1
|
Sturm MJ, Henao-Restrepo JA, Becker S, Proquitté H, Beck JF, Sonnemann J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2023; 149:8605-8617. [PMID: 37097390 PMCID: PMC10374484 DOI: 10.1007/s00432-023-04804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Julián Andrés Henao-Restrepo
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Proquitté
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Marx C, Marx-Blümel L, Sonnemann J, Wang ZQ. Assessment of Mitochondrial Dysfunctions After Sirtuin Inhibition. Methods Mol Biol 2023; 2589:269-291. [PMID: 36255631 DOI: 10.1007/978-1-0716-2788-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications are important for protein functions and cellular signaling pathways. The acetylation of lysine residues is catalyzed by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), with the latter being grouped into four phylogenetic classes. The class III of the HDAC family, the sirtuins (SIRTs), contributes to gene expression, genomic stability, cell metabolism, and tumorigenesis. Thus, several specific SIRT inhibitors (SIRTi) have been developed to target cancer cell proliferation. Here we provide an overview of methods to study SIRT-dependent cell metabolism and mitochondrial functionality. The chapter describes metabolic flux analysis using Seahorse analyzers, methods for normalization of Seahorse data, flow cytometry and fluorescence microscopy to determine the mitochondrial membrane potential, mitochondrial content per cell and mitochondrial network structures, and Western blot analysis to measure mitochondrial proteins.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
3
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
4
|
Gan N, Sun Q, Suo Z, Zhang S, Zhao L, Xiang H, Wang W, Li Z, Liao X, Li H. How hydrophilic group affects drug-protein binding modes: Differences in interaction between sirtuins inhibitors Tenovin-1/Tenovin-6 and human serum albumin. J Pharm Biomed Anal 2021; 201:114121. [PMID: 34020341 DOI: 10.1016/j.jpba.2021.114121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 01/28/2023]
Abstract
Introduction of hydrophilic groups can improve the solubility of leading drugs but inevitably affect their interaction with proteins. This study selected sirtuin inhibitors Tenovin-1 (T1) and Tenovin-6 (T6) as drug models to determine differences in binding mode to human serum albumin (HSA). T1 and T6 quenched the endogenous fluorescence of HSA via static quenching mechanism. Introduction of hydrophilic groups greatly reduced the binding constant, i.e., from 1.302 × 104 L mol-1 for the HSA-T6 system to 0.128 × 104 L mol-1 for the HSA-T1 system. HSA-T1 system was mainly driven by electrostatic interactions while that of HSA-T6 system was hydrophobic interaction and both systems were spontaneous reactions. Site marker experiments and molecular docking indicated that both systems mainly bound to the hydrophobic site I of HSA. Molecular dynamics (MD) simulation analysis further revealed that Tyr148, Tyr150 and Arg257 residues played a key role in this recognition process for both systems. In particular, T6 maintained additional several hydrogen bonds with the surrounding residues. T1 had almost no effect on the esterase-like activity of HSA, but T6 inhibited the hydrolysis of p-NPA. Furthermore, differential scanning calorimetry (VP-DSC), circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy confirmed that HSA in the T6 system undergone a more significant conformational transition than that in the T1 system.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hongzhao Xiang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhiqiang Li
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Xiaoxiang Liao
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., No. 367, Hongjin Road, Kunming, 650000, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
5
|
Marx C, Schaarschmidt MU, Kirkpatrick J, Marx-Blümel L, Halilovic M, Westermann M, Hoelzer D, Meyer FB, Geng Y, Buder K, Schadwinkel HM, Siniuk K, Becker S, Thierbach R, Beck JF, Sonnemann J, Wang ZQ. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing's sarcoma cells. Cell Biosci 2021; 11:57. [PMID: 33743824 PMCID: PMC7981928 DOI: 10.1186/s13578-021-00571-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ewing's sarcoma is an aggressive childhood malignancy whose outcome has not substantially improved over the last two decades. In this study, combination treatments of the HSP90 inhibitor AUY922 with either the ATR inhibitor VE821 or the ATM inhibitor KU55933 were investigated for their effectiveness in Ewing's sarcoma cells. METHODS Effects were determined in p53 wild-type and p53 null Ewing's sarcoma cell lines by flow cytometric analyses of cell death, mitochondrial depolarization and cell-cycle distribution as well as fluorescence and transmission electron microscopy. They were molecularly characterized by gene and protein expression profiling, and by quantitative whole proteome analysis. RESULTS AUY922 alone induced DNA damage, apoptosis and ER stress, while reducing the