1
|
Theodorakis CW, Meyer MA, Okay O, Yakan SD, Schramm KW. Contamination acts as a genotype-dependent barrier to gene flow, causing genetic erosion and fine-grained population subdivision in Mussels from the Strait of Istanbul. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:47-65. [PMID: 38182932 DOI: 10.1007/s10646-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
This study provides evidence of fine-grained genetic structuring in Mediterranean mussels (Mytilus galloprovincialis) from the Strait of Istanbul, caused by barriers to gene flow via contaminant-mediated selection. In this study, mitochondrial D-loop sequences were analyzed in mussels from 8 localities, all less than 30 kilometers apart, with differing contaminant loads. The results were: 1) Intra-population genetic differentiation (ΦST) between sites with high and low contaminant loads was high (up to 0.459), even at distances of only a few kilometers. 2) Genetic diversity was negatively correlated with the contaminant load ("genetic erosion"). 3) There was evidence of selection, based on haplotype frequencies and neutrality tests (Tajima's D), with purifying selection at the most contaminated site and balancing selection at the least contaminated. 4) Genetic distance was not correlated with geographic distance (no isolation-by-distance), but was correlated with contaminant load at each site. 5) Population dendrograms and Bayesian estimators of migration indicated that gene flow between sites was affected by contamination. For the dendrograms of the sampling sites, the clades clustered according to contaminant load more than geographic distance. Overall, these results suggest that 1) contamination may serve as a genotype-dependent dispersal barrier (i.e., contamination may not affect total number of migrants, just the relative proportions of the haplotypes in the established immigrants), leading strong population differentiation over short distances, and 2) genetic erosion may occur by a combination of selection and altered patterns of haplotype-specific gene flow. These effects may be more pronounced in the Strait of Istanbul than in other locations because of the riverine nature and strong, uni-directional current of the strait.
Collapse
Affiliation(s)
- Christopher W Theodorakis
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1099, USA.
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA.
| | - Mary-Ann Meyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA
| | - Oya Okay
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Sevil Deniz Yakan
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Karl-Werner Schramm
- Molecular EXposomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department für Biowissenschaften, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
2
|
Jafari O, Zeinalabedini M, Robledo D, Fernandes JMO, Hedayati AA, Arefnezhad B. Genotyping-by-Sequencing Reveals the Impact of Restocking on Wild Common Carp Populations of the Southern Caspian Basin. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.872176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the population structure and level of genetic diversity of wild populations is fundamental for appropriate stock management and species conservation. The common carp (Cyprinus carpio) is one of the most important bony fish throughout the Southern coastline of the Caspian Sea, but captures of this species have seen a dramatic reduction during the last decade. As a consequence, a restocking program has been put in place to maintain C. carpio populations, but its impact is not clear. In the present study, the population structure and genetic diversity of C. carpio in the Southern Caspian basin was determined using 17,828 single-nucleotide polymorphism (SNP) markers. A total of 117 individuals collected from four different locations in the southern Caspian basin and a farm were genotyped by genotyping-by-sequencing. The overall Fst obtained was 0.04, indicating a low level of differentiation between populations, and most genetic diversity was attributed to within population variation (97%). The low Fst values suggest that frequent migration events between different locations occur, and three migration events were inferred in the present study. However, each population still showed a distinct genetic profile, which allowed distinguishing the origin of the fish. This indicates that the ongoing restocking program is maintaining the differences between populations to some extent. Nonetheless, high inbreeding and low heterozygosity were detected in all populations, suggesting that additional conservation efforts are required to protect C. carpio populations in the Southern coast of the Caspian Sea.
Collapse
|
3
|
Elizabeth Alter S, Tariq L, Creed JK, Megafu E. Evolutionary responses of marine organisms to urbanized seascapes. Evol Appl 2021; 14:210-232. [PMID: 33519966 PMCID: PMC7819572 DOI: 10.1111/eva.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Many of the world's major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard-surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps.
Collapse
Affiliation(s)
- S. Elizabeth Alter
- Department of Biology & ChemistryCalifornia State University, Monterey BayChapman Academic Science CenterSeasideCAUSA
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Laraib Tariq
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| | - James Keanu Creed
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Emmanuel Megafu
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| |
Collapse
|
4
|
Becker JM, Russo R, Shahid N, Liess M. Drivers of pesticide resistance in freshwater amphipods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139264. [PMID: 32485446 DOI: 10.1016/j.scitotenv.2020.139264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Aquatic invertebrates exposed to pesticides may develop pesticide resistance. Based on a meta-analysis we revealed environmental factors driving the magnitude of resistance in the freshwater amphipod Gammarus pulex in the field. We showed that (i) insecticide tolerance of G. pulex increased with pesticide contamination in agricultural streams generally by a factor of up to 4. Tolerance increased even at concentrations lower than what is considered safe in regulatory risk assessment (ii) The increase in insecticide tolerance was pronounced at high test concentrations; comparing the LC50 of populations therefore potentially underestimates the development of resistance. (iii) Insecticide resistance in agricultural streams diminished during the spraying season, suggesting that adverse effects of sublethal concentrations in the short term contrast long-term adaptation to insecticide exposure. (iv) We found that resistance was especially high in populations characterized not only by high pesticide exposure, but also by large distance (>3.3 km) from non-polluted stream sections and by low species diversity within the invertebrate community. We conclude that the test concentration, the timing of measurement, distance to refuge areas and species diversity mediate the observed response of aquatic communities to pesticide pollution and need to be considered for the sustainable management of agricultural practices.
Collapse
Affiliation(s)
- Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Renato Russo
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Naeem Shahid
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Rybak AV, Belykh ES, Maystrenko TA, Shadrin DM, Pylina YI, Chadin IF, Velegzhaninov IO. Genetic analysis in earthworm population from area contaminated with radionuclides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137920. [PMID: 32213403 DOI: 10.1016/j.scitotenv.2020.137920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This study assessed the effects of environmental contamination by naturally occurring radionuclides and heavy metals on the genetic structure of a population of the earthworm Aporrectodea caliginosa. A. caliginosa were collected from four sites and characterized by amplified fragment length polymorphism (AFLP) analyses. No differences in genetic structure and diversity were found between sites that differed greatly in soil contamination levels of radionuclides and metals. However, when the genetic structure of the A. caliginosa population was analyzed without considering information about the sampling site, a complex intraspecific genetic structure was identified. At least three highly divergent lineages were found, in unequal proportions, of each genetically isolated group from each study site. No associations were found between the distribution of the detected genetic clusters and the geographical origin of the samples. Thus, no noticeable adaptive changes or signs of directional selection were detected, despite the long history of genotoxic waste disposal at the sampling site. These results suggest a combined effect of three factors on the genetic structure and diversity of A. caliginosa in soils: the complexity of the contaminant composition, the heterogeneous spatial distribution of the pollutants, and the complexity of the intraspecific genetic structures of A. caliginosa.
