1
|
Monje M, Cooney T, Glod J, Huang J, Peer CJ, Faury D, Baxter P, Kramer K, Lenzen A, Robison NJ, Kilburn L, Vinitsky A, Figg WD, Jabado N, Fouladi M, Fangusaro J, Onar-Thomas A, Dunkel IJ, Warren KE. Phase I trial of panobinostat in children with diffuse intrinsic pontine glioma: A report from the Pediatric Brain Tumor Consortium (PBTC-047). Neuro Oncol 2023; 25:2262-2272. [PMID: 37526549 PMCID: PMC10708931 DOI: 10.1093/neuonc/noad141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood cancer with median survival of less than 1 year. Panobinostat is an oral multihistone deacetylase inhibitor with preclinical activity in DIPG models. Study objectives were to determine safety, tolerability, maximum tolerated dose (MTD), toxicity profile, and pharmacokinetics of panobinostat in children with DIPG. PATIENTS AND METHODS In stratum 1, panobinostat was administered 3 days per week for 3 weeks on, 1 week off to children with progressive DIPG, with dose escalation following a two-stage continual reassessment method. After this MTD was determined, the study was amended to evaluate the MTD in children with nonprogressive DIPG/Diffuse midline glioma (DMG) (stratum 2) on an alternate schedule, 3 days a week every other week in an effort to escalate the dose. RESULTS For stratum 1, 19 subjects enrolled with 17/19 evaluable for dose-finding. The MTD was 10 mg/m2/dose. Dose-limiting toxicities included thrombocytopenia and neutropenia. Posterior reversible encephalopathy syndrome was reported in 1 patient. For stratum 2, 34 eligible subjects enrolled with 29/34 evaluable for dose finding. The MTD on this schedule was 22 mg/m2/dose. DLTs included thrombocytopenia, neutropenia, neutropenia with grade 4 thrombocytopenia, prolonged intolerable nausea, and increased ALT. CONCLUSIONS The MTD of panobinostat is 10 mg/m2/dose administered 3 times per week for 3 weeks on/1 week off in children with progressive DIPG/DMG and 22 mg/m2/dose administered 3 times per week for 1 week on/1 week off when administered in a similar population preprogression. The most common toxicity for both schedules was myelosuppression.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology, Stanford University and Lucile Packard Children’s Hospital, Palo Alto, CA, USA
| | - Tabitha Cooney
- Department of Pediatric Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, MA, USA
| | - John Glod
- Pediatric Oncology, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MDUS
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Cody J Peer
- Center for Cancer Research, Clinical Pharmacology Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Damien Faury
- Research Institute of the McGill University Health Center, Montreal, QuebecCANADA
| | - Patricia Baxter
- Pediatric Oncology, Texas Children’s Cancer Center, Houston, TX, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Alicia Lenzen
- Pediatric Hematology Oncology, Lurie Children’s Hospital, Chicago, IL, USA
| | - Nathan J Robison
- Department of Pediatrics, Children’s Hospital, Los Angeles, CA, USA
| | - Lindsay Kilburn
- Department of Oncology, Children’s National Hospital, Washington, DC, USA
| | - Anna Vinitsky
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - William D Figg
- Center for Cancer Research, Clinical Pharmacology Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Nada Jabado
- Research Institute of the McGill University Health Center, Montreal, QuebecCANADA
| | - Maryam Fouladi
- Pediatric Hematology Oncology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jason Fangusaro
- Department: Pediatric Hematology/Oncology and Stem Cell Transplantation, Atlanta, GA, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, MA, USA
- Pediatric Oncology, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MDUS
| |
Collapse
|
2
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
3
|
Epstein M, Morrison C. Practical guidance for new multiple myeloma treatment regimens: A nursing perspective. Semin Oncol 2022; 49:103-117. [PMID: 35197198 PMCID: PMC9149030 DOI: 10.1053/j.seminoncol.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Abstract
As is the case for solid tumors, treatment paradigms have shifted from non-specific chemotherapeutic agents towards novel targeted drugs in the treatment of patients with multiple myeloma (MM). Currently, multiple targeted therapies are available to treat patients augmenting the arsenal of modalities which also includes chemotherapy, immunotherapy, radiation therapy, hematopoietic stem cell transplantation (HSCST) and chimeric antigen T-cell therapy (CAR-T). These novel, targeted agents have dramatically increased optimism for patients, who may now be treated over many years with successive regimens. As fortunate as we are to have these new therapies available for our patients, this advantage is juxtaposed with the challenges involved with delivering them safely. While each class of agents has demonstrated efficacy, in terms of response rates and survival, they also exert class effects which pose risks for toxicity. In addition, newer generation agents within the classes often have slightly different toxicity profiles than did their predecessors. These factors must be addressed, and their risks mitigated by the multidisciplinary team. This review presents a summary of the evolution of drug development for MM. For each targeted agent, the efficacy data from pivotal trials and highlights of the risks that were demonstrated in trials, as well as during post-marketing surveillance, are presented. Specific risks associated with agents within the classes, that are not shared with all new class members, are described. A table presenting these potential risks, with recommended nursing actions to mitigate toxicity, is provided as a quick reference that nurses may use during the planning, and provision, of patient care.