abundance of DNA repair proteins. The combination of AUY922 with VE821 led to strong apoptosis induction independent of the cellular p53 status, yet based on different molecular mechanisms. p53 wild-type cells activated pro-apoptotic gene transcription and underwent mitochondria-mediated apoptosis, while p53 null cells accumulated higher levels of DNA damage, ER stress and autophagy, eventually leading to apoptosis. Impaired PI3K/AKT/mTOR signaling further contributed to the antineoplastic combination effects of AUY922 and VE821. In contrast, the combination of AUY922 with KU55933 did not produce a cooperative effect. CONCLUSION Our study reveals that HSP90 and ATR inhibitor combination treatment may be an effective therapeutic approach for Ewing's sarcoma irrespective of the p53 status.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc U Schaarschmidt
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Francis Crick Institute, London, UK
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Melisa Halilovic
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Felix B Meyer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Yibo Geng
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Katrin Buder
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Hauke M Schadwinkel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sabine Becker
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - James F Beck
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany. .,Research Center Lobeda, Jena University Hospital, Jena, Germany. .,Klinik Für Kinder- Und Jugendmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Zhao-Qi Wang
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
6
|
Ladds MJGW, Popova G, Pastor-Fernández A, Kannan S, van Leeuwen IMM, Håkansson M, Walse B, Tholander F, Bhatia R, Verma CS, Lane DP, Laín S. Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology. J Biol Chem 2020; 295:17935-17949. [PMID: 32900849 PMCID: PMC7939445 DOI: 10.1074/jbc.ra119.012056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/18/2020] [Indexed: 01/17/2023] Open
Abstract
The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.
Collapse
Affiliation(s)
- Marcus J G W Ladds
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Gergana Popova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrés Pastor-Fernández
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Fredrik Tholander
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ravi Bhatia
- Division of Hematology and Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, Alabama, USA
| | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma. Oncogenesis 2020; 9:80. [PMID: 32908120 PMCID: PMC7481307 DOI: 10.1038/s41389-020-00264-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
Collapse
|
8
|
Anticancer effects of the PLK4 inhibitors CFI-400945 and centrinone in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2020; 146:2871-2883. [PMID: 32770382 PMCID: PMC7519924 DOI: 10.1007/s00432-020-03346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Purpose Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic agents. However, their effectiveness against Ewing’s sarcoma, a highly aggressive childhood cancer, remains to be established.
Methods CFI-400945 and centrinone were tested in three Ewing’s sarcoma cell lines with different TP53 status. Effects were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immunofluorescence microscopy. Results CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing’s sarcoma cells. Both agents induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicating an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy. Conclusion Our findings show that PLK4 inhibitors were effective against Ewing’s sarcoma cells in vitro and thus provide a rationale for their evaluation in vivo. Electronic supplementary material The online version of this article (10.1007/s00432-020-03346-z) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Ma K, Lu N, Zou F, Meng FZ. Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 2019; 865:172670. [PMID: 31542484 DOI: 10.1016/j.ejphar.2019.172670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Sirtuins are NAD-dependent class III histone deacetylase, which modulate the epigenetic changes to influence the functions in normal and diseased conditions. Preclinical studies have described an increase in the levels of sirtuin 2 and decrease in the levels of sirtuin 6 in the lungs. Sirtuin 2 exerts proinflammatory actions and hence, its blockers reduce the airway inflammation and symptoms of asthma. On the other hand, sirtuin 6 is anti-inflammatory and its activators produce beneficial actions in asthma. The beneficial effects of sirtuin 6 have been attributed to decrease in acetylation of transcriptional factor GATA3 in the T cells, which is associated with decrease in the TH2 immune response. However, there seems to be dual role of sirtuin 1 in airway inflammation as its proinflammatory as well as anti-inflammatory actions have been described in asthma. The anti-inflammatory actions of sirtuin 1 have been attributed to decrease in acetylation of GATA3 and inhibition of Akt/NF-kappaB signaling. On the other hand, proinflammatory actions of sirtuin 1 have been attributed to increase in the expression of HIF-1α and VEGF along with repression of PPAR-γ activity. The present review discusses the role of different sirtuins in the pathogenesis of bronchial asthma. Moreover, it also discusses sirtuin-triggered signaling pathways that may contribute in modulating the disease state of bronchial asthma.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Na Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fei Zou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fan-Zheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
