1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Odarenko KV, Sen’kova AV, Salomatina OV, Markov OV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone para-methylanilide effectively suppresses aggressive phenotype of glioblastoma cells including TGF-β1-induced glial-mesenchymal transition in vitro and inhibits growth of U87 glioblastoma xenografts in mice. Front Pharmacol 2024; 15:1428924. [PMID: 39135794 PMCID: PMC11317440 DOI: 10.3389/fphar.2024.1428924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Soloxolone amides are semisynthetic triterpenoids that can cross the blood-brain barrier and inhibit glioblastoma growth both in vitro and in vivo. Here we investigate the impact of these compounds on processes associated with glioblastoma invasiveness and therapy resistance. Screening of soloxolone amides against glioblastoma cells revealed the ability of compound 7 (soloxolone para-methylanilide) to inhibit transforming growth factor-beta 1 (TGF-β1)-induced glial-mesenchymal transition Compound 7 inhibited morphological changes, wound healing, transwell migration, and expression of mesenchymal markers (N-cadherin, fibronectin, Slug) in TGF-β1-induced U87 and U118 glioblastoma cells, while restoring their adhesiveness. Confocal microscopy and molecular docking showed that 7 reduced SMAD2/3 nuclear translocation probably by direct interaction with the TGF-β type I and type II receptors (TβRI/II). In addition, 7 suppressed stemness of glioblastoma cells as evidenced by inhibition of colony forming ability, spheroid growth, and aldehyde dehydrogenase (ALDH) activity. Furthermore, 7 exhibited a synergistic effect with temozolomide (TMZ) on glioblastoma cell viability. Using N-acetyl-L-cysteine (NAC) and flow cytometry analysis of Annexin V-FITC-, propidium iodide-, and DCFDA-stained cells, 7 was found to synergize the cytotoxicity of TMZ by inducing ROS-dependent apoptosis. Further in vivo studies showed that 7, alone or in combination with TMZ, effectively suppressed the growth of U87 xenograft tumors in mice. Thus, 7 demonstrated promising potential as a component of combination therapy for glioblastoma, reducing its invasiveness and increasing its sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Newton HB. Indian Ayurvedic medicine: Overview and application to brain cancer. J Ayurveda Integr Med 2024; 15:101013. [PMID: 39181067 PMCID: PMC11385779 DOI: 10.1016/j.jaim.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024] Open
Abstract
Ayurveda is the traditional medicine system of India, and has been in practice for millennia. It is a traditional approach that uses 1000's of different plant preparations in various combinations for treatment of human ailments, including cancer. Ethnopharmacological and phytochemical analyses are now elucidating the bioactive constituents of the different plant species and herbal formulations, including ashwagandha, curcumin, guduchi, triphala, and others. To provide an overview of: 1) the ethnopharmacology of Ayurveda and several of its most important plant species and formulations, including pharmacological and molecular mechanisms of its anti-cancer effects; 2) review the literature applying Ayurvedic herbs and formulations to brain tumors. A detailed PubMed search was performed that included publications involving Ayurveda, cancer, ethnopharmacology, phytochemical analysis, molecular analysis, and brain tumors. In recent decades, significant research has begun to elucidate the bioactive compounds of ashwagandha, tumeric, guduchi, and triphala, such as withaferin A, withanolides, curcumin, palmatine, and many others. These compounds and extracts are now being applied to brain tumor cells in vitro and in animal models, with positive signs of anti-cancer activity including reduced cell growth, increased apoptosis, cell cycle arrest, increased differentiation, and inhibition of important internal signal transduction pathways. Several Ayurvedic herbs (ashwagandha, curcumin) have bioactive compounds with significant anti-cancer activity, and are effective in early pre-clinical testing against brain tumor cells in vitro and in animal models. Further pre-clinical testing is warranted, along with advancement into phase I and phase II clinical trials of patients with glioblastoma and other brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Neuro-Oncology Center and Brain Tumor Institute, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio, USA; Molecular Oncology Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J Biol Sci 2024; 31:103935. [PMID: 38327657 PMCID: PMC10847379 DOI: 10.1016/j.sjbs.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer of the breast is the mainly prevalent class of cancer in females diagnosed over the globe. It also happens to be the 2nd most prevalent reason of cancer-related deaths among females worldwide. Some of the most common type's therapies for carcinoma of the breast involve radiation therapy, chemotherapy, and resection. Many studies are being conducted to develop new therapeutic strategies for better diagnosis of breast cancer. An enormous number of anticancer medications have been developed as a result of growing understanding of the molecular pathways behind the advancement of cancer. Over the past few decades, the general survival rate has not greatly increased due to the usage of chemically manufactured medications. Therefore, in order to increase the effectiveness of current cancer treatments, new tactics and cutting-edge chemoprevention drugs are required. Phytochemicals, which are naturally occurring molecules derived from plants, are important sources for both cancer therapy and innovative medication development. These phytochemicals frequently work by controlling molecular pathways linked to the development and spread of cancer. Increasing antioxidant status, inactivating carcinogens, preventing proliferation, causing cell cycle arrest and apoptosis, and immune system control are some of the specific ways. This primary objective of this review is to provide an overview of the active ingredients found in natural goods, including information on their pharmacologic action, molecular targets, and current state of knowledge. We have given a thorough description of a number of natural substances that specifically target the pathways linked to breast carcinoma in this study. We've conducted a great deal of study on a few natural compounds that may help us identify novel targets for the detection of breast carcinoma.
