1
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
2
|
Zeb R, Yin X, Chen F, Wang KJ. Sex-specific divergent responses of marine medaka (Oryzias melastigma) towards long-term benzo[a]pyrene exposure revealed stronger resilience and recoverability in female fish. CHEMOSPHERE 2024; 364:143077. [PMID: 39134182 DOI: 10.1016/j.chemosphere.2024.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
4
|
Zhou Y, Xu R, Gao Z, Miao J, Pan L. Insights into mechanism of DNA damage and repair-apoptosis in digestive gland of female scallop Chlamys farreri under benzo[a]pyrene exposure during reproductive stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109738. [PMID: 37661044 DOI: 10.1016/j.cbpc.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 μg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Costa GKDA, da Silva SPA, Trindade MRCM, Santos FLD, Carreira RS, Massone CG, Sant'Ana OD, da Silva SMBC. Concentration of polycyclic aromatic hydrocarbons (PAHs) and histological changes in Anomalocardia brasiliana and Crassostrea rhizophorae from Pernambuco, Brazil after the 2019 oil spill. MARINE POLLUTION BULLETIN 2023; 192:115066. [PMID: 37236092 DOI: 10.1016/j.marpolbul.2023.115066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The present study aimed to analyze the concentrations of polycyclic aromatic hydrocarbons (PAHs) in populations of the shellfish Anomalocardia brasiliana and oysters Crassostrea rhizophorae three years after the 2019 oil spill, as well as evaluate histopathological changes on the gill tissues of the bivalves. Individuals of both species were sampled at points along the northern and southern coast of Pernambuco, Brazil. The permanence of oil residues was confirmed, evidenced by the total concentration of PAHs in the shellfish from the northern coast, which was roughly four times higher than the southern one. Among the PAHs analyzed, the low molecular weight compounds naphthalene and anthracene were the main contributors to the total concentration. Histological changes in the gills of the bivalves, were more severe in the specimens sampled on the north coast indicating alterations in the bivalve's health, mainly on the state's northern coast.
Collapse
Affiliation(s)
- Gisely Karla de Almeida Costa
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Scarlatt Paloma Alves da Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Maria Raissa Coelho Marchetti Trindade
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Fernando Leandro Dos Santos
- Department de Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Renato S Carreira
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Otoniel D Sant'Ana
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Suzianny Maria Bezerra Cabral da Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil.
| |
Collapse
|
6
|
Bi Y, Chen W, Miao J, Pan L, Li D. Bioaccumulation, Detoxification, and Biological Macromolecular Damage of Benzo[a]pyrene in Exposure in Tissues and Subcellular Fractions of Scallop Chlamys farreri. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2353-2364. [PMID: 35751451 DOI: 10.1002/etc.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Because of the persistence and high toxicity of benzo[a]pyrene (B[a]P), the bioaccumulation and detoxification mechanisms of B[a]P have been studied extensively at the tissue level; but the data at the subcellular level in bivalves have not been reported. The present study was conducted to investigate the effects of B[a]P exposure on bioaccumulation, detoxification, and biomacromolecular damage in gills, digestive glands, and their subcellular fractions of the scallop Chlamys farreri. The subcellular fraction contains cytoplasm, mitochondria, microsome, nucleus, cell membrane, and overall organelle. The results demonstrated that B[a]P accumulation showed a clear time-dose effect. Based on the time-dependent accumulation of B[a]P in subcellular fractions, we speculated that the intracellular migration order of B[a]P was cell membrane, organelle, and nucleus in turn. Considering the difference of B[a]P accumulation may be related to B[a]P metabolism, we have further confirmed that the activities of B[a]P metabolizing enzymes in scallop tissues and subcellular fractions were significantly tempted by B[a]P (p < 0.05), including 7-ethoxyresorufin O-deethylase (increased), glutathione-S-transferase (GST; decreased), and superoxide dismutase (increased). First, GST was detected in bivalve cytoplasm and microsome. Second, B[a]P exposure also caused biomacromolecules damage. The results demonstrated that mitochondria and microsome were more vulnerable to lipid peroxidation than cell membrane and nucleus. Taken together, the present study fills some of the gaps in our knowledge of the bioaccumulation and detoxification mechanisms of C. farreri exposed to B[a]P in subcellular fractions and deeply explores the transportation and the main metabolic and damage sites of polycyclic aromatic hydrocarbons (PAHs) in cells, which helped us to comprehensively understand the toxic mechanism of PAHs on bivalves. Environ Toxicol Chem 2022;41:2353-2364. © 2022 SETAC.