Collapse
Affiliation(s)
- Monica Epstein
- National Cancer Institute, Office of Research Nursing, Bethesda, MD.
| | - Candis Morrison
- United States Food and Drug Administration, 10903 New Hampshire Ave, Building 22 Room 2319 Silver Spring Maryland 20993
| |
Collapse
|
4
|
Brock K, Homer V, Soul G, Potter C, Chiuzan C, Lee S. Is more better? An analysis of toxicity and response outcomes from dose-finding clinical trials in cancer. BMC Cancer 2021; 21:777. [PMID: 34225682 PMCID: PMC8256624 DOI: 10.1186/s12885-021-08440-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The overwhelming majority of dose-escalation clinical trials use methods that seek a maximum tolerable dose, including rule-based methods like the 3+3, and model-based methods like CRM and EWOC. These methods assume that the incidences of efficacy and toxicity always increase as dose is increased. This assumption is widely accepted with cytotoxic therapies. In recent decades, however, the search for novel cancer treatments has broadened, increasingly focusing on inhibitors and antibodies. The rationale that higher doses are always associated with superior efficacy is less clear for these types of therapies. METHODS We extracted dose-level efficacy and toxicity outcomes from 115 manuscripts reporting dose-finding clinical trials in cancer between 2008 and 2014. We analysed the outcomes from each manuscript using flexible non-linear regression models to investigate the evidence supporting the monotonic efficacy and toxicity assumptions. RESULTS We found that the monotonic toxicity assumption was well-supported across most treatment classes and disease areas. In contrast, we found very little evidence supporting the monotonic efficacy assumption. CONCLUSIONS Our conclusion is that dose-escalation trials routinely use methods whose assumptions are violated by the outcomes observed. As a consequence, dose-finding trials risk recommending unjustifiably high doses that may be harmful to patients. We recommend that trialists consider experimental designs that allow toxicity and efficacy outcomes to jointly determine the doses given to patients and recommended for further study.
Collapse
Affiliation(s)
- Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK.
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Gurjinder Soul
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Claire Potter
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Cody Chiuzan
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shing Lee
- Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Rodrigues Moita AJ, Bandolik JJ, Hansen FK, Kurz T, Hamacher A, Kassack MU. Priming with HDAC Inhibitors Sensitizes Ovarian Cancer Cells to Treatment with Cisplatin and HSP90 Inhibitors. Int J Mol Sci 2020; 21:ijms21218300. [PMID: 33167494 PMCID: PMC7663919 DOI: 10.3390/ijms21218300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths. Chemoresistance, particularly against platinum compounds, contributes to a poor prognosis. Histone deacetylase inhibitors (HDACi) and heat shock protein 90 inhibitors (HSP90i) are known to modulate pathways involved in chemoresistance. This study investigated the effects of HDACi (panobinostat, LMK235) and HSP90i (luminespib, HSP990) on the potency of cisplatin in ovarian cancer cell lines (A2780, CaOV3, OVCAR3 and cisplatin-resistant sub-clones). Preincubation with HDACi increased the cytotoxic potency of HSP90i, whereas preincubation with HSP90i had no effect. Preincubation with HSP90i or HDACi 48h prior to cisplatin enhanced the cisplatin potency significantly in all cell lines via apoptosis induction and affected the expression of apoptosis-relevant genes and proteins. For CaOV3CisR and A2780CisR, a preincubation with HDACi for 48–72 h led to complete reversal of cisplatin resistance. Furthermore, permanent presence of HDACi in sub-cytotoxic concentrations prevented the development of cisplatin resistance in A2780. However, triple combinations of HDACi, HSP90i and cisplatin were not superior to dual combinations. Overall, priming with HDACi sensitizes ovarian cancer cells to treatment with HSP90i or cisplatin and has an influence on the development of cisplatin resistance, both of which may contribute to an improved ovarian cancer treatment.
Collapse
Affiliation(s)
- Ana J. Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Jan J. Bandolik
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Finn K. Hansen
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany;
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany; (A.J.R.M.); (J.J.B.); (T.K.); (A.H.)
