monotherapy and in combination in murine subcutaneous xenograft and peritoneal metastatic survival models of human EAC. The OE33 EAC cell line with strong expression of phosphorylated both MET and HER2, demonstrated reduced sensitivity to foretinib and lapatinib when used as a single agent. The co-administration of foretinib and lapatinib effectively inhibited both MET and HER2 phosphorylation, enhanced inhibition of cell proliferation and xenograft tumor growth by inducing apoptosis, and significantly enhanced mouse overall survival, overcoming single agent resistance. In the OE19 EAC cell line with mainly HER2 phosphorylation, and the ESO51 EAC cell line with mainly MET phosphorylation, profound cell growth inhibition with induction of apoptosis was observed in response to single agent with lack of enhanced growth inhibition when the two agents were combined. These data suggest that combination therapy with foretinib and lapatinib should be tested as a treatment option for HER2 positive patients with MET-overexpressing EAC, and could be a novel treatment strategy for specific EAC patients.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA. .,Harper Cancer Research Institute, South Bend, IN, 46617, USA.
| | - Fiona Williams
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA
| | - Margaret A Schwarz
- Harper Cancer Research Institute, South Bend, IN, 46617, USA.,Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, 46617, USA
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN, 46526, USA.,Harper Cancer Research Institute, South Bend, IN, 46617, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Lv PC, Yang YS, Wang ZC. Recent Progress in the Development of Small Molecule c-Met Inhibitors. Curr Top Med Chem 2019; 19:1276-1288. [PMID: 31526339 DOI: 10.2174/1568026619666190712205353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023]
Abstract
C-Met, also referred to as Hepatocyte Growth Factor Receptor (HGFR), is a heterodimeric
receptor tyrosine kinase. It has been determined that c-Met gene mutations, overexpression, and amplification
also occur in a variety of human tumor types, and these events are closely related to the aberrant
activation of the HGF/c-Met signaling pathway. Meanwhile, high c-Met expression is closely associated
with poor prognosis in cancer patients. The c-Met kinase has emerged as an attractive target for developing
antitumor agents. In this review, we cover the recent advances on the small molecule c-Met inhibitors
discovered from 2018 until now, with a main focus on the rational design, synthesis and structureactivity
relationship analysis.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Yu-Shun Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Zhong-Chang Wang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| |
Collapse
|
27
|
Hong L, Wang J, Wang H, Wei S, Zhang F, Han J, Liu Y, Ma M, Liu C, Xu Y, Liu W. Linc‑pint overexpression inhibits the growth of gastric tumors by downregulating HIF‑1α. Mol Med Rep 2019; 20:2875-2881. [PMID: 31524232 DOI: 10.3892/mmr.2019.10531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/19/2019] [Indexed: 11/05/2022] Open
Abstract
Long intergenic non‑protein coding RNA, p53 induced transcript (Linc‑pint) has been reported to be downregulated in various cancer cell lines; however, its expression profile and role in gastric cancer remains unknown. The present study aimed to investigate the involvement of Linc‑pint in gastric cancer. Through quantitative polymerase chain reaction, western blotting and viability assays, it was observed that Linc‑pint expression was significantly downregulated in gastric biopsies from patients with gastric cancer, compared with healthy controls. Conversely, the expression of hypoxia‑inducible factor‑1α (HIF‑1α) mRNA was significantly upregulated in patients with gastric cancer compared with in healthy controls. Using a variety of statistical inference tests, including receiver operating characteristic curve and correlation analyses, it was determined that the expression levels of Linc‑pint and HIF‑1α exhibited a significantly negative correlation in patients with gastric cancer but not in healthy controls. Linc‑pint expression was significantly and inversely associated with tumor size but not tumor metastasis. Linc‑pint overexpression inhibited the proliferation of gastric cancer cells, whereas treatment with exogenous HIF‑1α promoted proliferation. Linc‑pint overexpression downregulated the expression of HIF‑1α, whereas exogenous HIF‑1α did not significantly alter Linc‑pint expression. Furthermore, treatment with exogenous HIF‑1α suppressed the inhibitory effects of Linc‑pint overexpression on the proliferation of gastric cancer cells. In conclusion, overexpression of Linc‑pint may inhibit the growth of gastric tumors via downregulation of HIF‑1α.
