1
|
Andreï J, Guérold F, Bouquerel J, Devin S, Mehennaoui K, Cambier S, Gutleb AC, Giambérini L, Pain-Devin S. Assessing the effects of silver nanoparticles on the ecophysiology of Gammarus roeseli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106421. [PMID: 36805111 DOI: 10.1016/j.aquatox.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Being part of the macrobenthic fauna, gammarids are efficient indicators of contamination of aquatic ecosystems by nanoparticles that are likely to sediment on the bottom. The present study investigates the effects of silver nanoparticles (nAg) on ecophysiological functions in Gammarus roeseli by using a realistic scenario of contamination. Indeed, an experiment was conducted during 72 h, assessing the effects of 5 silver nAg from 10 to 100 nm diluted at concentrations of maximum 5 µg L-1 in a natural water retrieved from a stream and supplemented with food. The measured endpoints in gammarids were survival, silver concentrations in tissues, consumption of oxygen and ventilation of gills. Additionally, a set of biomarkers of the energetic metabolism was measured. After a 72-h exposure, results showed a concentration-dependent increase of silver levels in G. roeseli that was significant for the smallest nAg size (10 nm). Ecophysiological responses in G. roeseli were affected and the most striking effect was a concentration-dependent increase in oxygen consumption especially for the smallest nAg (10 to 40 nm), whereas ventilation of gills by gammarids was not changed. The potential mechanisms underlying these findings are discussed. Thus, we demonstrated the very low exposure concentration of 0.5 µg L-1 for the small nAg size led to significant ecophysiological effects reinforcing the need to further investigate subtle effects on nanoparticles on aquatic organisms.
Collapse
Affiliation(s)
| | | | | | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Kahina Mehennaoui
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France
| | | |
Collapse
|
2
|
Jackson JK, Funk DH. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0081. [PMID: 30509923 DOI: 10.1098/rstb.2018.0081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Salinity in freshwater ecosystems has increased significantly at numerous locations throughout the world, and this increase often reflects the use or production of salts from road de-icing, mining/oil and gas drilling activities, or agricultural production. When related to de-icing salts, highest salinity often occurs in winter when water temperature is often low relative to mean annual temperature at a site. Our study examined acute (96 h) responses to elevated salinity (NaCl) concentrations at five to seven temperature treatments (5-25°C) for four mayfly species (Baetidae: Neocloeon triangulifer, Procloeon fragile; Heptageniidae: Maccaffertium modestum; Leptophlebiidae: Leptophlebia cupida) that are widely distributed across eastern North America. Based on acute LC50s at 20°C, P. fragile was most sensitive (LC50 = 767 mg l-1, 1447 µS cm-1), followed by N. triangulifer (2755 mg l-1, 5104 µS cm-1), M. modestum (2760 mg l-1, 5118 µS cm-1) and L. cupida (4588 mg l-1, 8485 µS cm-1). Acute LC50s decreased as temperature increased for all four species (n = 5-7, R 2 = 0.65-0.88, p = 0.052-0.002). Thus, acute salt toxicity is strongly temperature dependent for the mayfly species we tested, which suggests that brief periods of elevated salinity during cold seasons or in colder locations may be ecologically less toxic than predicted by standard 20 or 25°C laboratory bioassays.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- John K Jackson
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| | - David H Funk
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| |
Collapse
|
3
|
von Fumetti S, Blaurock K. Effects of the herbicide Roundup® on the metabolic activity of Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1249-1260. [PMID: 30191520 DOI: 10.1007/s10646-018-1978-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Pesticides can easily reach surface waters via runoff and their potential to have detrimental impacts on freshwater organisms is high. Not much is known about how macroinvertebrates react to glyphosate contamination. In this study we investigated lethal and sublethal effects of the exposure of Gammarus fossarum to Roundup®, a glyphosate-based herbicide. The LC10 and LC50 values after 96 h were determined to be 0.65 ml/L Roundup® (230 mg/L glyphosate) and 0.96 ml/L Roundup® (340 mg/L glyphosate), respectively. As a sublethal measure of toxicity we conducted eight experiments with the feeding activity and the respiratory electron transport system (ETS) activity as endpoints. All experiments lasted seven days. Although the LC10 concentration of Roundup® was used for the feeding activity tests, 49% of the gammarids died before the end of the experiments, which is inconsistent with the calculated LC10-values. The feeding activity was significantly higher in Roundup®-enriched water (mean = 0.18 mg/mg x d) in comparison to pure spring water (mean = 0.079 mg/mg x d). No significant difference was observed between the ETS activity, which was determined after 24, 48 or 96 h after the start of the experiment, of the gammarids in Roundup® solution and in the control. The LC-values determined here are rather high, and exceed background glyphosate concentrations in most anthropogenically influenced surface waters. The increased feeding activity when exposed to Roundup® in combination with an unchanged ETS activity suggests effects on the metabolic efficiency of G. fossarum. We argue that Roundup® enhances the anabolic activity (feeding activity) in order to maintain the catabolic activity (ETS activity).