Collapse
Affiliation(s)
- Anna V Rybak
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Elena S Belykh
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Tatiana A Maystrenko
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia.
| | - Dmitry M Shadrin
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Yana I Pylina
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Ivan F Chadin
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia.
| | - Ilya O Velegzhaninov
- Institute of Biology of Komi Science Centre of Ural Branch of RAS, Syktyvkar 167982, Russia; Polytechnical Institute of Vyatka State University, Kirov 610020, Russia.
| |
Collapse
|
6
|
King RA, Stockley B, Stevens JR. Small coastal streams-Critical reservoirs of genetic diversity for trout ( Salmo trutta L.) in the face of increasing anthropogenic stressors. Ecol Evol 2020; 10:5651-5669. [PMID: 32607181 PMCID: PMC7319166 DOI: 10.1002/ece3.6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
We used microsatellite markers to investigate levels and structuring of genetic diversity in trout (Salmo trutta L.) sampled from 16 rivers along the south coast of Cornwall in southwest England. This region is characterized by many small coastal streams with a few larger catchments. At a regional level, genetic structuring of contemporary populations has been influenced by a combination of events, including the last Ice Age and also more recent human activities over the last millennium. All populations are shown to have gone through strong genetic bottlenecks, coinciding with increased exploitation of mineral resources within catchments, beginning during the Medieval period. At more local levels, contemporary human-induced habitat fragmentation, such as weir and culvert construction, has disproportionally affected trout populations in the smaller catchments within the study area. However, where small catchments are relatively unaffected by such activities, they can host trout populations with diversity levels comparable to those found in larger rivers in the region. We also predict significant future loses of diversity and heterozygosity in the trout populations inhabiting small, isolated catchments. Our study highlights how multiple factors, especially the activity of humans, have and continue to affect the levels and structuring of genetic diversity in trout over long timescales.
Collapse
Affiliation(s)
- R. Andrew King
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | | - Jamie R. Stevens
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| |
Collapse
|
7
|
Todd PA, Heery EC, Loke LHL, Thurstan RH, Kotze DJ, Swan C. Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. OIKOS 2019. [DOI: 10.1111/oik.05946] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Todd
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Eliza C. Heery
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Lynette H. L. Loke
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Ruth H. Thurstan
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, Univ. of Exeter Penryn UK
| | - D. Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Univ. of Helsinki Lahti Finland
| | - Christopher Swan
- Dept of Geography & Environmental Systems, Univ. of Maryland Baltimore County Baltimore MD USA
| |
Collapse
|
8
|
Nacci D, Clark B, La Guardia MJ, Miller K, Champlin D, Kirby I, Bertrand A, Jayaraman S. Bioaccumulation and effects of dietary exposure to the alternative flame retardant, bis(2-ethylhexyl) tetrabromophthalate (TBPH), in the Atlantic killifish, Fundulus heteroclitus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2350-2360. [PMID: 29846010 PMCID: PMC6123825 DOI: 10.1002/etc.4180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 05/23/2023]
Abstract
Bis(2-ethylhexyl) tetrabromophthalate (TBPH), a high production volume flame retardant chemical used as a replacement for banned flame retardants, has been detected in media and human and wildlife tissues globally. We describe bioaccumulation and biological effects from dietary exposure of TBPH to an estuarine fish, Atlantic killifish, Fundulus heteroclitus. Briefly, adult fish were fed carrier control or chemically amended diets for 28 d, followed by 14 d of control diet feeding. Diets were amended with TBPH (TBPH_LO diet, 139 μg/g dry wt, or TBPH_HI diet, 4360 μg/g dry wt) or a polychlorinated biphenyl congener (PCB153 diet, 13 μg/g dry wt), which was included as a positive control for bioaccumulation. Although bioaccumulation of either chemical correlated with fish size, only a small proportion of the TBPH offered (<0.5% total TBPH) had bioaccumulated into TBPH-treated fish by 28 d. In contrast, 24.5% of the PCB153 offered was accounted for in 28-d PCB-treated fish. Although 28-d bioaccumulated concentrations of TBPH differed by sex and treatment, sexes did not differ in their rates of TBPH bioaccumulation, and the time to achieve 50% of 28 d concentration (T1/2 ) was estimated to be 13 d. Depuration rates of TBPH did not differ by sex or treatment, and the time after exposure to achieve T1/2 was estimated to be 22 d. Independent of treatment, male fish grew faster than female fish, but for both sexes reproductive condition (gonadal somatic index) declined unexpectedly over the experimental period. Across treatments, only the TBPH_LO treatment affected growth, reducing male but increasing female growth rates by small amounts relative to respective controls. In summary, our study used very high concentrations of dietary TBPH to contaminate fish tissues above the highest levels reported to date in wild biota, yet we observed few adverse biological effects. Environ Toxicol Chem 2018;37:2350-2360. © 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Diane Nacci
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Bryan Clark
- Atlantic Ecology Division, Oak Ridge Institute for Science and Education, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Mark J La Guardia
- Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
| | - Ken Miller
- CSC Government Solutions, A CSRA Company, Alexandria, Virginia, USA
| | - Denise Champlin
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ian Kirby
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ashley Bertrand
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| |
Collapse
|
9
|
Shahid N, Becker JM, Krauss M, Brack W, Liess M. Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:479-485. [PMID: 29195196 DOI: 10.1016/j.scitotenv.2017.11.220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pesticides affects non-target aquatic communities, with substantial consequences on ecosystem services. Adaptation of exposed populations may reduce the effects of pesticides. However, it is not known under which conditions adaptation occurs when only a low toxic pressure from pesticides is present. Here, we show that Gammarus pulex, a dominant macroinvertebrate species in many agricultural streams, acquires increased tolerance to pesticides when recolonization from non-contaminated refuge areas is low. Populations in the field that were exposed to pesticides at concentrations several orders of magnitude below considerable acute effects showed almost 3-fold higher tolerance to the neonicotinoid insecticide clothianidin (mean EC50 218μgL-1) compared with non-exposed populations (mean EC50 81μgL-1). This tolerance of exposed populations increased from 2- to 4-fold with increasing distance to the next refuge area (0 to 10km). We conclude that the development of tolerance for non-target species may occur at very low concentrations, much below those affecting sensitive test organisms and also lower than those predicted to be safe by governmental risk assessment frameworks.