Collapse
Affiliation(s)
- Lei Hong
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Junyan Wang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Haijuan Wang
- Examination and Training Center, Health and Family Planning Commission of Hebei, Shijiazhuang, Hebei 050051, P.R. China
| | - Suju Wei
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Fan Zhang
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Jing Han
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Yan Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Minting Ma
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Chengyuan Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Yu Xu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| | - Wei Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050019, P.R. China
| |
Collapse
|
28
|
Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene 2019; 38:1936-1950. [PMID: 30390071 PMCID: PMC6417953 DOI: 10.1038/s41388-018-0537-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ligand-dependent oligomerization of receptor tyrosine kinases (RTKs) results in their activation through highly specific conformational changes in the extracellular and intracellular receptor domains. These conformational changes are unique for each RTK subfamily, limiting cross-activation between unrelated RTKs. The proto-oncogene MET receptor tyrosine kinase overcomes these structural constraints and phosphorylates unrelated RTKs in numerous cancer cell lines. The molecular basis for these interactions is unknown. We investigated the mechanism by which MET phosphorylates the human epidermal growth factor receptor-3 (HER3 or ERBB3), a catalytically impaired RTK whose phosphorylation by MET has been described as an essential component of drug resistance to inhibitors targeting EGFR and HER2. We find that in untransformed cells, HER3 is not phosphorylated by MET in response to ligand stimulation, but rather to increasing levels of MET expression, which results in ligand-independent MET activation. Phosphorylation of HER3 by its canonical co-receptors, EGFR and HER2, is achieved by engaging an allosteric site on the HER3 kinase domain, but this site is not required when HER3 is phosphorylated by MET. We also observe that HER3 preferentially interacts with MET during its maturation along the secretory pathway, before MET is post translationally processed by cleavage within its extracellular domain. This results in accumulation of phosphorylated HER3 in the Golgi apparatus. We further show that in addition to HER3, MET phosphorylates other RTKs in the Golgi, suggesting that this mechanism is not limited to HER3 phosphorylation. These data demonstrate a link between MET overexpression and its aberrant activation in the Golgi endomembranes and suggest that non-canonical interactions between MET and other RTKs occur during maturation of receptors. Our study highlights a novel aspect of MET signaling in cancer that would not be accessible to inhibition by therapeutic antibodies.
Collapse
Affiliation(s)
- Nicole Michael Frazier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Toni Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - John D Gordan
- Division of Hematology and Oncology - University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
29
|
Alanazi MM, Alkahtani HM, Almehizia AA, Attwa MW, Bakheit AH, Darwish HW. Validated liquid chromatography tandem mass spectrometry for simultaneous quantification of foretinib and lapatinib, and application to metabolic stability investigation. RSC Adv 2019; 9:19325-19332. [PMID: 35519400 PMCID: PMC9064977 DOI: 10.1039/c9ra03251g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
Foretinib metabolic rate is decreased in combination with lapatinib. Lapatinib metabolic rate is greatly increased in combination with foretinib. Dose recalculation should be considered when foretinib and lapatinib are used in combination.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | | | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
30
|
|
31
|
Exploration of novel pyrrolo[2,1-f][1,2,4]triazine derivatives with improved anticancer efficacy as dual inhibitors of c-Met/VEGFR-2. Eur J Med Chem 2018; 158:814-831. [DOI: 10.1016/j.ejmech.2018.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
|
32
|