Collapse
Affiliation(s)
- Stefanie von Fumetti
- Department of Environmental Sciences, Biogeography Research Group, University of Basel, Basel, Switzerland.
| | - Katharina Blaurock
- Department of Hydrology, Faculty for Biology, Chemistry, and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Little CJ, Altermatt F. Species turnover and invasion of dominant freshwater invertebrates alter biodiversity-ecosystem-function relationship. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1299] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chelsea J. Little
- Department of Aquatic Ecology; Eawag: Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology; Eawag: Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
5
|
Silva V, Marques CR, Campos I, Vidal T, Keizer JJ, Gonçalves F, Abrantes N. Combined effect of copper sulfate and water temperature on key freshwater trophic levels - Approaching potential climatic change scenarios. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:384-392. [PMID: 29096265 DOI: 10.1016/j.ecoenv.2017.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/27/2017] [Accepted: 10/16/2017] [Indexed: 05/03/2023]
Abstract
This work relied on the use microcosms to evaluate the individual and the combined effects of different levels of copper sulfate (0.0, 0.013, 0.064 and 0.318mg Cu L-1) - a fungicide commonly exceeding allowable thresholds in agricultural areas - and a range of water temperature increase scenarios (15, 20 and 25°C) on freshwater species belonging to different functional groups. Hence, the growth inhibition of primary producers (the microalgae Raphidocelis subcapitata and the macrophyte Lemna minor), as well as the survival and feeding behavior of a shredder species (the Trichoptera Schizopelex sp.) were evaluated. The results revealed that copper was toxic to primary producers growth, as well as shredders growth and survival, being the growth of L. minor particularly affected. Higher water temperatures had generally enhanced the growth of primary producers under non-contaminated (microalgae and macrophytes) or low-contaminated (macrophytes) conditions. Despite the tendency for a more pronounced toxicity of copper under increasing water temperatures, a significant interaction between the two factors was only observed for microalgae. Since the test organisms represent relevant functional groups for sustaining freshwater systems functions, the present results may raise some concerns on the impacts caused by possible future climate change scenarios in aquatic habitats chronically exposed to the frequent or intensive use of the fungicide copper sulfate.