Collapse
Affiliation(s)
- Naeem Shahid
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan.
| | - Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany.
| |
Collapse
|
10
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
11
|
Alberti M, Marzluff J, Hunt VM. Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0029. [PMID: 27920374 DOI: 10.1098/rstb.2016.0029] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/24/2023] Open
Abstract
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - John Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Victoria M Hunt
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Ferrante M, Pappalardo AM, Ferrito V, Pulvirenti V, Fruciano C, Grasso A, Sciacca S, Tigano C, Copat C. Bioaccumulation of metals and biomarkers of environmental stress in Parablennius sanguinolentus (Pallas, 1814) sampled along the Italian coast. MARINE POLLUTION BULLETIN 2017; 122:288-296. [PMID: 28655460 DOI: 10.1016/j.marpolbul.2017.06.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Heavy metal pollution is one of the greatest threats to the ecosystems because it degrades the habitat and is potentially toxic to wildlife and human populations. In the last few decades, bioaccumulation studies performed with a multimarker approach have been a valuable tool for the investigation of environmental and animal safety. We perform an analysis of a benthic teleost fish species - Parablennius sanguinolentus - sampled at several Italian coastal sites with different degrees of anthropogenic pressure. Our integrative analysis encompasses bioaccumulation of 10 metals, biomarkers of environmental stress (micronuclei and nuclear abnormalities) and neutral genetic variation (using sequences of the mtDNA control region). We find a clear and significant correlation of metal bioaccumulation with micronuclei and nuclear abnormalities, especially with undisputed genotoxic metals, such as Cd, Cr, Hg and Pb. Furthermore, the molecular genetic analysis revealed a decrease of genetic variability in the populations more subjected to anthropic pressure.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, Catania, Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Valentina Pulvirenti
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Carmelo Fruciano
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Gardens Point, Brisbane, QLD 4000, Australia
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, Catania, Italy
| | - Salvatore Sciacca
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, Catania, Italy
| | - Concetta Tigano
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Via Santa Sofia 87, Catania, Italy.
| |
Collapse
|
13
|
Pedrosa J, Campos D, Cocchiararo B, Nowak C, Soares AMVM, Barata C, L T Pestana J. Evolutionary consequences of historical metal contamination for natural populations of Chironomus riparius (Diptera: Chironomidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:534-546. [PMID: 28353160 DOI: 10.1007/s10646-017-1784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Populations inhabiting metal-impacted freshwater systems located nearby industrial and urban areas may be under intense selection. The present study aims to address two fundamental microevolutionary aspects of metal contamination in the midge Chironomus riparius (Meigen): Are populations inhabiting historically metal contaminated sites genetically adapted to metals? And, are populations from these sites genetically eroded? To answer these questions, C. riparius populations were sampled from three sites with well-known histories of metal contamination and three nearby-located references. Genetic adaptation to metals was investigated through acute and chronic exposures to cadmium (Cd), after rearing all populations for at least six generations under laboratory clean conditions. Genetic diversity was estimated based on the allelic variation of seven microsatellite markers. Results showed higher acute tolerance to Cd in populations originating from metal contaminated sites compared to their respective references and significant differences in two out of three pairwise comparisons. However, there was a mismatch between acute and chronic tolerance to Cd with results of the partial life-cycle tests suggesting fitness costs under control clean conditions in two metal-adapted populations. Despite no evidences of genetic erosion in populations sampled from metal contaminated sites, our results suggest genetically inherited tolerance to Cd in populations inhabiting historically contaminated sites. These findings lend support to the use of C. riparius as a model organism in evolutionary toxicology and highlight the importance of coupling measures of neutral genetic diversity with assessments of chemical tolerance of populations for a better understanding of contaminant-induced adaptation and evolutionary processes.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
15
|
Larsson J, Lönn M, Lind EE, Świeżak J, Smolarz K, Grahn M. Sewage treatment plant associated genetic differentiation in the blue mussel from the Baltic Sea and Swedish west coast. PeerJ 2016; 4:e2628. [PMID: 27812424 PMCID: PMC5088577 DOI: 10.7717/peerj.2628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites.
Collapse
Affiliation(s)
- Josefine Larsson
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| | - Mikael Lönn
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| | - Emma E. Lind
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Stockholm, Stockholm, Sweden
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdansk, Institute of Oceanography, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdansk, Institute of Oceanography, Gdynia, Poland
| | - Mats Grahn
- School of Natural Science, Technology and Environmental Studies, Södertörn University, Huddinge, Stockholm, Sweden
| |
Collapse
|
16
|
Inostroza PA, Vera-Escalona I, Wicht AJ, Krauss M, Brack W, Norf H. Anthropogenic Stressors Shape Genetic Structure: Insights from a Model Freshwater Population along a Land Use Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11346-11356. [PMID: 27643810 DOI: 10.1021/acs.est.6b04629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Environmental pollution including mutagens from wastewater effluents and discontinuity by man-made barriers are considered typical anthropogenic pressures on microevolutionary processes that are responsible for the loss of biodiversity in aquatic ecosystems. Here, we tested for the effects of wastewater treatment plants (WWTPs), weirs and other stressors on the invertebrate species Gammarus pulex at the population genetic level combining evolutionary ecotoxicology, body burden analysis and testing for exposure to mutagens. Exposure to chemical pollution alone and in combination with the presence of weirs resulted in a depression of allelic richness in native G. pulex populations. Our results suggest that the input of a mutagenic effluent from a WWTP resulted in a strong increase in private alleles over the affected populations. In addition, the presence of weirs along the river disrupted the migration across the river and thus the gene flow between G. pulex upstream and downstream. This study provides strong evidence that the assessment of genetic variation including private alleles together with the contamination of mutagenic and nonmutagenic chemical pollution offers new insights into the regulation of genetic population structure and highlights the relevance of emerging anthropogenic pressures at the genetic level.