Collapse
Affiliation(s)
- Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
5
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Prakash V, Gabrani R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:336-347. [PMID: 37957904 DOI: 10.2174/0118715257262003231031171910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Despite intense research in the field of glioblastoma multiforme (GBM) therapeutics, the resistance against approved therapy remains an issue of concern. The resistance against the therapy is widely reported due to factors like clonal selection, involvement of multiple developmental pathways, and majorly defective mismatch repair (MMR) protein and functional O6- methylguanine DNA methyltransferase (MGMT) repair enzyme. Phytotherapy is one of the most effective alternatives to overcome resistance. It involves plant-based compounds, divided into several classes: alkaloids; phenols; terpenes; organosulfur compounds. The phytocompounds comprised in these classes are extracted or processed from certain plant sources. They can target various proteins of molecular pathways associated with the progression and survival of GBM. Phytocompounds have also shown promise as immunomodulatory agents and are being explored for immune checkpoint inhibition. Therefore, research and innovations are required to understand the mechanism of action of such phytocompounds against GBM to develop efficacious treatments for the same. This review gives insight into the potential of phytochemical-based therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Vijeta Prakash
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
7
|
Kusaczuk M, Ambel ET, Naumowicz M, Velasco G. Cellular stress responses as modulators of drug cytotoxicity in pharmacotherapy of glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189054. [PMID: 38103622 DOI: 10.1016/j.bbcan.2023.189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Despite the extensive efforts to find effective therapeutic strategies, glioblastoma (GBM) remains a therapeutic challenge with dismal prognosis of survival. Over the last decade the role of stress responses in GBM therapy has gained a great deal of attention, since depending on the duration and intensity of these cellular programs they can be cytoprotective or promote cancer cell death. As such, initiation of the UPR, autophagy or oxidative stress may either impede or facilitate drug-mediated cell killing. In this review, we summarize the mechanisms that regulate ER stress, autophagy, and oxidative stress during GBM development and progression to later discuss the involvement of these stress pathways in the response to different treatments. We also discuss how a precise understanding of the molecular mechanisms regulating stress responses evoked by different pharmacological agents could decisively contribute to the design of novel and more effective combinational treatments against brain malignancies.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elena Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
9
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Gong L, Yin Y, Chen C, Wan Q, Xia D, Wang M, Pu Z, Zhang B, Zou J. Characterization of EGFR-reprogrammable temozolomide-resistant cells in a model of glioblastoma. Cell Death Dis 2022; 8:438. [PMID: 36316307 PMCID: PMC9622861 DOI: 10.1038/s41420-022-01230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ) resistance is a major clinical challenge for glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) mediated DNA damage repair is a key mechanism for TMZ resistance. However, MGMT-null GBM patients remain resistant to TMZ, and the process for resistance evolution is largely unknown. Here, we developed an acquired TMZ resistant xenograft model using serial implantation of MGMT-hypermethylated U87 cells, allowing the extraction of stable, TMZ resistant (TMZ-R) tumors and primary cells. The derived tumors and cells exhibited stable multidrug resistance both in vitro and in vivo. Functional experiments, as well as single-cell RNA sequencing (scRNA-seq), indicated that TMZ treatment induced cellular heterogeneity including quiescent cancer stem cells (CSCs) in TMZ-R tumors. A subset of these were labeled by NES+/SOX2+/CADM1+ and demonstrated significant advantages for drug resistance. Further study revealed that Epidermal Growth Factor Receptor (EGFR) deficiency and diminished downstream signaling may confer this triple positive CSCs subgroup’s quiescent phenotypes and chemoresistance. Continuous EGF treatment improved the chemosensitivity of TMZ-R cells both in vitro and in vivo, mechanically reversing cell cycle arrest and reduced drug uptake. Further, EGF treatment of TMZ-R tumors favorably normalized the response to TMZ in combination therapy. Here, we characterize a unique subgroup of CSCs in MGMT-null experimental glioblastoma, identifying EGF + TMZ therapy as a potential strategy to overcome cellular quiescence and TMZ resistance, likely endowed by deficient EGFR signaling.
Collapse
Affiliation(s)
- Lingli Gong
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Ying Yin
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Cheng Chen
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Quan Wan
- grid.89957.3a0000 0000 9255 8984Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002 China
| | - Die Xia
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Mei Wang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Zhening Pu
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Bo Zhang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Jian Zou
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
12
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
13
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Abstract
The use of natural products has been increasing at a rapid pace, worldwide, with the aim to maintain a healthy lifestyle and to modify one's dietary habits. Ayurveda is a domain that has numerous wealth of information concerning medicinal plants and its part in controlling numerous ailments, such as neoplastic, cardiovascular, neurological plus immunological ailments. The use of such medicinal plants is important for preventing such diseases, especially "cancer" which is the succeeding foremost cause of mortality collectively. Even though abundant developments have been made in the management and control of cancer progression, substantial deficits and scope for advancement still continue to be unchanged. Several lethal adjacent consequences occur throughout the course of chemotherapy. Natural treatments, such as the use of plant-derived products in the treatment of cancer, might reduce the hostile side effects. Presently, a few plant-based products and its phytoconstituents are being utilized for the management of cancer. Here we have focused on numerous plant-derived phytochemicals and promising compounds from these plants to act as anticancer agents, along with their mechanisms of action.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Y B Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
15
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
16
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
17
|
Deng T, Gong Y, Liao X, Wang X, Zhou X, Zhu G, Mo L. Integrative Analysis of a Novel Eleven-Small Nucleolar RNA Prognostic Signature in Patients With Lower Grade Glioma. Front Oncol 2021; 11:650828. [PMID: 34164339 PMCID: PMC8215672 DOI: 10.3389/fonc.2021.650828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective The present study used the RNA sequencing (RNA-seq) dataset to identify prognostic snoRNAs and construct a prognostic signature of The Cancer Genome Atla (TCGA) lower grade glioma (LGG) cohort, and comprehensive analysis of this signature. Methods RNA-seq dataset of 488 patients from TCGA LGG cohort were included in this study. Comprehensive analysis including function enrichment, gene set enrichment analysis (GSEA), immune infiltration, cancer immune microenvironment, and connectivity map (CMap) were used to evaluate the snoRNAs prognostic signature. Results We identified 21 LGG prognostic snoRNAs and constructed a novel eleven-snoRNA prognostic signature for LGG patients. Survival analysis suggests that this signature is an independent prognostic risk factor for LGG, and the prognosis of LGG patients with a high-risk phenotype is poor (adjusted P = 0.003, adjusted hazard ratio = 2.076, 95% confidence interval = 1.290–3.340). GSEA and functional enrichment analysis suggest that this signature may be involved in the following biological processes and signaling pathways: such as cell cycle, Wnt, mitogen-activated protein kinase, janus kinase/signal transducer and activator of tran-ions, T cell receptor, nuclear factor-kappa B signaling pathway. CMap analysis screened out ten targeted therapy drugs for this signature: 15-delta prostaglandin J2, MG-262, vorinostat, 5155877, puromycin, anisomycin, withaferin A, ciclopirox, chloropyrazine and megestrol. We also found that high- and low-risk score phenotypes of LGG patients have significant differences in immune infiltration and cancer immune microenvironment. Conclusions The present study identified a novel eleven-snoRNA prognostic signature of LGG and performed a integrative analysis of its molecular mechanisms and relationship with tumor immunity.