Tang Q, Duan Y, Xiong H, Chen T, Xiao Z, Wang L, Xiao Y, Huang S, Xiong Y, Zhu W, Gong P, Zheng P. Synthesis and antiproliferative activity of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing the 1,8-naphthyridin-2-one moiety. Eur J Med Chem 2018; 158:201-213. [DOI: 10.1016/j.ejmech.2018.08.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
|
33
|
Curea FG, Hebbar M, Ilie SM, Bacinschi XE, Trifanescu OG, Botnariuc I, Anghel RM. Current Targeted Therapies in HER2-Positive Gastric Adenocarcinoma. Cancer Biother Radiopharm 2018; 32:351-363. [PMID: 29265917 DOI: 10.1089/cbr.2017.2249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer in the world, usually diagnosed at an advanced stage. Despite the advances in specific anticancer agents' development, the survival rates remain modest, even in early stages. In 15%-20% of cases, the human epidermal growth factor receptor 2 (HER2) overexpression was identified. We conducted a general review to summarize the progress that has been made in the targeted treatment of HER2-positive esogastric junction or gastric adenocarcinoma. According to our findings, trastuzumab is the only validated anti-HER2 agent in locally advanced or metastatic disease and its adjuvant effectiveness is assessed in a RTOG phase III study. In a previously treated advanced disease, the maytansine derivate TDM 1 failed to be approved as a second-line regimen, and the tyrosine kinase inhibitor, lapatinib, shows modest results. The antiangiogenics have not been analyzed in specific populations and targeting the mesenchymal-epithelial transition factor (MET) receptor, overexpressed in up to 46% of the advanced disease, seems encouraging. Regarding the checkpoint inhibitors, based on KEYNOTE 059 multilevel ongoing trial, stratified according to the HER2 and programmed death-ligand (PD-L) 1 status, pembrolizumab was approved for third-line treatment of gastric or gastroesophageal junction adenocarcinoma.
Collapse
Affiliation(s)
- Fabiana G Curea
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania
| | - Mohamed Hebbar
- 2 Department of Medical Oncology, University Hospital , Lille, France
| | - Silvia M Ilie
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Xenia E Bacinschi
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Oana G Trifanescu
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Inga Botnariuc
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania
| | - Rodica M Anghel
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| |
Collapse
|
34
|
Attwa MW, Kadi AA, Darwish HW, Amer SM, Alrabiah H. A reliable and stable method for the determination of foretinib in human plasma by LC-MS/MS: Application to metabolic stability investigation and excretion rate. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:344-351. [PMID: 29629565 DOI: 10.1177/1469066718768327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Foretinib (GSK1363089) is a multiple receptor tyrosine kinases inhibitor. In this study, a reliable, fast liquid chromatography-tandem mass spectrometric method was described for assaying foretinib in plasma, urine, and rat liver microsome samples. Simple extraction procedure by protein preciptation with acetonitrile was implemented for foretinib and brigatinib (internal standard) analysis. Chromatographic resolution of analytes was achieved on C18 column with the help of isocratic mobile phase. The binary mobile phase consisted of 60% ammonium formate (10 mM, pH 4.2) and 40% acetonitrile at a flow rate of 0.25 mL/min. Run time was 3 min, and both foretinib and brigatinib were eluted within 0.74 and 1.95 min; they were detected in positive ion mode utilizing multiple reactions monitoring mode. Linearity of the proposed method ranged from 5 to 500 ng/mL (r2 ≥ 0.9993) in the human plasma. Lower limit of quantification and detection were 6.0 and 1.8 ng/mL, respectively. Intraday and interday precision and accuracy were 0.16 to 1.67 % and -2.39 to -0.52 %. In vitro half-life and intrinsic clearance were 24.93 min and 6.56 mL/min/kg, respectively. Literature review showed that no previous studies have been proposed for the analytical quantification of foretinib in human plasma or its metabolic stability. The established method was also applied to estimate the rate of foretinib excretion in rat urine. The developed method can be used for foretinib pharmacokinetic applications.