- Correspondence:
| |
Collapse
|
6
|
Gorshkov K, Sima N, Sun W, Lu B, Huang W, Travers J, Klumpp-Thomas C, Michael SG, Xu T, Huang R, Lee EM, Cheng X, Zheng W. Quantitative Chemotherapeutic Profiling of Gynecologic Cancer Cell Lines Using Approved Drugs and Bioactive Compounds. Transl Oncol 2019; 12:441-452. [PMID: 30576957 PMCID: PMC6302136 DOI: 10.1016/j.tranon.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Heterogeneous response to chemotherapy is a major issue for the treatment of cancer. For most gynecologic cancers including ovarian, cervical, and placental, the list of available small molecule therapies is relatively small compared to options for other cancers. While overall cancer mortality rates have decreased in the United States as early diagnoses and cancer therapies have become more effective, ovarian cancer still has low survival rates due to the lack of effective treatment options, drug resistance, and late diagnosis. To understand chemotherapeutic diversity in gynecologic cancers, we have screened 7914 approved drugs and bioactive compounds in 11 gynecologic cancer cell lines to profile their chemotherapeutic sensitivity. We identified two HDAC inhibitors, mocetinostat and entinostat, as pan-gynecologic cancer suppressors with IC50 values within an order of magnitude of their human plasma concentrations. In addition, many active compounds identified, including the non-anticancer drugs and other compounds, diversely inhibited the growth of three gynecologic cancer cell groups and individual cancer cell lines. These newly identified compounds are valuable for further studies of new therapeutics development, synergistic drug combinations, and new target identification for gynecologic cancers. The results also provide a rationale for the personalized chemotherapeutic testing of anticancer drugs in treatment of gynecologic cancer.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Ni Sima
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA; Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, PR China
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Billy Lu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Wei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA; Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, PR China
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Samuel G Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Tuan Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, PR China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Wood PJ, Strong R, McArthur GA, Michael M, Algar E, Muscat A, Rigby L, Ferguson M, Ashley DM. A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors. Cancer Chemother Pharmacol 2018; 82:493-503. [PMID: 29987369 DOI: 10.1007/s00280-018-3634-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This was an open label, phase I (3 + 3 design), multi-centre study evaluating panobinostat in pediatric patients with refractory solid tumors. METHODS Primary endpoints were to establish MTD, define and describe associated toxicities, including dose limiting toxicities (DLT) and to characterize its pharmacokinetics (PK). Secondary endpoints included assessing the anti-tumour activity of panobinostat, and its biologic activity, by measuring acetylation of histones in peripheral blood mononuclear cells. RESULTS Nine patients were enrolled and treated with intravenous panobinostat at a dosing level of 15 mg/m2 which was tolerated. Six were evaluable for adverse events. Two (33%) patients experienced Grade 3-4 thrombocytopenia, 1 (17%) experienced Grade 3 anemia, and 2 (33%) experienced Grade 3 neutropenia. Grade 4 drug related pain occurred in 2 (33%) of the patients studied. Two (33%) patients experienced a Grade 2 QTcF change (0.478 ± 0.006 ms). One cardiac DLT (T wave changes) was reported. PK values for 15 mg/m2 (n = 9) dosing were: Tmax 0.8 h, Cmax 235.2 ng/mL, AUC0-t 346.8 h ng/mL and t1/2 7.3 h. Panobinostat significantly induced acetylation of histone H3 and H4 at all time points measured when compared to pre-treatment samples (p < 0.05). Pooled quantitative Western blot data confirmed that panobinostat significantly induced acetylation of histone H4 at 6 h (p < 0.01), 24 h (p < 0.01) and 28-70 h (p < 0.01) post dose. CONCLUSION A significant biological effect of panobinostat, measured by acetylation status of histone H3 and H4, was achieved at a dose of 15 mg/m2. PK data and drug tolerability at 15 mg/m2 was similar to that previously published.
Collapse
Affiliation(s)
- Paul J Wood
- Department of Paediatrics, Monash University, Melbourne, Australia. .,Children's Cancer Centre, Monash Children's Hospital, Melbourne, Australia. .,Molecular Oncology and Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Robyn Strong
- Australian & New Zealand Children's Haematology/Oncology Group (ANZCHOG), Melbourne, Australia
| | - Grant A McArthur
- Molecular Oncology and Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Elizabeth Algar
- Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Melbourne, Australia
| | - Andrea Muscat
- Deakin University, School of Medicine, Geelong, Australia
| | - Lin Rigby
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Porta-Sánchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J Am Heart Assoc 2017; 6:JAHA.117.007724. [PMID: 29217664 PMCID: PMC5779062 DOI: 10.1161/jaha.117.007724] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The cardiovascular complications of cancer therapeutics are the focus of the burgeoning field of cardio‐oncology. A common challenge in this field is the impact of cancer drugs on cardiac repolarization (ie, QT prolongation) and the potential risk for the life‐threatening arrhythmia torsades de pointes. Although QT prolongation is not a perfect marker of arrhythmia risk, this has become a primary safety metric among oncologists. Cardiologists caring for patients receiving cancer treatment should become familiar with the drugs associated with QT prolongation, its incidence, and appropriate management strategies to provide meaningful consultation in this complex clinical scenario. Methods and Results In this article, we performed a systematic review (using Preferred Reporting Items of Systematic Reviews and Meta‐Analyses (PRISMA) guidelines) of commonly used cancer drugs to determine