Collapse
Affiliation(s)
- Pedro A Inostroza
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, Leipzig, Germany
- Department of Ecosystem Analyses, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, Aachen, Germany
| | - Iván Vera-Escalona
- Department of Biology, Dalhousie University , 1355 Oxford St., Halifax, Canada
| | - Anna-Jorina Wicht
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, Leipzig, Germany
- Department of Ecosystem Analyses, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, Aachen, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, Leipzig, Germany
- Department of Ecosystem Analyses, RWTH Aachen University, Institute for Environmental Research , Worringerweg 1, Aachen, Germany
| | - Helge Norf
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A, Magdeburg, Germany
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ , Brückstraße 3A, Magdeburg, Germany
| |
Collapse
|
17
|
Dallas LJ, Jha AN. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England. MARINE POLLUTION BULLETIN 2015; 95:618-633. [PMID: 25817310 DOI: 10.1016/j.marpolbul.2015.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
18
|
Han Z, Han G, Wang Z, Shui B, Gao T. The genetic divergence and genetic structure of two closely related fish species Lateolabrax maculatus and Lateolabrax japonicus in the Northwestern Pacific inferred from AFLP markers. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Di Giulio RT, Clark BW. The Elizabeth River Story: A Case Study in Evolutionary Toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:259-98. [PMID: 26505693 PMCID: PMC4733656 DOI: 10.1080/15320383.2015.1074841] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.
Collapse
Affiliation(s)
- Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Address correspondence to Richard T. Di Giulio, Nicholas School of the Environment, Duke University, Durham, NC27708-0328, USA. E-mail:
| | - Bryan W. Clark
- U.S. Environmental Protection Agency, Atlantic Ecology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, Narragansett, Rhode Island, USA
| |
Collapse
|
20
|
Aluru N, Karchner SI, Franks DG, Nacci D, Champlin D, Hahn ME. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:192-201. [PMID: 25481785 PMCID: PMC4272816 DOI: 10.1016/j.aquatox.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diane Nacci
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Denise Champlin
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Tison JL, Blennow V, Palkopoulou E, Gustafsson P, Roos A, Dalén L. Population structure and recent temporal changes in genetic variation in Eurasian otters from Sweden. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Vega-Retter C, Muñoz-Rojas P, Vila I, Copaja S, Véliz D. Genetic effects of living in a highly polluted environment: the case of the silverside Basilichthys microlepidotus (Jenyns) (Teleostei: atherinopsidae) in the Maipo River basin, central Chile. POPUL ECOL 2014. [DOI: 10.1007/s10144-014-0444-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Reitzel AM, Karchner SI, Franks DG, Evans BR, Nacci D, Champlin D, Vieira VM, Hahn ME. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol Biol 2014; 14:6. [PMID: 24422594 PMCID: PMC3899389 DOI: 10.1186/1471-2148-14-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022] Open
Abstract
Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02568, USA.
| |
Collapse
|
24
|
Proestou DA, Flight P, Champlin D, Nacci D. Targeted approach to identify genetic loci associated with evolved dioxin tolerance in Atlantic killifish (Fundulus heteroclitus). BMC Evol Biol 2014; 14:7. [PMID: 24422627 PMCID: PMC4029433 DOI: 10.1186/1471-2148-14-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022] Open
Abstract
Background The most toxic aromatic hydrocarbon pollutants are categorized as dioxin-like compounds (DLCs) to which extreme tolerance has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly aromatic hydrocarbon-contaminated urban/industrialized estuaries of the US Atlantic coast. Multiple tolerant and neighboring sensitive killifish populations were compared with the expectation that genetic loci associated with DLC tolerance would be revealed. Results Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, single nucleotide polymorphisms (SNPs) from 42 genes associated with the AHR pathway were identified to serve as targeted markers. Wild fish (N = 36/37) from four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Similar to other killifish population genetic analyses, strong genetic differentiation among populations was detected, consistent with isolation by distance models. When DLC-sensitive populations were pooled and compared to pooled DLC-tolerant populations, multi-locus analyses did not distinguish the two groups. However, pairwise comparisons of nearby tolerant and sensitive populations revealed high differentiation among sensitive and tolerant populations at these specific loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP1A and 3A30), and the NADH dehydrogenase subunits. In addition, significant shifts in minor allele frequency were observed at AHR2 and CYP1A loci across most sensitive/tolerant pairs, but only AHR2 exhibited shifts in the same direction across all pairs. Conclusions The observed differences in allelic composition at the AHR2 and CYP1A SNP loci were identified as significant among paired sensitive/tolerant populations of Atlantic killifish with multiple statistical tests. The genetic patterns reported here lend support to the argument that AHR2 and CYP1A play a role in the adaptive response to extreme DLC contamination. Additional functional assays are required to isolate the exact mechanism of DLC tolerance.
Collapse
Affiliation(s)
- Dina A Proestou
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | | | | | | |
Collapse
|
25
|
Whitehead A. Evolutionary Genomics of Environmental Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:321-37. [DOI: 10.1007/978-94-007-7347-9_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Bozinovic G, Sit TL, Di Giulio R, Wills LF, Oleksiak MF. Genomic and physiological responses to strong selective pressure during late organogenesis: few gene expression changes found despite striking morphological differences. BMC Genomics 2013; 14:779. [PMID: 24215130 PMCID: PMC3835409 DOI: 10.1186/1471-2164-14-779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/26/2013] [Indexed: 12/31/2022] Open
Abstract
Background Adaptations to a new environment, such as a polluted one, often involve large modifications of the existing phenotypes. Changes in gene expression and regulation during critical developmental stages may explain these phenotypic changes. Embryos from a population of the teleost fish, Fundulus heteroclitus, inhabiting a clean estuary do not survive when exposed to sediment extract from a site highly contaminated with polycyclic aromatic hydrocarbons (PAHs) while embryos derived from a population inhabiting a PAH polluted estuary are remarkably resistant to the polluted sediment extract. We exposed embryos from these two populations to surrogate model PAHs and analyzed changes in gene expression, morphology, and cardiac physiology in order to better understand sensitivity and adaptive resistance mechanisms mediating PAH exposure during development. Results The synergistic effects of two model PAHs, an aryl hydrocarbon receptor (AHR) agonist (β-naphthoflavone) and a cytochrome P4501A (CYP1A) inhibitor (α-naphthoflavone), caused significant developmental delays, impaired cardiac function, severe morphological alterations and failure to hatch, leading to the deaths of reference embryos; resistant embryos were mostly unaffected. Unexpectedly, patterns of gene expression among normal and moderately deformed embryos were similar, and only severely deformed embryos showed a contrasting pattern of gene expression. Given the drastic morphological differences between reference and resistant embryos, a surprisingly low percentage of genes, 2.24% of 6,754 analyzed, show statistically significant differences in transcript levels during late organogenesis between the two embryo populations. Conclusions Our study demonstrates important contrasts in responses between reference and resistant natural embryo populations to synergistic effects of surrogate model PAHs that may be important in adaptive mechanisms mediating PAH effects during fish embryo development. These results suggest that statistically significant changes in gene expression of relatively few genes contribute to the phenotypic changes and large morphological differences exhibited by reference and resistant populations upon exposure to PAH pollutants. By correlating cardiac physiology and morphology with changes in gene expression patterns of reference and resistant embryos, we provide additional evidence for acquired resistance among embryos whose parents live at heavily contaminated sites.