Collapse
Affiliation(s)
- Mohamed W Attwa
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hany W Darwish
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- 2 Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sawsan M Amer
- 2 Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Haitham Alrabiah
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Abbas M, Faggian A, Sintali DN, Khan GJ, Naeem S, Shi M, Dingding C. Current and future biomarkers in gastric cancer. Biomed Pharmacother 2018; 103:1688-1700. [DOI: 10.1016/j.biopha.2018.04.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
|
36
|
Liu X, Kou J, Xiao Z, Tian F, Hu J, Zheng P, Zhu W. Design, Synthesis and Biological Evaluation of 6,7-Disubstituted-4-phenoxyquinoline Derivatives Bearing Pyridazinone Moiety as c-Met Inhibitors. Molecules 2018; 23:molecules23071543. [PMID: 29949931 PMCID: PMC6099740 DOI: 10.3390/molecules23071543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, a series of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing pyridazinone derivatives were designed, synthesized and evaluated for their enzymatic inhibitory activity against c-Met kinase and cellular potency against A549, HepG2, and MCF-7 cell lines. Eight of them are equal to more active than positive control Foretinib against one or more cell lines and enzyme. The most promising compound 53 showed superior activity to Foretinib, which possessed excellent c-Met kinase inhibition on a singledigital nanomolar level (IC50 = 0.6 nM), and cancer cells of A549 (IC50 = 0.003 µM), HepG2 (IC50 = 0.49 µM) and MCF-7 cells (IC50 = 0.006 µM). The result of AO single staining indicated that compound 53 could induce remarkable apoptosis of HepG2 cell.
Collapse
Affiliation(s)
- Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Jianlan Kou
- Teaching and Research Department of Mathematics and Chemistry, Nanchang Health School, Nanchang 330006, China.
| | - Zhen Xiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Fajuan Tian
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Jiayi Hu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
37
|
Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, Wessels LFA. Integrative Modeling Identifies Key Determinants of Inhibitor Sensitivity in Breast Cancer Cell Lines. Cancer Res 2018; 78:4396-4410. [PMID: 29844118 DOI: 10.1158/0008-5472.can-17-2698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/26/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Cancer cell lines differ greatly in their sensitivity to anticancer drugs as a result of different oncogenic drivers and drug resistance mechanisms operating in each cell line. Although many of these mechanisms have been discovered, it remains a challenge to understand how they interact to render an individual cell line sensitive or resistant to a particular drug. To better understand this variability, we profiled a panel of 30 breast cancer cell lines in the absence of drugs for their mutations, copy number aberrations, mRNA, protein expression and protein phosphorylation, and for response to seven different kinase inhibitors. We then constructed a knowledge-based, Bayesian computational model that integrates these data types and estimates the relative contribution of various drug sensitivity mechanisms. The resulting model of regulatory signaling explained the majority of the variability observed in drug response. The model also identified cell lines with an unexplained response, and for these we searched for novel explanatory factors. Among others, we found that 4E-BP1 protein expression, and not just the extent of phosphorylation, was a determinant of mTOR inhibitor sensitivity. We validated this finding experimentally and found that overexpression of 4E-BP1 in cell lines that normally possess low levels of this protein is sufficient to increase mTOR inhibitor sensitivity. Taken together, our work demonstrates that combining experimental characterization with integrative modeling can be used to systematically test and extend our understanding of the variability in anticancer drug response.Significance: By estimating how different oncogenic mutations and drug resistance mechanisms affect the response of cancer cells to kinase inhibitors, we can better understand and ultimately predict response to these anticancer drugs.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4396/F1.large.jpg Cancer Res; 78(15); 4396-410. ©2018 AACR.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomic Sequencing Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Klaas de Lint
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ian J Majewski
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute, Parkville Victoria, Australia
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
38
|
Wang L, Liu X, Duan Y, Li X, Zhao B, Wang C, Xiao Z, Zheng P, Tang Q, Zhu W. Discovery of novel pyrrolopyrimidine/pyrazolopyrimidine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Chem Biol Drug Des 2018; 92:1301-1314. [PMID: 29575727 DOI: 10.1111/cbdd.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 12/16/2022]
Abstract
Six series of pyrrolo[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety were designed and synthesized, and some bio-evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single-digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF-7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm, respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3-d]pyrimidine derivatives bearing 1,2,3-triazole moiety was superior to the pyrazolo[3,4-d]pyrimidine derivatives bearing 1,2,3-triazole moiety. Thirdly, three selected compounds (16d, 18d, and 20d) were further evaluated for inhibitory activity against the c-Met kinase, and the 16d could inhibit the c-Met kinase selectively by experiments of enzyme-based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaobo Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojing Li