the incidence of QT prolongation and clinically relevant arrhythmias. We calculated summary estimates of the incidence of all and clinically relevant QT prolongation as well as arrhythmias and sudden cardiac death. We then describe strategies to prevent, identify, and manage QT prolongation in patients receiving cancer therapy. We identified a total of 173 relevant publications. The weighted incidence of any corrected QT (QTc) prolongation in our systematic review in patients treated with conventional therapies (eg, anthracyclines) ranged from 0% to 22%, although QTc >500 ms, arrhythmias, or sudden cardiac death was extremely rare. The risk of QTc prolongation with targeted therapies (eg, small molecular tyrosine kinase inhibitors) ranged between 0% and 22.7% with severe prolongation (QTc >500 ms) reported in 0% to 5.2% of the patients. Arrhythmias and sudden cardiac death were rare. Conclusions Our systematic review demonstrates that there is variability in the incidence of QTc prolongation of various cancer drugs; however, the clinical consequence, as defined by arrhythmias or sudden cardiac death, remains rare.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Cameron Gilbert
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Danna Spears
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Eitan Amir
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Joyce Chan
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Division of Cardiology, Department of Electrophysiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre, Ted Rogers Program in Cardiotoxicity Prevention and Department of Medical Imaging, University Health Network University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Van Veggel M, Westerman E, Hamberg P. Clinical Pharmacokinetics and Pharmacodynamics of Panobinostat. Clin Pharmacokinet 2017; 57:21-29. [DOI: 10.1007/s40262-017-0565-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kopljar I, De Bondt A, Vinken P, Teisman A, Damiano B, Goeminne N, Van den Wyngaert I, Gallacher DJ, Lu HR. Chronic drug-induced effects on contractile motion properties and cardiac biomarkers in human induced pluripotent stem cell-derived cardiomyocytes. Br J Pharmacol 2017; 174:3766-3779. [PMID: 28094846 DOI: 10.1111/bph.13713] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE In the pharmaceutical industry risk assessments of chronic cardiac safety liabilities are mostly performed during late stages of preclinical drug development using in vivo animal models. Here, we explored the potential of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) to detect chronic cardiac risks such as drug-induced cardiomyocyte toxicity. EXPERIMENTAL APPROACH Video microscopy-based motion field imaging was applied to evaluate the chronic effect (over 72 h) of cardiotoxic drugs on the contractile motion of hiPS-CMs. In parallel, the release of cardiac troponin I (cTnI), heart fatty acid binding protein (FABP3) and N-terminal pro-brain natriuretic peptide (NT-proBNP) was analysed from cell medium, and transcriptional profiling of hiPS-CMs was done at the end of the experiment. KEY RESULTS Different cardiotoxic drugs altered the contractile motion properties of hiPS-CMs together with increasing the release of cardiac biomarkers. FABP3 and cTnI were shown to be potential surrogates to predict cardiotoxicity in hiPS-CMs, whereas NT-proBNP seemed to be a less valuable biomarker. Furthermore, drug-induced cardiotoxicity produced by chronic exposure of hiPS-CMs to arsenic trioxide, doxorubicin or panobinostat was associated with different profiles of changes in contractile parameters, biomarker release and transcriptional expression. CONCLUSION AND IMPLICATIONS We have shown that a parallel assessment of motion field imaging-derived contractile properties, release of biomarkers and transcriptional changes can detect diverse mechanisms of chronic drug-induced cardiac liabilities in hiPS-CMs. Hence, hiPS-CMs could potentially improve and accelerate cardiovascular de-risking of compounds at earlier stages of drug discovery. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Ivan Kopljar
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - An De Bondt
- Computational Sciences, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Petra Vinken
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ard Teisman
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bruce Damiano
- Preclinical Safety and Development, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Spring House, PA, USA
| | - Nick Goeminne
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van den Wyngaert
- Computational Sciences, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Hua Rong Lu
- Preclinical Development and Safety, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
11
|
Chiuzan C, Shtaynberger J, Manji GA, Duong JK, Schwartz GK, Ivanova A, Lee SM. Dose-finding designs for trials of molecularly targeted agents and immunotherapies. J Biopharm Stat 2017; 27:477-494. [PMID: 28166468 DOI: 10.1080/10543406.2017.1289952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a surge of early phase trials of molecularly targeted agents (MTAs) and immunotherapies. These new therapies have different toxicity profiles compared to cytotoxic therapies. MTAs can benefit from new trial designs that allow inclusion of low-grade toxicities, late-onset toxicities, addition of an efficacy endpoint, and flexibility in the specification of a target toxicity probability. To study the degree of adoption of these methods, we conducted a Web of Science search of articles published between 2008 and 2014 that describe phase 1 oncology trials. Trials were categorized based on the dose-finding design used and the type of drug studied. Out of 1,712 dose-finding trials that met our criteria, 1,591 (92.9%) utilized a rule-based design, and 92 (5.4%; range 2.3% in 2009 to 9.7% in 2014) utilized a model-based or novel design. Over half of the trials tested an MTA or immunotherapy. Among the MTA and immunotherapy trials, 5.8% used model-based methods, compared to 3.9% and 8.3% of the chemotherapy or radiotherapy trials, respectively. While the percentage of trials using novel dose-finding designs has tripled since 2007, the adoption of these designs continues to remain low.