10
|
Chen YN, Ren CC, Yang L, Nai MM, Xu YM, Zhang F, Liu Y. MicroRNA let‑7d‑5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signaling pathway via HMGA1. Int J Oncol 2019; 54:1771-1784. [PMID: 30816441 DOI: 10.3892/ijo.2019.4731] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer (OC) is the gynecological malignancy type with the highest mortality rate in females. The regulatory effect of microRNAs (miRs) on their target genes serves a key role in tumor development. Therefore, in the present study, whether miR let‑7d‑5p targeting high mobility group A1 (HMGA1) regulated biological characteristics and chemosensitivity of OC cells by mediating the p53 signaling pathway was investigated. The let‑7d‑5p level was detected in OC tissues and adjacent normal tissues, followed by detection in OC cell lines SKOV3, A2780, OVCAR‑3 and CaOV3, and human normal ovarian epithelial cell line (IOSE‑80), in order to select the OC cell line for the following experiments. Subsequently, OC cells were treated with the let‑7d‑5p mimic, siHMGA1 and Tenovin‑1. The targeting association between let‑7d‑5p and HMGA1 was then examined, and the OC cell viability, migration, cycle and apoptosis were evaluated. Subsequently, the chemosensitivity of OC cells to cisplatin was verified. Finally, expression levels of let‑7d‑5p, HMGA1, p21, B‑cell lymphoma‑2 (Bcl‑2)‑associated X (Bax), p27, p53 wild‑type (p53wt), p53 mutated (p53mut), proliferating cell nuclear antigen (PCNA), cyclin‑dependent kinase 2 (CDK2), matrix metallopeptidase (MMP)2, MMP9 and Bcl‑2 were determined. As demonstrated in the results, let‑7d‑5p expression was low in OC tissues and had an increased reduction in the OVCAR‑3 cell line. HMGA1 was confirmed as a target of let‑7d‑5p, and its expression was also silenced by let‑7d‑5p. let‑7d‑5p repressed OC cell viability, migration, cell cycle progression and apoptosis, while it promoted the chemosensitivity of OC cells to cisplatin by targeting HMGA1. The expression of let‑7d‑5p, p21, Bax, p27 and p53wt was increased, while that of HMGA1, p53mut, PCNA, CDK2, MMP2, MMP9 and Bcl‑2 was reduced following cell transfection. The results in the present study provided evidence that let‑7d‑5p may suppress proliferation, and facilitate apoptosis and cisplatin chemosensitivity of OC cells by silencing HMGA1 via the p53 signaling pathway.
Collapse
Affiliation(s)
- Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Man-Man Nai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi-Ming Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
The Fungal Metabolite Eurochevalierine, a Sequiterpene Alkaloid, Displays Anti-Cancer Properties through Selective Sirtuin 1/2 Inhibition. Molecules 2018; 23:molecules23020333. [PMID: 29401749 PMCID: PMC6017873 DOI: 10.3390/molecules23020333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/19/2023] Open
Abstract
NAD+-dependent histone deacetylases (sirtuins) are implicated in cellular processes such as proliferation, DNA repair, and apoptosis by regulating gene expression and the functions of numerous proteins. Due to their key role in cells, the discovery of small molecule sirtuin modulators has been of significant interest for diverse therapeutic applications. In particular, it has been shown that inhibition of sirtuin 1 and 2 activities is beneficial for cancer treatment. Here, we demonstrate that the fungal metabolite eurochevalierine from the fungus Neosartorya pseudofischeri inhibits sirtuin 1 and 2 activities (IC50 about 10 µM) without affecting sirtuin 3 activity. The binding modes of the eurochevalierine for sirtuin 1 and 2 have been identified through computational docking analyses. Accordingly, this sequiterpene alkaloid induces histone H4 and α-tubulin acetylation in various cancer cell models in which it induces strong cytostatic effects without affecting significantly the viability of healthy PBMCs. Importantly, eurochevalierine targets preferentially cancer cell proliferation (selectivity factor ≫ 7), as normal human primary CD34+ stem/progenitor cells were less affected by the treatment. Finally, eurochevalierine displays suitable drug-likeness parameters and therefore represent a promising scaffold for lead molecule optimization to study the mechanism and biological roles of sirtuins and potentially a basis for development into therapeutics.
Collapse
|