Collapse
Affiliation(s)
- Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yizhen Gong
- Evidence-based Medicine Teaching and Research Section, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
18
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
19
|
Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, Pottoo FH. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22:429-442. [PMID: 32718288 DOI: 10.2174/1389450121666200727115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhorts tumors of star-shaped glial cells in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorders like neurofibromatosis and schwannomatosis, which develop the tumor in the nervous system. The management of GBM with chemo-radiotherapy leads to resistance, and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind the failure of drugs are due to DNA alkylation in the cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bioactive compounds from plants referred as phytochemicals, serve as vital sources for anti-cancer drugs. Some prototypical examples include taxol analogs, vinca alkaloids (vincristine, vinblastine), podophyllotoxin analogs, camptothecin, curcumin, aloe-emodin, quercetin, berberine etc. These phytochemicals often regulate diverse molecular pathways, which are implicated in the growth and progression of cancers. However, the challenges posed by the presence of BBB/BBTB to restrict the passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review, we integrated nanotech as a novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.
Collapse
Affiliation(s)
- Sayed M Mumtaz
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Shikha Goswami
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Ramesh K Goyal
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
20
|
Mehta V, Chander H, Munshi A. Mechanisms of Anti-Tumor Activity of Withania somnifera (Ashwagandha). Nutr Cancer 2020; 73:914-926. [PMID: 33949906 DOI: 10.1080/01635581.2020.1778746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing herbal formulations have been used to treat several diseases including cancer. W. somnifera (Ashwagandha) is one such plant the extracts of which have been tested against a number of ailments including cancer, which remains as one of the most dreadful diseases on the globe. The ever-increasing number of cancer related mortality demands the development of novel chemopreventive agents with minimum side effects. Different compounds isolated from various parts of the plant like root, stem, and leaves have been reported to display significant anti-cancerous and immunomodulating properties and thus can be used alone or in combination with other chemotherapeutic drugs for cancer treatment. Through this review, we highlight the importance of W. somnifera in countering the potential oncogenic signaling mediators that are modulated by active constituents of W. somnifera in a variety of cancer types. Further, we hope that active constituents of W. somnifera will be tested in clinical trials so that they can be used as an important adjuvant in the near future for the effective treatment of cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harish Chander
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
21
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
22
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
23
|
Wu H, Li X, Zhang T, Zhang G, Chen J, Chen L, He M, Hao B, Wang C. Overexpression miR-486-3p Promoted by Allicin Enhances Temozolomide Sensitivity in Glioblastoma Via Targeting MGMT. Neuromolecular Med 2020; 22:359-369. [PMID: 32086739 PMCID: PMC7417398 DOI: 10.1007/s12017-020-08592-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma is the most common primary tumor of the central nervous system that develops chemotherapy resistance. Previous studies showed that Allicin could inhibit multiple cancer cells including glioblastoma, but the function of Allicin in glioblastoma is still unclear. Our work aimed to investigate the underlying molecular mechanism. The results showed that miR-486-3p levels were greatly increased in glioblastoma during Allicin treatment. Overexpression of miR-486-3p increased chemosensitivity to temozolomide (TMZ) in vitro and in vivo. O6-methylguanine-DNA methyltransferase (MGMT) was identified as a direct target of miR-486-3p, and miR-486-3p overexpression prevented the protein translation of MGMT. Moreover, overexpression of MGMT restored miR-486-3p-induced chemosensitivity to TMZ. Taken together, our studies revealed that Allicin could upregulate miR-486-3p and enhance TMZ sensitivity in glioblastoma. The results suggested that in the future, Allicin can be used as an adjuvant therapy with TMZ to improve the prognosis of patients, and miR-486-3p may be a potential target for glioblastoma treatment to improve the curative effects.
Collapse
Affiliation(s)
- Henggang Wu
- Department of Neurosurgery, Wenrong Hospital of Hengdian, Jinhua, 322118, Zhejiang, China
| | - Xu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310002, Zhejiang, China
| | - Tiehui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310002, Zhejiang, China
| | - Guojun Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Jingnan Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Li Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Min He
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Bilie Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Cheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China.
| |
Collapse
|
24
|
Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo. Invest New Drugs 2019; 38:1044-1055. [PMID: 31781904 DOI: 10.1007/s10637-019-00878-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.