Collapse
Affiliation(s)
- Cody Chiuzan
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Jonathan Shtaynberger
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gulam A Manji
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Jimmy K Duong
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| | - Gary K Schwartz
- b Division of Hematology and Oncology, Department of Medicine , Columbia University , New York , New York , USA
| | - Anastasia Ivanova
- c Department of Biostatistics , UNC at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Shing M Lee
- a Department of Biostatistics, Mailman School of Public Health , Columbia University , New York , New York , USA
| |
Collapse
|
12
|
Dowling M, Kelly M, Meenaghan T. Multiple myeloma: managing a complex blood cancer. ACTA ACUST UNITED AC 2016; 25:S18-28. [DOI: 10.12968/bjon.2016.25.s18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maura Dowling
- School of Nursing and Midwifery, National University of Ireland, Galway, Ireland
| | - Mary Kelly
- Advanced Nurse Practitioner (Haematology), Midlands Regional Hospitals, County Offaly, Ireland
| | - Teresa Meenaghan
- Advanced Nurse Practitioner (Haematology) Galway University Hospital, Galway, Ireland
| |
Collapse
|
13
|
Helland Ø, Popa M, Bischof K, Gjertsen BT, McCormack E, Bjørge L. The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer. PLoS One 2016; 11:e0158208. [PMID: 27352023 PMCID: PMC4924861 DOI: 10.1371/journal.pone.0158208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Background In most epithelial ovarian carcinomas (EOC), epigenetic changes are evident, and overexpression of histone deacetylases (HDACs) represents an important manifestation. In this study, we wanted to evaluate the effects of the novel HDAC inhibitor (HDACi) panobinostat, both alone and in combination with carboplatin, on ovarian cancer cell lines and in a murine bioluminescent orthotopic surgical xenograft model for EOC. Methods The effects of panobinostat, both alone and in combination with carboplatin, on proliferation and apoptosis in ovarian cancer cell lines, were evaluated using colony and WST-1 assays, Hoechst staining and flow cytometry analysis. In addition, mechanisms were characterised by western blotting and phosphoflow analysis. Immuno-deficient mice were engrafted orthotopically with SKOV-3luc+ cells and serial bioluminescence imaging monitored the effects of treatment with panobinostat and/or carboplatin and/or surgery. Survival parameters were also measured. Results Panobinostat treatment reduced cell growth and diminished cell viability, as shown by the induced cell cycle arrest and apoptosis in vitro. We observed increased levels of cleaved PARP and caspase-3, downregulation of cdc2 protein kinase, acetylation of H2B and higher pH2AX expression. The combined administration of carboplatin and panobinostat synergistically increased the anti-tumour effects compared to panobinostat or carboplatin treatment alone. In our novel ovarian cancer model, the mice showed significantly higher rates of survival when treated with panobinostat, carboplatin or a combination of both, compared to the controls. Panobinostat was as efficient as carboplatin regarding prolongation of survival. No significant additional effect on survival was observed when surgery was combined with carboplatin/panobinostat treatment. Conclusions Panobinostat demonstrates effective in vitro growth inhibition in ovarian cancer cells. The efficacy of panobinostat and carboplatin was equal in the orthotopic EOC model used. We conclude that panobinostat is a promising therapeutic alternative that needs to be further assessed for the treatment of EOC.
Collapse
Affiliation(s)
- Øystein Helland
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- * E-mail:
| | - Mihaela Popa
- KinN Therapeutics, Laboratoriebygget, Haukeland University Hospital, 5021 Bergen, Norway
| | - Katharina Bischof
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, 5020 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
14
|
Schiattarella GG, Sannino A, Toscano E, Cattaneo F, Trimarco B, Esposito G, Perrino C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int J Cardiol 2016; 219:396-403. [PMID: 27362830 DOI: 10.1016/j.ijcard.2016.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Gabriele Giacomo Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; Departments of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna Sannino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; Baylor Heart and Vascular Hospital, Baylor Research Institute, Dallas, TX, USA
| | - Evelina Toscano
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabio Cattaneo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
15
|
Srinivas NR. Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: review and perspectives. Xenobiotica 2016; 47:354-368. [PMID: 27226420 DOI: 10.1080/00498254.2016.1184356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. Panobinostat is a recently approved histone deacetylase (HDAC) inhibitor. 2. The pharmacokinetic data of panobinostat in patients with hematologic malignancies and advanced solid tumors have been collated and reviewed from the various published clinical studies for over a decade. Further perspectives and anticipated challenges in the clinical therapy with panobinostat are discussed in the review. 3. Regardless of intravenous or oral dosing, panobinostat showed a high degree of inter-patient variability in the pharmacokinetics. After oral administration, most of the administered dose is extensively metabolized and the metabolites are either fecally or renally excreted with trace amount of intact panobinostat. Both cytochrome p450 (CYP) 3A4 and non-CYP mechanisms govern the clearance of panobinostat. CYP3A4-related drug-drug interactions with panobinostat have been documented with ketoconazole (inhibitor) and dexamethasone (inducer). 4. In summary, the clinical pharmacokinetic data of panobinostat, a promising HDAC inhibitor, obtained from various clinical studies do not appear to limit the utility of panobinostat in the clinic.