- College of Service, Naval University of Academy of PLA, Tianjin, China
| | - Bingbing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Caolin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhen Xiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
39
|
Bouattour M, Raymond E, Qin S, Cheng A, Stammberger U, Locatelli G, Faivre S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 2018; 67:1132-1149. [PMID: 28862760 PMCID: PMC5873445 DOI: 10.1002/hep.29496] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
Aberrant c-Met activity has been implicated in the development of hepatocellular carcinoma (HCC), suggesting that c-Met inhibition may have therapeutic potential. However, clinical trials of nonselective kinase inhibitors with c-Met activity (tivantinib, cabozantinib, foretinib, and golvatinib) in patients with HCC have failed so far to demonstrate significant efficacy. This lack of observed efficacy is likely due to several factors, including trial design, lack of patient selection according to tumor c-Met status, and the prevalent off-target activity of these agents, which may indicate that c-Met inhibition is incomplete. In contrast, selective c-Met inhibitors (tepotinib, capmatinib) can be dosed at a level predicted to achieve complete inhibition of tumor c-Met activity. Moreover, results from early trials can be used to optimize the design of clinical trials of these agents. Preliminary results suggest that selective c-Met inhibitors have antitumor activity in HCC, with acceptable safety and tolerability in patients with Child-Pugh A liver function. Ongoing trials have been designed to assess the efficacy and safety of selective c-Met inhibition compared with standard therapy in patients with HCC that were selected based on tumor c-Met status. Thus, c-Met inhibition continues to be an active area of research in HCC, with well-designed trials in progress to investigate the benefit of selective c-Met inhibitors. (Hepatology 2018;67:1132-1149).
Collapse
Affiliation(s)
- Mohamed Bouattour
- Digestive Oncology DepartmentBeaujon University HospitalClichyFrance
| | - Eric Raymond
- Oncology UnitGroupe Hospitalier Paris Saint JosephParisFrance
| | - Shukui Qin
- Medical Oncology DepartmentNanjing Bayi HospitalNanjingChina
| | | | | | | | - Sandrine Faivre
- Medical Oncology DepartmentBeaujon University HospitalClichyFrance
| |
Collapse
|
40
|
Shen Y, Chen X, He J, Liao D, Zu X. Axl inhibitors as novel cancer therapeutic agents. Life Sci 2018; 198:99-111. [PMID: 29496493 DOI: 10.1016/j.lfs.2018.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of Axl receptor tyrosine kinase have been widely accepted to promote cell proliferation, chemotherapy resistance, invasion, and metastasis in several human cancers, such as lung, breast, and pancreatic cancers. Axl, a member of the TAM (Tyro3, Axl, Mer) family, and its inhibitors can specifically break the kinase signaling nodes, allowing advanced patients to regain drug sensitivity with improved therapeutic efficacy. Therefore, the research on Axl is promising and it is worthy of further investigations. In this review, we present an update on the Axl inhibitors and provide new insights into their latent application.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jun He
- Department of Spine Surgery, the Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Duanfang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, Hunan, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
41
|
Park CK, Park JS, Kim HS, Rha SY, Hyung WJ, Cheong JH, Noh SH, Lee SK, Lee YC, Huh YM, Kim H. Receptor tyrosine kinase amplified gastric cancer: Clinicopathologic characteristics and proposed screening algorithm. Oncotarget 2018; 7:72099-72112. [PMID: 27765925 PMCID: PMC5342148 DOI: 10.18632/oncotarget.12291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022] Open
Abstract
Although targeted therapy for receptor tyrosine kinases (RTKs) of advanced gastric cancers (AGCs) has been in the spotlight, guidelines for the identification of RTK-amplified gastric cancers (RA-GCs) have not been established. In this study, we investigate clinicopathologic characteristics of RA-GCs and propose a screening algorithm for their identification. We performed immunohistochemistry (IHC) for MLH1, MSH2, PMS2, MSH6, key RTKs (EGFR, HER2, MET), and p53, in situ hybridization for Epstein-Barr virus encoding RNA, and silver in situ hybridization (SISH) for EGFR, HER2, and MET using tissue microarrays of 993 AGCs. On IHC, 157 (15.8%) 61, (6.15%), and 85 (8.56%) out of 993 cases scored 2+ or 3+ for EGFR, HER2, and MET, respectively. On SISH, 31.2% (49/157), 80.3% (49/61), and 30.6% (26/85) of 2+ or 3+ cases on IHC showed amplification of the corresponding genes. Of the 993 cases, 104 were classified as RA-GCs. RA-GC status correlated with older age (P < 0.001), differentiated histology (P = 0.001), intestinal or mixed type by Lauren classification (P < 0.001), lymphovascular invasion (P = 0.026), and mutant-pattern of p53 (P < 0.001). The cases were divided into four subgroups using two classification systems, putative molecular classification and histologic-molecular classification, based on Lauren classification, IHC, and SISH results. The histologic-molecular classification showed higher sensitivity for identification of RA-GCs and predicted patient prognosis better than the putative molecular classification. In conclusion, RA-GCs show unique clinicopathologic features. The proposed algorithm based on histologic-molecular classification can be applied to select candidates for genetic examination and targeted therapy.