Collapse
|
25
|
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13:417. [PMID: 31410248 PMCID: PMC6661528 DOI: 10.4081/oncol.2019.417] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is a heterogeneous group of primary neoplasm resistant to conventional therapies. Due to their infiltrative nature it not fully isolated by aggressive surgery, radiation and chemotherapy showing poor prognosis in glioma patients. Unfortunately, diagnosed patients die within 1.5-2 year treatment schedule. Currently temozolomide (TMZ) is the first choice for the prognosis of GBM patients. TMZ metabolites methyl triazen imidazol carboxamide form complex with alkyl guanine alkyl transferase (O6 MGMT- DNA repair protein) induced DNA damage following resistance properties of TMZ and inhibit the overall survival of the patients. Last few decades different TMZ conjugated strategy is developed to overcome the resistance and enhance the chemotherapy efficacy. The main aim of this review is to introduce the new promising pharmaceutical candidates that significantly influence the therapeutic response of the TMZ in context of targeted therapy of glioblastoma patients. It is hoped that this proposed strategy are highly effective to overcome the current resistance limitations of TMZ in GBM patients and enhance the survival rate of the patients.
Collapse
Affiliation(s)
| | - Arvind Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Near Vidhan Sabha, Raipur, Chhattisgarh, India
| | | | | |
Collapse
|
26
|
Jung E, de los Reyes V AA, Pumares KJA, Kim Y. Strategies in regulating glioblastoma signaling pathways and anti-invasion therapy. PLoS One 2019; 14:e0215547. [PMID: 31009513 PMCID: PMC6476530 DOI: 10.1371/journal.pone.0215547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme is one of the most invasive type of glial tumors, which rapidly grows and commonly spreads into nearby brain tissue. It is a devastating brain cancer that often results in death within approximately 12 to 15 months after diagnosis. In this work, optimal control theory was applied to regulate intracellular signaling pathways of miR-451–AMPK–mTOR–cell cycle dynamics via glucose and drug intravenous administration infusions. Glucose level is controlled to activate miR-451 in the up-stream pathway of the model. A potential drug blocking the inhibitory pathway of mTOR by AMPK complex is incorporated to explore regulation of the down-stream pathway to the cell cycle. Both miR-451 and mTOR levels are up-regulated inducing cell proliferation and reducing invasion in the neighboring tissues. Concomitant and alternating glucose and drug infusions are explored under various circumstances to predict best clinical outcomes with least administration costs.
Collapse
Affiliation(s)
- Eunok Jung
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Aurelio A. de los Reyes V
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines
| | - Kurt Jan A. Pumares
- Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute and Department of Mathematics, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
27
|
Rajamohamed BS, Siddharthan S. Modulatory effects of Amukkara Choornam on Candida albicans biofilm: in vitro and in vivo study. Mol Biol Rep 2019; 46:2961-2969. [DOI: 10.1007/s11033-019-04757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
|
28
|
Deris Zayeri Z, Tahmasebi Birgani M, Mohammadi Asl J, Kashipazha D, Hajjari M. A novel infram deletion in MSH6 gene in glioma: Conversation on MSH6 mutations in brain tumors. J Cell Physiol 2018; 234:11092-11102. [DOI: 10.1002/jcp.27759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Maryam Tahmasebi Birgani
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Javad Mohammadi Asl
- Department of Medical Genetics School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Noor Medical Genetic Laboratory Ahvaz Khuzestan Iran
| | - Davood Kashipazha
- Department of Neurology Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammadreza Hajjari
- Department of Genetics Faculty of Science, Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
29
|
Yan Z, Guo R, Gan L, Lau WB, Cao X, Zhao J, Ma X, Christopher TA, Lopez BL, Wang Y. Withaferin A inhibits apoptosis via activated Akt-mediated inhibition of oxidative stress. Life Sci 2018; 211:91-101. [PMID: 30213729 DOI: 10.1016/j.lfs.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
Withaferin A (WFA), a withanolide derived from medicinal plant Withania somnifera, possesses anti-tumorigenic and immunomodulatory activities against various cancer cells. However, the role of WFA in myocardial ischemia reperfusion (MI/R) injury remains unclear. In the present study, we determined whether WFA may regulate cardiac ischemia reperfusion injury and elucidate the underlying mechanisms. We demonstrated that WFA enhanced H9c2 cells survival ability against simulated ischemia/reperfusion (SI/R) or hydrogen peroxide (H2O2)-induced cell apoptosis. In addition, the enhanced oxidative stress induced by SI/R was inhibited by WFA. Among the multiple antioxidant molecules determined, antioxidants SOD2, SOD3, Prdx-1 was obviously upregulated by WFA. When Akt inhibitor IV was administrated, WFA's suppression effect on oxidative stress was obviously abolished. Additional experiments demonstrated that WFA successfully inhibited H2O2 induced upregulation of SOD2, SOD3, and Prdx-1, ameliorated cardiomyocyte caspase-3 activity via an Akt dependent manner. Collectively, these results support the therapeutic potential of WFA against cardiac ischemia reperfusion injury and highlight the application of WFA in cardiovascular diseases holding great promise for the future.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America; Department of Ophthalmology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xiaoming Cao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xinliang Ma
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yajing Wang
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
30
|
Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A, Ostad SN. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother 2018; 106:1527-1536. [PMID: 30119228 DOI: 10.1016/j.biopha.2018.07.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are pharmaceutically attractive targets due to their fundamental role in tumor formation. The hallmark of pancreatic cancer is its high mortality rate attributed to the existence of cancer stem cell (CSC) subpopulations which result in therapy resistance and recurrence. c-Met is a known pancreatic CSC marker that belongs to the family of RTKs. To surmount the hurdles related to ligand-independent c-Met activation, we aimed to elucidate the inhibitory mechanisms of withaferin A (WA) and carnosol (CA) as two hit phytochemicals against c-Met kinase domain. Both tested compounds attenuated HGF-mediated proliferation across various established c-Met+ cancer cell lines and altered cell cycle distribution accompanied by apoptosis induction. Scratch assay confirmed the anti-migratory activity of WA and CA in AsPC-1 cells. The blockade of HGF-driven cellular growth and motility was reflected by the suppression of c-Met phosphorylation and its downstream pro-survival pathway Akt. Further studies showed that the administration of WA and CA diminished the sphere-formation and clonogenic potential which was validated by down-regulation of pluripotency maintaining genes (oct-4 and nanog), demonstrating their potentiality to target pancreatic CSCs. As more than 60% of anti-cancer drugs are composed of natural product-derived inhibitors known as fourth generation inhibitors, our present data suggest that WA and CA may hold promise to eradicate CSCs in c-Met-dependent cancers.