Collapse
|
16
|
Kopljar I, Gallacher DJ, De Bondt A, Cougnaud L, Vlaminckx E, Van den Wyngaert I, Lu HR. Functional and Transcriptional Characterization of Histone Deacetylase Inhibitor-Mediated Cardiac Adverse Effects in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Transl Med 2016; 5:602-12. [PMID: 27034410 DOI: 10.5966/sctm.2015-0279] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Histone deacetylase (HDAC) inhibitors possess therapeutic potential to reverse aberrant epigenetic changes associated with cancers, neurological diseases, and immune disorders. Unfortunately, clinical studies with some HDAC inhibitors displayed delayed cardiac adverse effects, such as atrial fibrillation and ventricular tachycardia. However, the underlying molecular mechanism(s) of HDAC inhibitor-mediated cardiotoxicity remains poorly understood and is difficult to detect in the early stages of preclinical drug development because of a delayed onset of effects. In the present study, we show for the first time in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) that HDAC inhibitors (dacinostat, panobinostat, vorinostat, entinostat, and tubastatin-a) induce delayed dose-related cardiac dysfunction at therapeutic concentrations associated with cardiac adverse effects in humans. HDAC inhibitor-mediated delayed effects on the beating properties of hiPS-CMs developed after 12 hours by decreasing the beat rate, shortening the field potential duration, and inducing arrhythmic behavior under form of sustained contractions and fibrillation-like patterns. Transcriptional changes that are common between the cardiotoxic HDAC inhibitors but different from noncardiotoxic treatments identified cardiac-specific genes and pathways related to structural and functional changes in cardiomyocytes. Combining the functional data with epigenetic changes in hiPS-CMs allowed us to identify molecular targets that might explain HDAC inhibitor-mediated cardiac adverse effects in humans. Therefore, hiPS-CMs represent a valuable translational model to assess HDAC inhibitor-mediated cardiotoxicity and support identification of better HDAC inhibitors with an improved benefit-risk profile. SIGNIFICANCE Histone deacetylase (HDAC) inhibitors are a promising class of drugs to treat certain cancers, autoimmune, and neurodegenerative diseases. However, treated patients can experience various cardiac adverse events such as hearth rhythm disorders. This study found that human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) can predict cardiac adverse events in patients caused by HDAC inhibitors. Furthermore, transcriptional changes at the level of gene expression supported the effects on the beating properties of hiPS-CMs and highlight targets that might cause these cardiac adverse effects. hiPS-CMs represent a valuable translational model to assess HDAC inhibitor-mediated cardiotoxicity and to support development of safer HDAC inhibitors.
Collapse
MESH Headings
- Action Potentials
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Epigenesis, Genetic/drug effects
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genotype
- Heart Diseases/chemically induced
- Heart Diseases/enzymology
- Heart Diseases/genetics
- Heart Diseases/physiopathology
- Heart Rate/drug effects
- Histone Deacetylase Inhibitors/toxicity
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/enzymology
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Risk Assessment
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ivan Kopljar
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - David J Gallacher
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | | | - Eddy Vlaminckx
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Ilse Van den Wyngaert
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Hua Rong Lu
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| |
Collapse
|
17
|
Afifi S, Michael A, Azimi M, Rodriguez M, Lendvai N, Landgren O. Role of Histone Deacetylase Inhibitors in Relapsed Refractory Multiple Myeloma: A Focus on Vorinostat and Panobinostat. Pharmacotherapy 2015; 35:1173-88. [PMID: 26684557 PMCID: PMC4995883 DOI: 10.1002/phar.1671] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma is a neoplastic plasma cell disorder that is characterized by clonal proliferation of plasma cells in the bone marrow, monoclonal protein in the blood and/or urine, and associated organ dysfunction and biomarkers. There have been multiple recent advances in the relapsed and refractory setting. Major steps forward include the introduction of proteasome inhibitors (bortezomib and carfilzomib) and immunomodulatory drugs (thalidomide, lenalidomide, and pomalidomide) in various combinations. These drugs have changed the management of multiple myeloma and have extended overall survival in the past decade. Established curative therapy is not yet available for patients diagnosed with multiple myeloma, supporting the development of new treatment targets. Histone deacetylase inhibitors have multiple proposed mechanisms of action in the treatment of multiple myeloma. Both vorinostat and panobinostat have demonstrated some activity against multiple myeloma, and due to the benefits reported with panobinostat, the U.S. Food and Drug Administration has recently approved the drug for the treatment of relapsed and refractory multiple myeloma. In this article, we describe the pharmacology, efficacy, and toxicity profile of vorinostat and panobinostat and their possible place in therapy.
Collapse
Affiliation(s)
- Salma Afifi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angela Michael
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahshid Azimi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mabel Rodriguez
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikoletta Lendvai
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Richardson PG, Harvey RD, Laubach JP, Moreau P, Lonial S, San-Miguel JF. Panobinostat for the treatment of relapsed or relapsed/refractory multiple myeloma: pharmacology and clinical outcomes. Expert Rev Clin Pharmacol 2015; 9:35-48. [DOI: 10.1586/17512433.2016.1096773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Mu S, Kuroda Y, Shibayama H, Hino M, Tajima T, Corrado C, Lin R, Waldron E, Binlich F, Suzuki K. Panobinostat PK/PD profile in combination with bortezomib and dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma. Eur J Clin Pharmacol 2015; 72:153-61. [PMID: 26494130 PMCID: PMC4713719 DOI: 10.1007/s00228-015-1967-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Panobinostat, a potent pan-deacetylase inhibitor, improved progression-free survival (PFS) in patients with relapsed and refractory multiple myeloma when combined with bortezomib and dexamethasone in a phase 3 trial, PANORAMA-1. This study aims to explore exposure-response relationship for panobinostat in this combination in a phase 1 trial, B2207 and contrast with data from historical single-agent studies. METHODS Panobinostat plasma concentration-time profiles were obtained in patients from PANORAMA-1 (n = 12) and B2207 (n = 12) trials. Overall response rates (ORR) and major adverse events (AE) by panobinostat exposure were investigated in the B2207 trial. Panobinostat PK data from combination trials were contrasted with data from single-agent studies. RESULTS At maximum tolerated dose (MTD), the geometric mean of panobinostat area under curve from 0 to 24 h (AUC0-24) was 47.5 ng h/mL (77 % CV), and maximum plasma concentration (Cmax) was 8.1 ng/mL (90 % CV). These values were comparable with exposure data obtained in PANORAMA-1, but were 20 % lower than those without dexamethasone, and ∼ 50 % lower from single-agent trials, likely due to enzyme induction by dexamethasone. Higher levels of panobinostat exposure were associated with higher response rates and higher incidences of diarrhea and thrombocytopenia. CONCLUSIONS Apparent panobinostat exposure-AE and exposure-ORR relationships were observed when combined with bortezomib and dexamethasone in the treatment of patients with relapsed and refractory multiple myeloma. The addition of dexamethasone facilitated best response even though plasma exposure of panobinostat was reduced. Combination with a strong enzyme inducer should be avoided in future trials to prevent further reduction of panobinostat exposure.