Collapse
Affiliation(s)
- Yaqi Bi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Wei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
7
|
Qi R, Pan L, Liu T, Li Z. Source risk, ecological risk, and bioeffect assessment for polycyclic aromatic hydrocarbons (PAHs) in Laizhou Bay and Jiaozhou Bay of Shandong Peninsula, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56705-56726. [PMID: 35347599 DOI: 10.1007/s11356-022-19778-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In order to incorporate the contribution of pollution sources to ecological risks into environmental monitoring, positive matrix factorization-risk quotient (PMF-RQ) was used to quantify the contribution of different PAH sources to ecological risks, which indicated that the unburned petroleum, vehicular emissions, and diesel combustion were the main sources of PAHs in Laizhou Bay and Jiaozhou Bay, and they were caused by petrochemical industry, maritime shipping, and urban traffic exhaust as the major sources of PAHs for ecological risk. Meanwhile, integrated biomarker response (IBR) and multi-biomarker pollution index (MPI) suggested that September was the most polluted month for PAHs in Laizhou Bay and Jiaozhou Bay and the pollution in Laizhou Bay was significantly higher than that in Jiaozhou Bay. This research was dedicated to explore the monitoring pattern for PAH pollution from the source to bioeffects, and it may have contributed a scientific support to monitoring and governance of marine PAH pollution.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Zhou Y, Yao L, Pan L, Wang H. Bioaccumulation and function analysis of glutathione S-transferase isoforms in Manila clam Ruditapes philippinarum exposed to different kinds of PAHs. J Environ Sci (China) 2022; 112:129-139. [PMID: 34955196 DOI: 10.1016/j.jes.2021.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/14/2023]
Abstract
This study analyzed the function of different glutathione S-transferase (GST) isoforms and detoxification metabolism responses in Manila clam, Ruditapes philippinarum, exposed to 4 kinds of polycyclic aromatic hydrocarbons (PAHs) single, and their mixtures for 15 days under laboratory conditions. 13 kinds of GSTs in R. philippinarum were classified, and the results of tissue distribution indicated that 12 kinds of GSTs (except GST sigma 3) expressed most in digestive glands. We detected the mRNA expression levels of aryl hydrocarbon receptor signaling pathway, and detoxification system in digestive glands of clams exposed to benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and BaP + CHR + BaA + BbF, respectively. Among these genes, we selected GST-sigma, GST-omega and GST-pi as potential indicators to BaP; GST-sigma, GST-A and GST-rho to CHR; GST-pi, GST-sigma, GST-A, GST-rho and GST-microsomal to BaA; GST-theta and GST-mu to BbF; while GST-pi and GST-mu to the mixture of BaP, CHR, BaA and BbF. Additionally, the bioaccumulation of PAHs in tissues increased remarkably over time, and showed an obvious dose-effect. Under the same concentration, the bioaccumulation in single exposure group was higher than that in mixture group, and the bioaccumulation of PAHs in tissues with different concentrations of stress was irregular. The results revealed the metabolic differences and bioaccumulation rules in clams exposed to four kinds of PAHs, and provided more valuable information for the PAHs risk assessment.
Collapse
Affiliation(s)
- Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Linlin Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hongdan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
9
|
Zeng X, Liu Y, Xu L, Hu Q, Hu J, Yu Z. Co-occurrence and potential ecological risk of parent and oxygenated polycyclic aromatic hydrocarbons in coastal sediments of the Taiwan Strait. MARINE POLLUTION BULLETIN 2021; 173:113093. [PMID: 34744012 DOI: 10.1016/j.marpolbul.2021.113093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Thirty-two surface sediment samples, collected from the Taiwan Strait (TWS), were investigated for the occurrence, composition profile, and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). PAHs were ubiquity in the TWS with a total concentration (∑PAHs, excluding naphthalene due to its high volatility) ranging from 17.8-213 ng g-1. Benzo[b] fluoranthene, fluoranthene, phenanthrene, and pyrene were the predominant PAHs. Also, eight OPAHs were detected, having a cumulative concentration range (∑OPAHs) of 10.5-118 ng g-1, predominated by anthraquinone and 6H-Benzo[c,d]Pyren-6-one. Higher concentrations of ∑PAHs and ∑OPAHs were detected at sampling sites adjacent to the mainland and in the northwest part of the TWS. The results suggested important continental input, and particle sedimentation under the specific hydrodynamic conditions of the region. Based on the measured concentrations and sediment quality guidelines, PAHs had a limited ecological impact on the area.