Collapse
Affiliation(s)
- Shima Aliebrahimi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
|
32
|
Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer 2018; 18:496. [PMID: 29716531 PMCID: PMC5930953 DOI: 10.1186/s12885-018-4394-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The transcription factor PAX6 is expressed in various cancers. In anaplastic astrocytic glioma, PAX6 expression is inversely related to tumor grade, resulting in low PAX6 expression in Glioblastoma, the highest-grade astrocytic glioma. The aim of the present study was to develop a PAX6 knock out cell line as a tool for molecular studies of the roles PAX6 have in attenuating glioblastoma tumor progression. METHODS The CRISPR-Cas9 technique was used to knock out PAX6 in U251 N cells. Viral transduction of a doxycycline inducible EGFP-PAX6 expression vector was used to re-introduce (rescue) PAX6 expression in the PAX6 knock out cells. The knock out and rescued cells were rigorously characterized by analyzing morphology, proliferation, colony forming abilities and responses to oxidative stress and chemotherapeutic agents. RESULTS The knock out cells had increased proliferation and colony forming abilities compared to wild type cells, consistent with clinical observations indicating that PAX6 functions as a tumor-suppressor. Cell cycle distribution and sensitivity to H2O2 induced oxidative stress were further studied, as well as the effect of different chemotherapeutic agents. For the PAX6 knock out cells, the percentage of cells in G2/M phase increased compared to PAX6 control cells, indicating that PAX6 keeps U251 N cells in the G1 phase of the cell cycle. Interestingly, PAX6 knock out cells were more resilient to H2O2 induced oxidative stress than wild type cells. Chemotherapy treatment is known to generate oxidative stress, hence the effect of several chemotherapeutic agents were tested. We discovered interesting differences in the sensitivity to chemotherapeutic drugs (Temozolomide, Withaferin A and Sulforaphane) between the PAX6 expressing and non-expressing cells. CONCLUSIONS The U251 N PAX6 knock out cell lines generated can be used as a tool to study the molecular functions and mechanisms of PAX6 as a tumor suppressor with regard to tumor progression and treatment of glioblastoma.
Collapse
|
33
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
34
|
Co-enzyme Q10 upregulates Hsp70 and protects chicken primary myocardial cells under in vitro heat stress via PKC/MAPK. Mol Cell Biochem 2018; 449:195-206. [DOI: 10.1007/s11010-018-3356-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
|
35
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Subramanian C, Grogan PT, Opipari VP, Timmermann BN, Cohen MS. Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-κB activation. Oncotarget 2018; 9:14509-14523. [PMID: 29581860 PMCID: PMC5865686 DOI: 10.18632/oncotarget.24429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in intensive chemotherapy treatments, long-term success is achieved in less than 30% of children with high-risk neuroblastoma (NB). Key regulatory pathways including the PI3K/Akt, mTOR and NF-κB are implicated in the pathogenesis of NB. Although drugs targeting these individual pathways are in clinical trials, they are not effective due to the activation of compensatory mechanisms. We have previously reported that natural novel withanolides from Physalis longifolia can potently inhibit these key regulatory pathways simultaneously. In the present study, we examined the efficacy and mechanisms through which novel withanolides and their acetate derivatives (WGA-TA and WGB-DA) from P.longifolia kill NB cells. The results from the study demonstrated that our novel acetate derivatives are highly effective in inhibiting the proliferation, shifting the cell cycle and inducing apoptosis in a dose dependent manner. Analysis of oncogenic pathway proteins targeted by withanolides indicated induction of heat shock response due to oxidative stress. Dose dependent decrease in clients of HSP90 chaperone function due to suppression of Akt, mTOR, and NF-κB pathways led to decrease in the expressions of target genes such as cyclin D1, N-myc and Survivin. Additionally, there was a dose dependent attenuation of the migration and invasion of NB cells. Furthermore, the lead compound WGA-TA showed significant reduction in tumor growth of NB xenografts. Taken together, these results suggest that withanolides are an effective therapeutic option against NBs.
Collapse
Affiliation(s)
| | - Patrick T Grogan
- Department of Internal Medicine, University of Wisconsin, Madison, WI, USA
| | - Valerie P Opipari
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Brum AM, van de Peppel J, Nguyen L, Aliev A, Schreuders-Koedam M, Gajadien T, van der Leije CS, van Kerkwijk A, Eijken M, van Leeuwen JPTM, van der Eerden BCJ. Using the Connectivity Map to discover compounds influencing human osteoblast differentiation. J Cell Physiol 2018; 233:4895-4906. [PMID: 29194609 DOI: 10.1002/jcp.26298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. Identification of factors influencing osteoblast differentiation and bone formation is very important. Previously, we identified parbendazole to be a novel compound that stimulates osteogenic differentiation of human mesenchymal stromal cells (hMSCs), using gene expression profiling and bioinformatic analyzes, including the Connectivity Map (CMap), as an in-silico approach. The aim for this paper is to identify additional compounds affecting osteoblast differentiation using the CMap. Gene expression profiling was performed on hMSCs differentiated to osteoblasts using Illumina microarrays. Our osteoblast gene signature, the top regulated genes 6 hr after induction by dexamethasone, was uploaded into CMap (www.broadinstitute.org/cmap/). Through this approach we identified compounds with gene signatures positively correlating (withaferin-A, calcium folinate, amylocaine) or negatively correlating (salbutamol, metaraminol, diprophylline) to our osteoblast gene signature. All positively correlating compounds stimulated osteogenic differentiation, as indicated by increased mineralization compared to control treated cells. One of three negatively correlating compounds, salbutamol, inhibited dexamethasone-induced osteoblastic differentiation, while the other two had no effect. Based on gene expression data of withaferin-A and salbutamol, we identified HMOX1 and STC1 as being strongly differentially expressed . shRNA knockdown of HMOX1 or STC1 in hMSCs inhibited osteoblast differentiation. These results confirm that the CMap is a powerful approach to identify positively compounds that stimulate osteogenesis of hMSCs, and through this approach we can identify genes that play an important role in osteoblast differentiation and could be targets for novel bone anabolic therapies.