Collapse
Affiliation(s)
- Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Soo Park
- Division of Medical Oncology, Yonsei Cancer Center, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Yonsei Cancer Center, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Yonsei Cancer Center, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Min Huh
- YUMS-KRIBB Medical Convergence Research Institute, Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Demkova L, Kucerova L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol Cancer 2018; 17:26. [PMID: 29455657 PMCID: PMC5817811 DOI: 10.1186/s12943-018-0795-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/01/2018] [Indexed: 02/08/2023] Open
Abstract
Metastatic disease in a cancer patient still remains a therapeutic challenge. Metastatic process involves many steps, during which malignant cells succeed to activate cellular pathways promoting survival in hostile environment, engraftment and growth at the distant site from the primary tumor. Melanoma is known for its high propensity to produce metastases even at the early stages of the disease. Here we summarize the most important molecular mechanisms which were associated with the melanoma metastasis. Then, we specifically focus on the signaling pathway mediated by hepatocyte growth factor (HGF) and its receptor c-Met, which play an important role during physiological processes and were been associated with tumorigenesis. We also focus on the effect of the small molecule inhibitors of the tyrosine kinase domain of the c-Met receptor and its effects on properties of melanoma cell. We summarize recent studies, which involved inhibition of the HGF/c-Met signaling in order to decrease melanoma growth and metastatic capacity.
Collapse
Affiliation(s)
- Lucia Demkova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
43
|
c-Cbl mediates the degradation of tumorigenic nuclear β-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors. Oncotarget 2018; 7:71136-71150. [PMID: 27661103 PMCID: PMC5342068 DOI: 10.18632/oncotarget.12107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023] Open
Abstract
Despite the loss of Adenomatous Polyposis Coli (APC) in a majority of colorectal cancers (CRC), not all CRCs bear hallmarks of Wnt activation, such as nuclear β-catenin. This underscores the presence of other Wnt regulators that are important to define, given the pathogenic and prognostic roles of nuclear β-catenin in human CRC. Herein, we investigated the effect of Casitas B-lineage lymphoma (c-Cbl) on nuclear β-catenin, which is an oncoprotein upregulated in CRC due to loss-of-function APC or gain-of-function CTNNB1 mutations. Despite mechanistic rationale and recent discoveries of c-Cbl's mutations in solid tumors, little is known about its functional importance in CRC. Our study in a cohort of human CRC patients demonstrated an inverse correlation between nuclear β-catenin and c-Cbl. Further investigation showed that the loss of c-Cbl activity significantly enhanced nuclear β-catenin and CRC tumor growth in cell culture and a mouse xenograft model. c-Cbl interacted with and downregulated β-catenin in a manner that was independent of CTNNB1 or APC mutation status. This study demonstrates a previously unrecognized function of c-Cbl as a negative regulator of CRC.