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Environmental and Molecular Toxicology, North Carolina State University, Box 7633, Raleigh, NC 27695-7633, USA.
| | | | | | | | | |
Collapse
|
27
|
Santos EM, Hamilton PB, Coe TS, Ball JS, Cook AC, Katsiadaki I, Tyler CR. Population bottlenecks, genetic diversity and breeding ability of the three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:264-271. [PMID: 24071362 DOI: 10.1016/j.aquatox.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 07/02/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Pollution is a significant environmental pressure on fish populations in both freshwater and marine environments. Populations subjected to chronic exposure to pollutants can experience impacts ranging from altered reproductive capacity to changes in population genetic structure. Few studies, however, have examined the reproductive vigor of individuals within populations inhabiting environments characterized by chronic pollution. In this study we undertook an analysis of populations of three-spined sticklebacks (Gasterosteus aculeatus) from polluted sites, to determine levels of genetic diversity, assess for evidence of historic population genetic bottlenecks and determine the reproductive competitiveness of males from these locations. The sites chosen included locations in the River Aire, the River Tees and the River Birket, English rivers that have been impacted by pollution from industrial and/or domestic effluents for over 100 years. Male reproductive competitiveness was determined via competitive breeding experiments with males and females derived from a clean water site, employing DNA microsatellites to determine parentage outcome. Populations of stickleback collected from the three historically polluted sites showed evidence of recent population bottlenecks, although only the River Aire population showed low genetic diversity. In contrast, fish collected from two relatively unpolluted sites within the River Gowy and Houghton Springs showed weak, or no evidence of such bottlenecks. Nevertheless, males derived from polluted sites were able to reproduce successfully in competition with males derived from clean water exposures, indicating that these bottlenecks have not resulted in any substantial loss of reproductive fitness in males.
Collapse
Affiliation(s)
- Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Johnson LL, Anulacion BF, Arkoosh MR, Burrows DG, da Silva DA, Dietrich JP, Myers MS, Spromberg J, Ylitalo GM. Effects of Legacy Persistent Organic Pollutants (POPs) in Fish—Current and Future Challenges. FISH PHYSIOLOGY 2013. [DOI: 10.1016/b978-0-12-398254-4.00002-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
29
|
Bach L, Dahllöf I. Local contamination in relation to population genetic diversity and resilience of an arctic marine amphipod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:58-66. [PMID: 22421731 DOI: 10.1016/j.aquatox.2012.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 05/31/2023]
Abstract
The objective of this study was to investigate whether populations inhabiting a contaminated environment are affected in terms of decreased genetic diversity due to selection of tolerant genotypes and if such effect carries a cost. Marine arctic amphipod populations (Orchomenella pinguis) were collected from sites within a contaminated fjord, as well as from sites outside the fjord on the west-coast of Greenland over three years (2006-2008). Impacts on genetic diversity, effects on resilience such as development of tolerance and cost were determined. AFLP-analysis was used to explore within and between population genetic diversity, and exposure studies were performed where the populations were subjected to known and unknown stressors to assess resilience. Populations collected at three contaminated sites all had reduced genetic diversity in 2007 compared to populations outside the fjord. This pattern was different in 2008 as all contaminated site populations increased in diversity, whereas a decrease in diversity occurred at the outer sites. However, tolerance, but even more so, cost, was related to contamination exposure in 2008, in spite of the shift in genetic diversity. We suggest that contamination rapidly induces effects that can be captured as tolerance and associated cost, whereas effects on genetic diversity can be difficult to separate from recent migration events that dilute eventual decreases in diversity due to contamination pressure. As long as impacted populations can be influenced by migration events that increase the genetic diversity and add health to an affected population, populations in contaminated areas may have enhanced probability of survival.
Collapse
Affiliation(s)
- Lis Bach
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | |
Collapse
|
30
|
Marques JF, Fonseca VF, Shao Z, Cabral HN, Tougard C, Berrebi P. Genetic diversity ofPomatoschistus microps(Perciformes: Gobiidae) in ecologically differentiated estuarine systems. FOLIA ZOOLOGICA 2012. [DOI: 10.25225/fozo.v61.i2.a3.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Joana F. Marques
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Vanessa F. Fonseca
- Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal
| | - Zhaojun Shao
- Institut des Sciences de l'Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, place Eugène Bataillon, 34095 Montpellier cedex 05, France
| | - Henrique N. Cabral
- Universidade de Lisboa, Faculdade de Ciências, Centro de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal
| | - Christelle Tougard
- Institut des Sciences de l'Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, place Eugène Bataillon, 34095 Montpellier cedex 05, France
| | - Patrick Berrebi
- Institut des Sciences de l'Evolution, UMR 5554 CNRS/UM2/IRD, Université Montpellier 2, cc065, place Eugène Bataillon, 34095 Montpellier cedex 05, France
| |
Collapse
|
31
|
Miller LM, Bartell SE, Schoenfuss HL. Assessing the effects of historical exposure to endocrine-active compounds on reproductive health and genetic diversity in walleye, a native apex predator, in a large riverine system. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:657-671. [PMID: 22105469 DOI: 10.1007/s00244-011-9731-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
In this combined field and laboratory study, we assessed whether populations of native walleye in the Upper Mississippi River experienced altered genetic diversity correlated with exposure to estrogenic endocrine-active compounds (EACs). We collected fin-clips for genetic analysis from almost 600 walleye (13 sites) and subsampled 377 of these fish (6 sites) for blood and reproductive organs. Finally, we caged male fathead minnows at 5 sampling sites to confirm the presence of estrogenic EACs. Our findings indicate that male walleye in four river segments produced measurable concentrations of plasma vitellogenin (an egg-yolk protein and, when expressed in male fish, a biomarker of acute estrogenic exposure), a finding consistent with the presence of estrogenic EACs and consistent with published historical data for at least three of these study sites (Grand Rapids, St. Paul, and Lake City on Lake Pepin). Patterns of vitellogenin induction were consistent for native walleye and caged fathead minnows. No widespread occurrence of histopathological changes, such as intersex was found compared with published reports of intersex at the furthest downstream study site. To assess possible effects of estrogenic exposure on the genetic diversity of walleye populations at the study sites, we DNA-fingerprinted individual fish using 10 microsatellite loci. Genetic differences were observed between populations; however, these differences were consistent with geographic distance between populations, with the largest observed difference in genetic diversity found between fish upstream and downstream of St. Anthony Falls (and/or Lock and Dam 1 of the Mississippi River), traditionally a historical barrier to upstream fish movement. Although the persistent occurrence of endocrine disruption in wild fish populations is troubling, we did not detect degradation of reproductive organs in individual walleye or alteration in genetic diversity of walleye populations.