Collapse
Affiliation(s)
- Andrea M Brum
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Linh Nguyen
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Abidin Aliev
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Tarini Gajadien
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | - B C J van der Eerden
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Head RJ, Fay MF, Cosgrove L, Y. C. Fung K, Rundle-Thiele D, Martin JH. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol Ther 2017; 18:917-926. [PMID: 29020502 PMCID: PMC5718815 DOI: 10.1080/15384047.2017.1385680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O6-methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.
Collapse
Affiliation(s)
- R. J. Head
- University of South Australia, Adelaide, SA, Australia
| | - M. F. Fay
- University of Newcastle, Newcastle, NSW, Australia
- Genesis Cancer Care, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - L. Cosgrove
- CSIRO Health & Biosecurity, Adelaide, SA, Australia
| | | | - D. Rundle-Thiele
- School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - J. H. Martin
- University of Newcastle, Newcastle, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, Chen J, Huang H. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. PHARMACEUTICAL BIOLOGY 2017; 55:1171-1176. [PMID: 28228044 PMCID: PMC6130570 DOI: 10.1080/13880209.2017.1288262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 05/31/2023]
Abstract
CONTEXT Withaferin A (WFA) exhibits diverse pharmaceutical applications on human diseases, including rheumatoid arthritis, cancers and microbial infection. OBJECTIVE We evaluated the neuroprotective role of WFA using a mouse model of spinal cord injury (SCI). MATERIALS AND METHODS BALB/c mice were administrated 10 mg/kg of WFA. Gene expression was measured by real-time PCR, western blot and immunohistochemistry. Cell morphology and apoptosis were determined by H&E staining and TUNEL assay. Motor function was evaluated by the BBB functional scale for continuous 7 weeks. RESULTS WFA significantly improved neurobehavioural function and alleviated histological alteration of spinal cord tissues in traumatized mice. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) significantly increased in WFA-treated mice. Meanwhile, the expression of Nogo-A and RhoA remarkably decreased in the presence of WFA. Furthermore, the apoptotic cell death was attenuated in mice treated with WFA (31.48 ± 2.50% vs. 50.08 ± 2.08%) accompanied by decreased bax and increased bcl-2. In addition, WFA decreased the expression of pro-inflammatory mediators such as IL-1β (11.20 ± 1.96 ng/mL vs. 17.59 ± 1.42 ng/mL) and TNF-α (57.38 ± 3.57 pg/mL vs. 95.06 ± 9.13 pg/mL). The anti-inflammatory cytokines including TGF-β1 (14.32 ± 1.04 pg/mL vs. 9.37 ± 1.17 pg/mL) and IL-10 (116.80 ± 6.91 pg/mL vs. 72.33 ± 9.35 pg/mL) were elevated after WFA administration. DISCUSSION AND CONCLUSION This study demonstrated that WFA has a neuroprotective role by inhibition of apoptosis and inflammation after SCI in mice.
Collapse
Affiliation(s)
- Xianlei Yan
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Guangxiang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiemin Zheng
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qidan Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiakang Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Heqing Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
40
|
Chen L, Cong D, Li Y, Wang D, Li Q, Hu S. Combination of sonodynamic with temozolomide inhibits C6 glioma migration and promotes mitochondrial pathway apoptosis via suppressing NHE-1 expression. ULTRASONICS SONOCHEMISTRY 2017; 39:654-661. [PMID: 28732990 DOI: 10.1016/j.ultsonch.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Temozolomide (TMZ) was used for clinical postoperative or non-surgical chemotherapy patients. However, its effect remains unsatisfactory and gradually discovered that the presence of chemoresistance. To explore more effective therapy using TMZ, we investigate the effects of combination of application of TMZ together with Sonodynamic therapy (SDT), which is based on the ultrasonic activation of a sonosensitizer, with low toxicity, noninvasive, deeper penetrability and a promising approach for treating malignant glioma by inducing apoptosis on glioma cells in vitro. Sodium-hydrogen exchanger isoform 1 (NHE1), which enable glioblastoma cells to escape TMZ-mediated toxicity via increased H+ extrusion and affect the apoptosis effect on C6 glioma cells in vitro. The C6 cells survival rate and time point of TMZ resistance were tested by the Cell Counting Kit-8 (CCK8) viability assay. Western blot analysis results showed that the expression of NHE1 and matrix metalloproteinase-2 (MMP-2) protein obviously decreased by TMZ+SDT. Meanwhile, combined treatments enhanced the expression of mitochondrial pathway apoptosis proteins, as well as suppressed MMP-2 to weaken the migration ability in TMZ-resistant C6 cell line. These results provided the first evidence that the sensitivity of TMZ chemotherapy in resistant malignant glioma may be improved by SDT.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Damin Cong
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Yongzhe Li
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Dan Wang
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Qingsong Li
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China
| | - Shaoshan Hu
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
41
|
Gleixner AM, Hutchison DF, Sannino S, Bhatia TN, Leak LC, Flaherty PT, Wipf P, Brodsky JL, Leak RK. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol Pharmacol 2017; 92:564-575. [PMID: 28830914 PMCID: PMC5635514 DOI: 10.1124/mol.117.109926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Sara Sannino
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Lillian C Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Patrick T Flaherty
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Peter Wipf
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Jeffrey L Brodsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| |
Collapse
|
42
|
Review of Natural Product-Derived Compounds as Potent Antiglioblastoma Drugs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8139848. [PMID: 29181405 PMCID: PMC5664208 DOI: 10.1155/2017/8139848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/28/2022]
Abstract
Common care for glioblastoma multiforme (GBM) is a surgical resection followed by radiotherapy and temozolomide- (TMZ-) based chemotherapy. Unfortunately, these therapies remain inadequate involving severe mortality and recurrence. Recently, new approaches discovering combinations of multiple inhibitors have been proposed along with the identification of key driver mutations that are specific to each patient. To date, this approach is still limited by the lack of effective therapy. Hopefully, novel compounds derived from natural products are suggested as potential solutions. Inhibitory effects of natural products on angiogenesis and metastasis and cancer suppressive effect of altering miRNA expression are provident discoveries. Angelica sinensis accelerates apoptosis by their key substances influencing factors of apoptosis pathways. Brazilin displays antitumor features by making influence on reactive oxygen species (ROS) intensity. Sargassum serratifolium, flavonoids, and so on have antimetastasis effect. Ficus carica controls miRNA that inhibits translation of certain secretory pathway proteins during the UPR. Serratia marcescens and patupilone (EPO 906) are physically assessed materials through clinical trials related to GBM progression. Consequently, our review puts emphasis on the potential of natural products in GBM treatment by regulating multiple malignant cancer-related pathway solving pending problem such as reducing toxicity and side effect.