Collapse
Affiliation(s)
- Song Mu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | | | | | | | - Rong Lin
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Edward Waldron
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | |
Collapse
|
20
|
Bailey H, Stenehjem DD, Sharma S. Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med 2015; 6:269-76. [PMID: 26504410 PMCID: PMC4603728 DOI: 10.2147/jbm.s69140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multiple myeloma is a malignancy involving plasma cell proliferation within the bone marrow. Survival of patients diagnosed with myeloma has significantly improved in the last decade, following the approval of novel agents. Despite great strides achieved in the management of multiple myeloma, it is still considered an incurable disease as the majority of patients relapse after initiation of therapy. Additionally, the duration of response generally decreases with an increasing number of therapy lines. The need to overcome resistance to therapy dictates research into more potent agents and those with novel mechanisms of action. A therapeutic option for relapsed/refractory myeloma includes histone deacetylase inhibition. Various histone deacetylase inhibitors, including the newly approved panobinostat, are currently under evaluation in this setting. Panobinostat for multiple myeloma is used in combination with other potent therapeutic agents, such as proteasome inhibitors and steroids. Ongoing research evaluating other panobinostat-containing regimens will provide additional insight into its place in myeloma management.
Collapse
Affiliation(s)
- Hanna Bailey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David D Stenehjem
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA ; Department of Pharmacotherapy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
| | - Sunil Sharma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
|
22
|
Savelieva M, Woo MM, Schran H, Mu S, Nedelman J, Capdeville R. Population pharmacokinetics of intravenous and oral panobinostat in patients with hematologic and solid tumors. Eur J Clin Pharmacol 2015; 71:663-672. [PMID: 25939707 PMCID: PMC4430599 DOI: 10.1007/s00228-015-1846-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE The study aimed to characterize the population pharmacokinetics of panobinostat, a pan-deacetylase inhibitor that has demonstrated efficacy in combination with bortezomib and dexamethasone in patients with multiple myeloma. METHODS A nonlinear mixed-effect model was used to fit plasma panobinostat concentration-time data collected from patients across 14 phase 1 and phase 2 trials following either oral or intravenous (IV) administration. The model was used to estimate bioavailabilities of the two oral formulations and the effects of demographic and clinical covariates on the central volume of distribution and clearance of panobinostat. RESULTS A total of 7834 samples from 581 patients were analyzed. Panobinostat pharmacokinetic parameters were best characterized by a three-compartment model with first-order absorption and elimination. Bioavailability was 21.4 %. Median clearance was 33.1 L/h. Interindividual variability in clearance was 74 %. For Caucasian patients of median age 61 years, area under the curve (AUC) decreased from 104 to 88 ng · h/mL as body surface area (BSA) increased from the first to third quartiles, 1.8 to 2.1 m(2). For Caucasian patients of median BSA 1.9 m(2), AUC decreased from 102 to 95 ng · h/mL as age increased from the first to third quartiles, 51 to 70 years. For patients of median BSA and median age, AUC ranged across the four race categories from 80 to 116 ng · h/mL. Covariate analysis showed no impact on panobinostat clearance and volume by patients' sex, tumor type, kidney function, liver markers, or coadministered medications. However, separate analyses of dedicated studies have demonstrated effects of liver impairment and CYP3A4 inhibition. CONCLUSIONS Although covariate analyses revealed significant effects of body size, age, and race on panobinostat pharmacokinetics, these effects were minor compared to the interindividual variability and therefore not clinically relevant when dosing panobinostat in populations similar to those studied.