Collapse
Affiliation(s)
- Loren M Miller
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
32
|
Durrant CJ, Stevens JR, Hogstrand C, Bury NR. The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3595-3603. [PMID: 21885173 DOI: 10.1016/j.envpol.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/07/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region.
Collapse
Affiliation(s)
- Christopher J Durrant
- King's College London, Metals Metabolism Group, Division of Diabetes and Nutritional Sciences, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | |
Collapse
|
33
|
Whitehead A, Pilcher W, Champlin D, Nacci D. Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc Biol Sci 2011; 279:427-33. [PMID: 21733895 DOI: 10.1098/rspb.2011.0847] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
34
|
Lind EE, Grahn M. Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus). ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:503-12. [PMID: 21455608 PMCID: PMC3081435 DOI: 10.1007/s10646-011-0639-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (P<0.005, 1000 permutations) and locus-by-locus Analysis of Molecular Variance (AMOVA) further confirmed that habitats are significantly separated (F(ST)=0.021, P<0.01, 1023 permutations). The amount of genetic variation between populations did not differ between habitats, and populations from both habitats had similar levels of heterozygosity (polluted sites Nei's Hs=0.11, reference sites Nei's Hs=0.11). Still, pairwise F(ST): s between three, out of four, pairs of polluted-reference sites were significant. A F(ST)-outlier analysis showed that 21 (8.4%) loci were statistically different from a neutral distribution at the P<0.05 level and therefore indicated to be under divergent selection. When removing 13 F(ST)-outlier loci, significant at the P<0.01 level, differentiation between habitats disappeared in a multidimensional scaling plot. In conclusion, pulp mill effluence has acted as a selective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment.
Collapse
Affiliation(s)
- Emma E Lind
- School of Life Sciences, Södertörn University, 141 89 Huddinge, Sweden.
| | | |
Collapse
|
35
|
Bozinovic G, Oleksiak MF. Embryonic gene expression among pollutant resistant and sensitive Fundulus heteroclitus populations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:221-229. [PMID: 20363516 PMCID: PMC3225961 DOI: 10.1016/j.aquatox.2010.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 05/22/2023]
Abstract
Changes in gene expression, coupled with biochemical, physiological, and behavioral alterations, play a critical role in adaptation to environmental stress. Our goal was to explore ways natural populations may have adapted to local, polluted environments. We took advantage of natural populations of Fundulus heteroclitus, one of the few studied fish species in North America that has established resistant populations in highly contaminated urban estuaries. We analyzed morphology, physiology, and gene expression of developing F. heteroclitus embryos during late organogenesis (stage 31); these embryos were from both resistant and sensitive populations and were raised in a common, unpolluted environment. While cardiac heart rates show significant differences between embryos of parents from clean and heavily contaminated Superfund sites, time-to-stage, embryo morphology, and gene expression profile analyses do not differ significantly between untreated embryos from resistant and sensitive populations. Further evaluation that includes tissue-specific approaches in gene expression analysis and larger sample sizes may be necessary to highlight important phenotypes associated with mechanisms of sensitivity and resistance among natural F. heteroclitus embryo populations. Alternatively, population differences may be masked by developmental canalization, and biologically important differences between sensitive and resistant embryos may only manifest with exposure (e.g., be dependent on gene by environment interactions).
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Environmental and Molecular Toxicology, Box 7633, North, Carolina State University, Raleigh, NC 27695-7633, United States.
| | - Marjorie F Oleksiak
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| |
Collapse
|
36
|
Williams LM, Ma X, Boyko AR, Bustamante CD, Oleksiak MF. SNP identification, verification, and utility for population genetics in a non-model genus. BMC Genet 2010; 11:32. [PMID: 20433726 PMCID: PMC2874759 DOI: 10.1186/1471-2156-11-32] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/30/2010] [Indexed: 02/06/2023] Open
Abstract
Background By targeting SNPs contained in both coding and non-coding areas of the genome, we are able to identify genetic differences and characterize genome-wide patterns of variation among individuals, populations and species. We investigated the utility of 454 sequencing and MassARRAY genotyping for population genetics in natural populations of the teleost, Fundulus heteroclitus as well as closely related Fundulus species (F. grandis, F. majalis and F. similis). Results We used 454 pyrosequencing and MassARRAY genotyping technology to identify and type 458 genome-wide SNPs and determine genetic differentiation within and between populations and species of Fundulus. Specifically, pyrosequencing identified 96 putative SNPs across coding and non-coding regions of the F. heteroclitus genome: 88.8% were verified as true SNPs with MassARRAY. Additionally, putative SNPs identified in F. heteroclitus EST sequences were verified in most (86.5%) F. heteroclitus individuals; fewer were genotyped in F. grandis (74.4%), F. majalis (72.9%), and F. similis (60.7%) individuals. SNPs were polymorphic and showed latitudinal clinal variation separating northern and southern populations and established isolation by distance in F. heteroclitus populations. In F. grandis, SNPs were less polymorphic but still established isolation by distance. Markers differentiated species and populations. Conclusions In total, these approaches were used to quickly determine differences within the Fundulus genome and provide markers for population genetic studies.
Collapse
Affiliation(s)
- Larissa M Williams
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | | | | | | | | |
Collapse
|
37
|
Liu JY, Lun ZR, Zhang JB, Yang TB. Population genetic structure of striped mullet, Mugil cephalus, along the coast of China, inferred by AFLP fingerprinting. BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2009.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Martins N, Bollinger C, Harper RM, Ribeiro R. Effects of acid mine drainage on the genetic diversity and structure of a natural population of Daphnia longispina. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 92:104-112. [PMID: 19230987 DOI: 10.1016/j.aquatox.2009.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/15/2009] [Accepted: 01/17/2009] [Indexed: 05/27/2023]
Abstract
The increase in resistance to contaminants can result in the loss of genetic diversity of impacted populations. In this work, the effects of acid mine drainage (AMD) on the genetic diversity and structure of a historically exposed population of Daphnia longispina were evaluated using amplified fragment length polymorphism (AFLP) analysis. Individual sensitivity to acute copper exposure was determined in order to characterize the populations in terms of metal tolerance and in an attempt to identify possible contaminant indicative bands (CIB). No reduction in genetic diversity was found in the AMD impacted site population, in comparison to two reference populations. However, the analysis of molecular variance indicated a significant genetic differentiation from the two reference populations and a significant correlation between individual genetic distance and tolerance. The different average tolerance of individuals presenting one specific AFLP band indicated the existence of one putative CIB.