Collapse
|
43
|
Cheng P, Gui C, Huang J, Xia Y, Fang Y, Da G, Zhang X. Molecular mechanisms of ampelopsin from Ampelopsis megalophylla induces apoptosis in HeLa cells. Oncol Lett 2017; 14:2691-2698. [PMID: 28928812 PMCID: PMC5588129 DOI: 10.3892/ol.2017.6520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/25/2017] [Indexed: 01/11/2023] Open
Abstract
Ampelopsin (AMP) is an active ingredient of flavonoid compounds that is extracted from Ampelopsis megalophylla Diels et Gilg. The present study aimed at investigating the antitumor activities of AMP and the possible underlying molecular mechanisms in HeLa cells. A total of three types of tumor cell were selected to screen antitumor activities for AMP using the MTT assay. Flow cytometry was used to analyze the cell apoptotic proportion and the cell cycle. Rhodamine 123 staining was used to determine changes in mitochondrial transmembrane potential. Western blot analysis was used to determine the expression of apoptosis-associated proteins. The results of the present study demonstrated that AMP may inhibit the viability of HeLa cells in a dose- and time-dependent manner. Changes in morphology were observed using fluorescence microscopy. In addition, Annexin V-fluorescein isothiocyanate/propidium iodide (PI) double staining revealed that AMP induced apoptosis in a concentration-dependent manner and PI staining indicated that HeLa cells were arrested in S phase. Furthermore, western blot analysis demonstrated that AMP treatment induced apoptosis through activation of caspases 9 and 3, which was validated by the increasing ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein to Bcl-2. Additionally, the loss of mitochondrial transmembrane potential and the release of cytochrome c suggested that AMP-induced apoptosis was associated with the mitochondrial pathway. Taken together, these results indicate that AMP may induce apoptosis via the mitochondrial signaling pathway in HeLa cells.
Collapse
Affiliation(s)
- Peipei Cheng
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Chun Gui
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jing Huang
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ye Xia
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yu Fang
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Guozheng Da
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiuqiao Zhang
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
44
|
Natural Withanolides in the Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:329-373. [PMID: 27671823 PMCID: PMC7121644 DOI: 10.1007/978-3-319-41334-1_14] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Withanolides, and in particular extracts from Withania somnifera, have been used for over 3,000 years in traditional Ayurvedic and Unani Indian medical systems as well as within several other Asian countries. Traditionally, the extracts were ascribed a wide range of pharmacologic properties with corresponding medical uses, including adaptogenic, diuretic, anti-inflammatory, sedative/anxiolytic, cytotoxic, antitussive, and immunomodulatory. Since the discovery of the archetype withaferin A in 1965, approximately 900 of these naturally occurring, polyoxygenated steroidal lactones with 28-carbon ergostane skeletons have been discovered across 24 diverse structural types. Subsequently, extensive pharmacologic research has identified multiple mechanisms of action across key inflammatory pathways. In this chapter we identify and describe the major withanolides with anti-inflammatory properties, illustrate their role within essential and supportive inflammatory pathways (including NF-κB, JAK/STAT, AP-1, PPARγ, Hsp90 Nrf2, and HIF-1), and then discuss the clinical application of these withanolides in inflammation-mediated chronic diseases (including arthritis, autoimmune, cancer, neurodegenerative, and neurobehavioral). These naturally derived compounds exhibit remarkable biologic activity across these complex disease processes, while showing minimal adverse effects. As novel compounds and analogs continue to be discovered, characterized, and clinically evaluated, the interest in withanolides as a novel therapeutic only continues to grow.
Collapse
|
45
|
Dhami J, Chang E, Gambhir SS. Withaferin A and its potential role in glioblastoma (GBM). J Neurooncol 2016; 131:201-211. [PMID: 27837436 DOI: 10.1007/s11060-016-2303-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/09/2016] [Indexed: 01/10/2023]
Abstract
Within the Ayurvedic medical tradition of India, Ashwagandha (Withania somnifera) is a well-known herb. A large number of withanolides have been isolated from both its roots and its leaves and many have been assessed for their pharmacological activities. Amongst them, Withaferin A is one of its most bioactive phytoconstituents. Due to the lactonal steroid's potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. This review focuses on the use of Withaferin A alone, or in combination with other treatments, as a newer option for therapy against the most aggressive variant of brain tumors, Glioblastoma. We survey the various studies that delineate Withaferin A's anticancer mechanisms, its toxicity profiles, its pharmacokinetics and pharmacodynamics and its immuno-modulating properties.