Collapse
Affiliation(s)
| | - Margaret M Woo
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Horst Schran
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Song Mu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Jerry Nedelman
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | |
Collapse
|
23
|
Berdeja JG, Hart LL, Mace JR, Arrowsmith ER, Essell JH, Owera RS, Hainsworth JD, Flinn IW. Phase I/II study of the combination of panobinostat and carfilzomib in patients with relapsed/refractory multiple myeloma. Haematologica 2015; 100:670-6. [PMID: 25710456 PMCID: PMC4420216 DOI: 10.3324/haematol.2014.119735] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/17/2015] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to assess the safety and efficacy of the combination of panobinostat and carfilzomib in patients with relapsed/refractory multiple myeloma. Patients with multiple myeloma who had relapsed after at least one prior treatment were eligible to participate. In the dose escalation part of the study a standard 3+3 design was used to determine the maximum tolerated dose of four planned dose levels of the combination of carfilzomib and panobinostat. Panobinostat was administered on days 1, 3, 5, 15, 17, and 19. Carfilzomib was administered on days 1, 2, 8, 9, 15, and 16 of each 28-day cycle. Treatment was continued until progression or intolerable toxicity. Forty-four patients were accrued into the trial, 13 in the phase I part and 31 in the phase II part of the study. The median age of the patients was 66 years and the median number of prior therapies was five. The expansion dose was established as 30 mg panobinostat, 20/45 mg/m(2) carfilzomib. The overall response rate was 67% for all patients, 67% for patients refractory to prior proteasome inhibitor treatment and 75% for patients refractory to prior immune modulating drug treatment. At a median follow up of 17 months, median progression-free survival was 7.7 months, median time to progression was 7.7 months, and median overall survival had not been reached. The regimen was well tolerated, although there were several panobinostat dose reductions. In conclusion, the combination of panobinostat and carfilzomib is feasible and effective in patients with relapsed/refractory multiple myeloma. (Trial registered at ClinicalTrials.gov: NCT01496118).
Collapse
Affiliation(s)
- Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, TN Tennessee Oncology PLLC, Nashville, TN
| | - Lowell L Hart
- Sarah Cannon Research Institute, Nashville, TN Florida Cancer Specialists, Ft Myers, FL
| | - Joseph R Mace
- Sarah Cannon Research Institute, Nashville, TN Florida Cancer Specialists, Ft Myers, FL
| | - Edward R Arrowsmith
- Sarah Cannon Research Institute, Nashville, TN Tennessee Oncology PLLC, Nashville, TN
| | | | - Rami S Owera
- Woodlands Medical Specialists, Pensacola, FL, USA
| | - John D Hainsworth
- Sarah Cannon Research Institute, Nashville, TN Tennessee Oncology PLLC, Nashville, TN
| | - Ian W Flinn
- Sarah Cannon Research Institute, Nashville, TN Tennessee Oncology PLLC, Nashville, TN
| |
Collapse
|
24
|
|
25
|
Andreu-Vieyra CV, Berenson JR. The potential of panobinostat as a treatment option in patients with relapsed and refractory multiple myeloma. Ther Adv Hematol 2014; 5:197-210. [PMID: 25469210 DOI: 10.1177/2040620714552614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Panobinostat is an investigational and potent histone deacetylase inhibitor (HDACi) that has shown promise as an antimultiple myeloma agent in the preclinical setting. In this review, we discuss the rationale for the use of panobinostat as a combination therapy for multiple myeloma and provide an overview of recent and ongoing clinical trials testing the safety and efficacy of panobinostat for the treatment of the disease.
Collapse
Affiliation(s)
| | - James R Berenson
- Institute for Myeloma and Bone Cancer Research, 9201 W. Sunset Blvd., Suite 300, West Hollywood, CA 90069, USA
| |
Collapse
|
26
|
Iasonos A, O'Quigley J. Adaptive dose-finding studies: a review of model-guided phase I clinical trials. J Clin Oncol 2014; 32:2505-11. [PMID: 24982451 DOI: 10.1200/jco.2013.54.6051] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We provide a comprehensive review of adaptive phase I clinical trials in oncology that used a statistical model to guide dose escalation to identify the maximum-tolerated dose (MTD). We describe the clinical setting, practical implications, and safety of such applications, with the aim of understanding how these designs work in practice. METHODS We identified 53 phase I trials published between January 2003 and September 2013 that used the continual reassessment method (CRM), CRM using escalation with overdose control, or time-to-event CRM for late-onset toxicities. Study characteristics, design parameters, dose-limiting toxicity (DLT) definition, DLT rate, patient-dose allocation, overdose, underdose, sample size, and trial duration were abstracted from each study. In addition, we examined all studies in terms of safety, and we outlined the reasons why escalations occur and under what circumstances. RESULTS On average, trials accrued 25 to 35 patients over a 2-year period and tested five dose levels. The average DLT rate was 18%, which is lower than in previous reports, whereas all levels above the MTD had an average DLT rate of 36%. On average, 39% of patients were treated at the MTD, and 74% were treated at either the MTD or an adjacent level (one level above or below). CONCLUSION This review of completed phase I studies confirms the safety and generalizability of model-guided, adaptive dose-escalation designs, and it provides an approach for using, interpreting, and understanding such designs to guide dose escalation in phase I trials.
Collapse
Affiliation(s)
- Alexia Iasonos
- Alexia Iasonos, Memorial Sloan Kettering Cancer Center, New York, NY; and John O'Quigley, Université Paris VI, Paris, France.
| | - John O'Quigley
- Alexia Iasonos, Memorial Sloan Kettering Cancer Center, New York, NY; and John O'Quigley, Université Paris VI, Paris, France
| |
Collapse
|