Collapse
Affiliation(s)
- Nelson Martins
- IMAR-Instituto do Mar, Department of Zoology, University of Coimbra, Largo Marquês de Pombal, P-3004 517 Coimbra, Portugal. aa
| | | | | | | |
Collapse
|
39
|
Nacci D, Huber M, Champlin D, Jayaraman S, Cohen S, Gauger E, Fong A, Gomez-Chiarri M. Evolution of tolerance to PCBs and susceptibility to a bacterial pathogen (Vibrio harveyi) in Atlantic killifish (Fundulus heteroclitus) from New Bedford (MA, USA) harbor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:857-864. [PMID: 19110353 PMCID: PMC2760768 DOI: 10.1016/j.envpol.2008.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 05/27/2023]
Abstract
A population of the non-migratory estuarine fish Fundulus heteroclitus (Atlantic killifish) resident to New Bedford (NB), Massachusetts, USA, an urban harbor highly contaminated with polychlorinated biphenyls (PCBs), demonstrates recently evolved tolerance to some aspects of PCB toxicity. PCB toxicology, ecological theory, and some precedence supported expectations of increased susceptibility to pathogens in NB killifish. However, laboratory bacterial challenges of the marine pathogen Vibrio harveyi to wild fish throughout the reproductive season and to their mature laboratory-raised progeny demonstrated comparable survival by NB and reference killifish, and improved survival by NB males. These results are inconsistent with hypothesized trade-offs of adaptation, and suggest that evolved tolerance in NB killifish may include mechanisms that minimize the immunosuppressive effects of PCBs. Compensatory strategies of populations persisting in highly contaminated environments provide a unique perspective for understanding the long-term ecological effects of toxic chemicals.
Collapse
Affiliation(s)
- Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Williams LM, Oleksiak MF. Signatures of selection in natural populations adapted to chronic pollution. BMC Evol Biol 2008; 8:282. [PMID: 18847479 PMCID: PMC2570689 DOI: 10.1186/1471-2148-8-282] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 10/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Populations of the teleost fish Fundulus heteroclitus appear to flourish in heavily polluted and geographically separated Superfund sites. Populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) have independently evolved adaptive resistance to chemical pollutants. In these polluted populations, natural selection likely has altered allele frequencies of loci that affect fitness or that are linked to these loci. The aim of this study was to identify loci that exhibit non-neutral behavior in the F. heteroclitus genome in polluted populations versus clean reference populations. Results To detect signatures of natural selection and thus identify genetic bases for adaptation to anthropogenic stressors, we examined allele frequencies for many hundreds of amplified fragment length polymorphism markers among populations of F. heteroclitus. Specifically, we contrasted populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) to clean reference populations flanking the polluted sites. When empirical FST values were compared to a simulated distribution of FST values, 24 distinct outlier loci were identified among pairwise comparisons of pollutant impacted F. heteroclitus populations and both surrounding reference populations. Upon removal of all outlier loci, there was a strong correlation (R2 = 0.79, p < 0.0001) between genetic and geographical distance. This apparently neutral evolutionary pattern was not evident when outlier loci were included (R2 = 0.092, p = 0.0721). Two outlier loci were shared between New Bedford Harbor and Elizabeth River populations, and two different loci were shared between Newark Bay and Elizabeth River populations. Conclusion In total, 1% to 6% of loci are implicated as being under selection or linked to areas of the genome under selection in three F. heteroclitus populations that reside in polluted estuaries. Shared loci among polluted sites indicate that selection may be acting on multiple loci involved in adaptation, and loci shared between polluted sites potentially are involved in a generalized adaptive response.
Collapse
Affiliation(s)
- Larissa M Williams
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | |
Collapse
|
41
|
Nakamura Y, Suga K, Sakakura Y, Sakamoto T, Hagiwara A. Genetic and growth differences in the outcrossings between two clonal strains of the self-fertilizing mangrove killifish. CAN J ZOOL 2008. [DOI: 10.1139/z08-075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The populations of the only known self-fertilizing vertebrate Kryptolebias marmoratus (Poey, 1880) (formerly known as Rivulus marmoratus Poey, 1880; Cyprinodontiformes: Aplocheilidae) usually consist of different homozygous lineages; however, heterozygous individuals are found occasionally and ratios of homozygosity and heterozygosity in populations are dependent on the proportion of males. However, it is still unclear what impact male-mediated genetic diversity has on the phenotype of K. marmoratus. To clarify this, we attempted outcrossing between male and hermaphrodite of two different clonal strains with different life-history traits using artificial insemination, and examined the genotypes and growth of the hybrid F2 generation. We detected genetic differences between the two clonal strains using amplified fragment length polymorphism (AFLP) analysis with 3 primer combinations, and then obtained 11 AFLP markers. From a total of 31 artificial inseminations with two clonal strains, 1 of 13 hatched fish clearly indicated heterozygosity. The hybrid F2 generations were also heterozygous. Moreover, the growths of the hybrid F2 generation were intermediate of the parental strains from days 0 to 30. Therefore, outcrossing changes genetic architecture and the new genotypes potentially result in new phenotypes of the subsequent generations of K. marmoratus. It may also play a role in adaptation to new environments and the facilitation of local adaptation.