Collapse
Affiliation(s)
- Jasdeep Dhami
- Health Sciences Center, Texas Tech University, El Paso, TX, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford and Canary Center at Stanford for Early Cancer Detection, Stanford University, Palo Alto, CA, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford and Canary Center at Stanford for Early Cancer Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
46
|
Barthel A, Vogel H, Pauchet Y, Pauls G, Kunert G, Groot AT, Boland W, Heckel DG, Heidel-Fischer HM. Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nat Commun 2016; 7:12530. [PMID: 27561781 PMCID: PMC5007441 DOI: 10.1038/ncomms12530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 07/11/2016] [Indexed: 11/08/2022] Open
Abstract
The development of novel plant chemical defenses and counter adaptations by herbivorous insect could continually drive speciation, producing more insect specialists than generalists. One approach to test this hypothesis is to compare closely related generalist and specialist species to reveal the associated costs and benefits of these different adaptive strategies. We use the specialized moth Heliothis subflexa, which feeds exclusively on plants in the genus Physalis, and its close generalist relative H. virescens. Specialization on Physalis plants necessitates the ability to tolerate withanolides, the secondary metabolites of Physalis species that are known to have feeding deterrent and immune inhibiting properties for other insects. Here we find that only H. subflexa benefits from the antibacterial properties of withanolides, and thereby gains a higher tolerance of the pathogen Bacillus thuringiensis. We argue that the specialization in H. subflexa has been guided to a large extent by a unique role of plant chemistry on ecological immunology.
Collapse
Affiliation(s)
- Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Gerhard Pauls
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Astrid T. Groot
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
- Department of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| | - Hanna M. Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Street 8, 07745 Jena, Germany
| |
Collapse
|
47
|
Okamoto S, Tsujioka T, Suemori SI, Kida JI, Kondo T, Tohyama Y, Tohyama K. Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci 2016; 107:1302-14. [PMID: 27311589 PMCID: PMC5021033 DOI: 10.1111/cas.12988] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] Open
Abstract
Treatment outcomes for acute myeloid leukemia and myelodysplastic syndromes (MDS) remain unsatisfactory despite progress in various types of chemotherapy and hematopoietic stem cell transplantation. Therefore, there is a need for the development of new treatment options. We investigated the growth‐suppressive effects of withaferin A (WA), a natural plant steroidal lactone, on myelodysplasia and leukemia cell lines. WA exhibited growth‐suppressive effects on the cell lines, MDS‐L, HL‐60, THP‐1, Jurkat and Ramos, and induction of cell cycle arrest at G2/M phase at relatively low doses. Evaluation by annexin V/PI also confirmed the induction of partial apoptosis. Gene expression profiling and subsequent gene set enrichment analysis revealed increased expression of heme oxygenase‐1 (HMOX1). HMOX1 is known to induce autophagy during anticancer chemotherapy and is considered to be involved in the treatment resistance. Our study indicated increased HMOX1 protein levels and simultaneous increases in the autophagy‐related protein LC3A/B in MDS‐L cells treated with WA, suggesting increased autophagy. Combined use of WA with chloroquine, an autophagy inhibitor, enhanced early apoptosis and growth suppression. Together with the knowledge that WA had no apparent suppressive effect on the growth of human normal bone marrow CD34‐positive cells in the short‐term culture, this drug may have a potential for a novel therapeutic approach to the treatment of leukemia or MDS.
Collapse
Affiliation(s)
- Shuichiro Okamoto
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | | | - Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Toshinori Kondo
- Division of Hematology, Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
48
|
Zhu Z, Du S, Ding F, Guo S, Ying G, Yan Z. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Am J Transl Res 2016; 8:3299-3308. [PMID: 27508051 PMCID: PMC4969467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
The DNA-alkylating agent temozolomide (TMZ) is an effective chemotherapeutic agent against malignant glioma, including glioblastoma multiforme (GBM). However, the clinical efficacy of TMZ is limited in many patients because of O(6)-methylguanine-DNA methyltransferase (MGMT)-driven resistance. Thus, new strategies to overcome TMZ resistance are urgently needed. Ursolic acid (UA) is a naturally derived pentacyclic triterpene acid that exerts broad anticancer effects, and shows capability to cross the blood-brain barrier. In this study, we evaluated the possible synergistic effect of TMZ and UA in resistant GBM cell lines. The results showed that UA prevented the proliferation of resistant GBM cells in a concentration-dependent manner. Compared with TMZ or UA treatment alone, the combination treatment of TMZ and UA synergistically enhanced cytotoxicity and senescence in TMZ-resistant GBM cells. This effect was correlated with the downregulation of MGMT. Moreover, experimental results with an in vivo mouse xenograft model showed that the combination treatment of UA and TMZ reduced tumor volumes by depleting MGMT. Therefore, UA as both a monotherapy and a resensitizer, might be a candidate agent for patients with refractory malignant gliomas.
Collapse
Affiliation(s)
- Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| | - Fengxia Ding
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| | - Shanshan Guo
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| | - Guoguang Ying
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and HospitalTianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| |
Collapse
|
49
|
Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives. J Nat Med 2016; 71:16-26. [DOI: 10.1007/s11418-016-1020-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/11/2016] [Indexed: 12/18/2022]
|
50
|
Lee IC, Choi BY. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int J Mol Sci 2016; 17:290. [PMID: 26959007 PMCID: PMC4813154 DOI: 10.3390/ijms17030290] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic science, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|