Collapse
Affiliation(s)
- Vera Silva
- Department of Environment & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R Marques
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Campos
- Department of Environment & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Vidal
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jan Jacob Keizer
- Department of Environment & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Department of Environment & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Labaude S, Rigaud T, Cézilly F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. GLOBAL CHANGE BIOLOGY 2017; 23:1415-1424. [PMID: 27591398 DOI: 10.1111/gcb.13490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Climate change can have critical impacts on the ecological role of keystone species, leading to subsequent alterations within ecosystems. The consequences of climate change may be best predicted by understanding its interaction with the cumulative effects of other stressors, although this approach is rarely adopted. However, whether this interaction is additive or interactive can hardly be predicted from studies examining a single factor at a time. In particular, biotic interactions are known to induce modifications in the functional role of many species. Here, we explored the effect of temperature on leaf consumption by a keystone freshwater shredder, the amphipod Gammarus fossarum. This species is found at high densities in the wild and relies on aggregation as an antipredator behavior. In addition, gammarids regularly harbor acanthocephalan parasites that are known to induce multiple effects on their hosts, including modifications on their functional role. We thus assessed the cumulative effect of both intraspecific interactions and parasitism. Consumption tests were conducted on gammarids, either naturally infected with Pomphorhynchus tereticollis or uninfected, feeding alone or in groups. Our results show that increased temperatures induced a significant increase in consumption, but only to a certain extent. Interestingly, consumption at the highest temperature depended on amphipod density: Whereas a decrease was observed for single individuals, no such effect on feeding was observed for individuals in groups. In addition, infection by acanthocephalan parasites per se significantly negatively impacted the shredding role of gammarids. Overall, the combined effects of parasitism and temperature appeared to be additive. Thus, future studies focusing on the impact of climate change on the functional role of keystone species may benefit from a multimodal approach under realistic conditions to derive accurate predictions.
Collapse
Affiliation(s)
- Sophie Labaude
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Thierry Rigaud
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Frank Cézilly
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
7
|
Feiner M, Beggel S, Geist J. Miniature circulatory systems: A new exposure system for ecotoxicological effect assessments in riverine organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2827-2833. [PMID: 27082061 DOI: 10.1002/etc.3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Long-term effect assessments in ecotoxicological investigations are important, yet there is a lack of suitable exposure systems for these experiments that can be used for riverine species. A cost-efficient miniature circulatory system was developed that was evaluated for its applicability in long-term exposures in 2 stream-dwelling species: brown trout (Salmo trutta) and an amphipod (Gammarus roeseli). In an egg-to-fry exposure of S. trutta, the toxicity of 2 reverse osmosis concentrates was investigated as examples. Control hatching rate of yolk sac fry was 75 ± 7% and thus complies with the Organisation for Economic Co-operation and Development validity criterion (≥66%). The reverse osmosis concentrates did not impair the hatching rate in any tested concentration. In G. roeseli, mortality rates remained below 20% during a 21-d cultivation, fulfilling the common validity criterion in ecotoxicological testing. Mortality was significantly lower when the species was fed with conditioned alder leaves instead of an artificial shrimp food. Finally, a toxicity test on G. roeseli using copper as the test substance revealed median lethal concentration (LC50) values of 156 μg/L after 96 h and 99 μg/L after 264 h, which is in line with literature findings using other accepted exposure units. In conclusion, the miniature circulatory system provides a novel and cost-efficient exposure system for long-term investigations on riverine species that may also be applicable for other species of fishes and macroinvertebrates. Environ Toxicol Chem 2016;35:2827-2833. © 2016 SETAC.
Collapse
Affiliation(s)
- Mona Feiner
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Sebastian Beggel
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany.
| |
Collapse
|
8
|
Embryonic transcriptome of the brackishwater amphipod Gammarus chevreuxi. Mar Genomics 2016; 28:5-6. [PMID: 26896099 DOI: 10.1016/j.margen.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022]
Abstract
Environmental change can dramatically alter the development of aquatic organisms. While the effect of such change on physiological and morphological ontogenies is becoming clearer, the molecular mechanisms underpinning them are largely unexplored. Characterizing these mechanisms is often limited by the lack of molecular resources. We have applied Illumina HiSeq sequencing to RNA isolated from different developmental stages of the brackishwater amphipod Gammarus chevreuxi. Over 52.6M paired-end reads were assembled de novo into 172,081 contigs, representing 118,812 potential genes. The assembly generated constitutes a reference embryonic transcriptome for an ecologically-important aquatic shredder species. This resource will contribute to our understanding of the mechanisms underpinning the development of physiological function through functional, comparative and quantitative expression studies. It will also allow the identification of candidate biomarkers for assessing the impact of environmental stressors in estuarine systems.
Collapse
|