Collapse
|
44
|
Discovery of thinopyrimidine-triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg Chem 2018; 77:370-380. [PMID: 29421713 DOI: 10.1016/j.bioorg.2018.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022]
Abstract
Five series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing triazole (21-26, 27-34, 35-41, 42-47 and 48-54) were designed and synthesized. And all the target compounds were evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds (43, 49 and 52) were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Moreover, SARs and docking studies indicated that thieno[3,2-d]pyrimidine bearing triazole moiety was privileged structure for the activity. Especially, the Cl atom on the 4-C position of aryl group showed the best activity. The most promising compound 49 showed 3.7-5.4-fold more activity than the lead drug Foretinib against A549, HepG2 and MCF-7 cell lines, with the IC50 values of 0.9 ± 0.1 µM, 0.5 ± 0.1 µM and 1.1 ± 0.2 µM, respectively. And The experiments of enzyme-based showed that 49 inhibitor the c-Met selectively, with the IC50 values of 16 nM, which showed equal activity to Foretinib (14 nM). What's more, According to the result of AO single staining and Annexin V/PI staining, it's claimed that the 49 could induce late apoptosis of HepG2 cells and by a concentration-dependent manner.
Collapse
|
45
|
Synthesis and bioevaluation study of novel N -methylpicolinamide and thienopyrimidine derivatives as selectivity c-Met kinase inhibitors. Bioorg Med Chem 2018; 26:245-256. [DOI: 10.1016/j.bmc.2017.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
|
46
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Duan Y, Xu S, Xiong H, Wang L, Zhao B, Wang P, Wang C, Peng Y, Cai S, Luo R, Zheng P, Tang Q. Discovery of novel 2-substituted-4-phenoxypyridine derivatives as potential antitumor agents. Bioorg Med Chem Lett 2017; 28:254-259. [PMID: 29317165 DOI: 10.1016/j.bmcl.2017.12.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/25/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
A series of 2-substituted-4-phenoxypyridine derivatives were designed, synthesized, and evaluated for their antiproliferative activity against 4 cancer cell lines (A549, HT-29, H460, and U87MG) in vitro. Most compounds showed moderate to excellent potency. Nine tyrosine kinases (c-Met, Flt-3, ALK, VEGFR-2, VEGFR-3, PDGFR-α, PDGFR-β, c-Kit, and EGFR) were used to evaluate the inhibitory activities with the most promising analogue 39, which showed the Flt-3/c-Met IC50 values of 2.18/2.61 nM. Structure-activity relationship studies indicated that n-Pr served as R1 group showed a higher preference, and stronger mono-EWGs on the phenyl ring (such as R2 = 4-F) was benefited to the potency.
Collapse
Affiliation(s)
- Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Hehua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Bingbing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ping Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Caolin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yiqing Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Shifan Cai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Rong Luo
- Jiangxi Province Institute of Materia Medica, Nanchang 330000, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
48
|
Discovery of novel pyrrolo-pyridine/pyrimidine derivatives bearing pyridazinone moiety as c-Met kinase inhibitors. Eur J Med Chem 2017; 141:538-551. [DOI: 10.1016/j.ejmech.2017.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 11/23/2022]
|
49
|
Tang Q, Duan Y, Wang L, Wang M, Ouyang Y, Wang C, Mei H, Tang S, Xiong Y, Zheng P, Gong P, Zhu W. Synthesis and antiproliferative activity of pyrrolo[2,3-b]pyridine derivatives bearing the 1,8-naphthyridin-2-one moiety. Eur J Med Chem 2017; 143:266-275. [PMID: 29197731 DOI: 10.1016/j.ejmech.2017.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/25/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022]
Abstract
A series of pyrrolo[2,3-b]pyridine derivatives bearing the 1,8-naphthyridin-2-one moiety were synthesized, and evaluated for their antiproliferative activity against four cancer cell lines (HT-29, A549, H460, and U87MG) and six tyrosine kinases (c-Met, Flt-3, PDGFR-β, VEGFR-2, EGFR, and c-Kit) inhibitory activities in vitro. Most compounds showed moderate to excellent potency, with the most promising analogue 32 showing Flt-3/c-Met IC50 value of 1.16/1.92 nM. Structure-activity relationship studies indicated that the hydrogen atom served as R1 group was benefited to the potency, and mono-electron-withdrawing groups (mono-EWGs) on the phenyl ring (such as R3 = 4-F) showed a higher preference for antiproliferative activity.
Collapse
Affiliation(s)
- Qidong Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yongli Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Min Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yiqiang Ouyang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Caolin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Han Mei
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Sheng Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yinhua Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
50
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|