Collapse
Affiliation(s)
- Yukino Nakamura
- Graduate School of Science and Technology, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Nagasaki Industrial Promotion Foundation, Omura Ikeda 2-1303-8, Nagasaki 856-0026, Japan
- Faculty of Fisheries, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku Konan 4-5-7, Tokyo 108-8477, Japan
| | - Koushirou Suga
- Graduate School of Science and Technology, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Nagasaki Industrial Promotion Foundation, Omura Ikeda 2-1303-8, Nagasaki 856-0026, Japan
- Faculty of Fisheries, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku Konan 4-5-7, Tokyo 108-8477, Japan
| | - Yoshitaka Sakakura
- Graduate School of Science and Technology, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Nagasaki Industrial Promotion Foundation, Omura Ikeda 2-1303-8, Nagasaki 856-0026, Japan
- Faculty of Fisheries, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku Konan 4-5-7, Tokyo 108-8477, Japan
| | - Takashi Sakamoto
- Graduate School of Science and Technology, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Nagasaki Industrial Promotion Foundation, Omura Ikeda 2-1303-8, Nagasaki 856-0026, Japan
- Faculty of Fisheries, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku Konan 4-5-7, Tokyo 108-8477, Japan
| | - Atsushi Hagiwara
- Graduate School of Science and Technology, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Nagasaki Industrial Promotion Foundation, Omura Ikeda 2-1303-8, Nagasaki 856-0026, Japan
- Faculty of Fisheries, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku Konan 4-5-7, Tokyo 108-8477, Japan
| |
Collapse
|
42
|
Duvernell DD, Lindmeier JB, Faust KE, Whitehead A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol Ecol 2008; 17:1344-60. [PMID: 18302693 DOI: 10.1111/j.1365-294x.2007.03648.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major goal of population genetics research is to identify the relative influences of historical and contemporary processes that serve to structure genetic variation. Most population genetic models assume that populations exist in a state of migration-drift equilibrium. However, in the past this assumption has rarely been verified, and is likely rarely achieved in natural populations. We assessed the equilibrium status at both local and regional scales of the Atlantic killifish, Fundulus heteroclitus. This species is a model organism for the study of adaptive clinal variation, but has also experienced a complicated history of range expansion and secondary contact following allopatric divergence, potentially obscuring the influence of contemporary evolutionary processes. Presumptively neutral genetic markers (microsatellites) demonstrated zones of secondary intergradation among coastal populations centred around northern New Jersey and the Chesapeake Bay region. Analysis of genetic variation indicated isolation by distance among some populations and provided supporting evidence that the Delaware Bay, but not the Chesapeake Bay, has acted as a barrier to dispersal among coastal populations. Bayesian estimates indicated large effective population sizes and low migration rates, and were in good agreement with empirically derived estimates of population and neighbourhood size from mark-recapture studies. These data indicate that populations are not in migration-drift equilibrium at a regional scale, and suggest that contributing factors include large population size combined with relatively low migration rates. These conditions should be considered when interpreting the evolutionary significance of the distribution of genetic variation among F. heteroclitus populations.
Collapse
Affiliation(s)
- David D Duvernell
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA.
| | | | | | | |
Collapse
|
43
|
Bourret V, Couture P, Campbell PGC, Bernatchez L. Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 86:76-90. [PMID: 18031837 DOI: 10.1016/j.aquatox.2007.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/28/2007] [Accepted: 10/05/2007] [Indexed: 05/25/2023]
Abstract
Depending on such factors as the intensity and duration of the exposure, and the genetic diversity and connectedness of the starting population, exposure to elevated metal concentrations can result in population level alterations such as demographic bottlenecks or metal-induced selection. These processes can be revealed using a population genetic approach, and have important implications with respect to population persistence. The main objective of this study was to examine the role of metal contamination in driving evolutionary changes by documenting patterns of genetic diversity within and among populations of wild yellow perch (Perca flavescens) in two major mining regions that have been subjected to metal emissions from smelters for at least 80 years; Rouyn-Noranda, Québec and Sudbury, Ontario. Yellow perch populations from ten lakes representing a gradient of metal contamination in each of the two lake systems were evaluated concurrently to reveal relationships between metal contamination and genetic diversity. These replicated sympatric observations allowed us to evaluate correlations and infer causal relationships between metal exposure and evolutionary responses in this species. Within-population gene diversity over all loci was negatively correlated with liver cadmium contamination (P<0.001; r(2)=0.47). Similarly, a negative correlation between gene diversity and liver copper contamination was observed at a single locus (Pfla L1, P=0.005; r(2)=0.33), suggesting a local effect of copper contamination. Internal relatedness, an index of individual diversity, presented the opposite tendency as the more contaminated individuals were more diverse than were the less contaminated ones in contaminated and reference populations. Our results thus suggest that the selective response to contamination has been large enough to substantially reduce the within-population genetic diversity, despite the fact that the less inbred individuals may be favoured by selection within any given population. Overall, our results reveal that >50 years of metal contamination have significantly impacted patterns of genetic diversity observed among populations of wild yellow perch in mining areas and as such, may have affected the capacity of populations to respond to future environmental changes.
Collapse
Affiliation(s)
- Vincent Bourret
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Québec, Canada
| | | | | | | |
Collapse
|
44
|
Burnett KG, Bain LJ, Baldwin WS, Callard GV, Cohen S, Di Giulio RT, Evans DH, Gómez-Chiarri M, Hahn ME, Hoover CA, Karchner SI, Katoh F, MacLatchy DL, Marshall WS, Meyer JN, Nacci DE, Oleksiak MF, Rees BB, Singer TD, Stegeman JJ, Towle DW, Van Veld PA, Vogelbein WK, Whitehead A, Winn RN, Crawford DL. Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2007; 2:257-86. [PMID: 18071578 PMCID: PMC2128618 DOI: 10.1016/j.cbd.2007.09.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
Collapse
Affiliation(s)
- Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA
| | - Lisa J. Bain
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | - William S. Baldwin
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | | | - Sarah Cohen
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94120, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - David H. Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Fumi Katoh
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Deborah L. MacLatchy
- Faculty of Science, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - William S. Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Joel N. Meyer
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - Diane E. Nacci
- US Environmental Protection Agency Office of Research and Development, Narragansett, RI 02882, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Thomas D. Singer
- School of Optometry, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David W. Towle
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Maine 04672, USA
| | - Peter A. Van Veld
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Wolfgang K. Vogelbein
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Richard N. Winn
- Aquatic Biotechnology and Environmental Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
45
|
Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 2007; 16:3737-58. [PMID: 17850542 DOI: 10.1111/j.1365-294x.2007.03435.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, the amplified fragment length polymorphism (AFLP) technique has gained a lot of popularity, and is now frequently applied to a wide variety of organisms. Technical specificities of the AFLP procedure have been well documented over the years, but there is on the contrary little or scattered information about the statistical analysis of AFLPs. In this review, we describe the various methods available to handle AFLP data, focusing on four research topics at the population or individual level of analysis: (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. Two kinds of analysis methods can be distinguished, depending on whether they are based on the direct study of band presences or absences in AFLP profiles ('band-based' methods), or on allelic frequencies estimated at each locus from these profiles ('allele frequency-based' methods). We investigate the characteristics and limitations of these statistical tools; finally, we appeal for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.
Collapse
Affiliation(s)
- A Bonin
- Diversity Arrays Technology P/L, Yarralumla, ACT 2600, Australia
| | | | | |
Collapse
|