Collapse
Affiliation(s)
- Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Yi Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Xu
- Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330039, China
| | - Qiongpu Hu
- Hangzhou PuYu Technology Development Co., Ltd, Hangzhou 311305, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
10
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
11
|
Yang Y, Pan L, Zhou Y, Xu R, Miao J, Gao Z, Li D. Damages to biological macromolecules in gonadal subcellular fractions of scallop Chlamys farreri following benzo[a]pyrene exposure: Contribution to inhibiting gonadal development and reducing fertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117084. [PMID: 33848904 DOI: 10.1016/j.envpol.2021.117084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
12
|
Zhang J, Chi Y, Li S, Gu X, Ye Y. Cloning, homology modeling, heterologous expression and bioinformatic analysis of Ure2pA glutathione S-transferase gene from white rot fungus Trametes gibbosa. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jian Zhang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Yujie Chi
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Shuxuan Li
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Xinzhi Gu
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| | - Yi Ye
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P.R. China
| |
Collapse
|
13
|
Zheng Y, Li Y, Yue Z, Li Z, Li X, Wang J. Teratogenic effects of environmentally relevant concentrations of phenanthrene on the early development of marine medaka (Oryzia melastigma). CHEMOSPHERE 2020; 254:126900. [PMID: 32957295 DOI: 10.1016/j.chemosphere.2020.126900] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in marine environments and have arouse great concern since they pose adverse effects to marine ecosystem. To determine the potential impacts of environmentally relevant PAHs on early life stages of marine fish, this study exposed embryos of marine medaka (Oryzias melastigma) to 0, 2, 10, 50, and 250 μg/L of phenanthrene (Phe), one of the most abundant PAHs. The results demonstrated that Phe exposure decreased hatching rates, delayed hatching time of embryos, and increased deformity rate of newly-hatched larvae. Exposure to 10 and 50 μg/L Phe decreased the survival rate of marine medaka larvae at 28 days post-fertilization (dpf), and no embryo successfully hatched in 250 μg/L Phe exposure group. Morphology results showed that 10, 50, and 250 μg/L Phe exposure significantly retarded the development of embryos, and 2, 10, and 50 μg/L caused yolk sac edema and pericardial edema in newly-hatched larvae, indicating that low concentrations of Phe could induce developmental cardiac toxicity. Furthermore, the changes in the expression of heart development-related genes were determined, and the results showed that Phe-induced cardiac malformation might be related with fgf8, bmp4, smyd1, ATPase and gata4 genes. Overall, environmentally relevant PAHs could disrupt heart morphogenesis and hatching process of marine medaka, which might have profound consequences for sustainability of fish population.
Collapse
Affiliation(s)
- Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zuwei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Li D, Liu T, Pan L, Hu F, Jin Q. Bioaccumulation and oxidative damage of polycyclic aromatic hydrocarbon mixtures in Manila clam Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110558. [PMID: 32304925 DOI: 10.1016/j.ecoenv.2020.110558] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the bioaccumulation and oxidative damage of Manila clam, Ruditapes philippinarum, exposed to four selected mixtures of polycyclic aromatic hydrocarbons (PAHs; benzo (a) pyrene (BaP), benzo (a) anthracene (BaA), benzo (b) fluoranthene (BbF), and chrysene (Chr) in equal proportion. For this purpose, clams were exposed to PAHs (BaP:BbF:BaA:Chr = 1:1:1:1) at different concentrations (0.05, 0.5, and 5 μg/L) for 21 days, followed by a 15-day depuration period. All four PAHs accumulated in the gill, digestive gland, adductor muscle, and soft tissue of Manila clams, and all PAH treatment groups showed clear time and dose dependence. The decreasing order of bioaccumulation for the four PAHs in the exposure experiment was Chr > BaA > BaP > BbF. Moreover, the order of PAH bioaccumulation for the four tissues during the whole experiment was digestive gland > gill > soft tissues > adductor muscles. Although the initial concentrations of the four PAHs were the same, the final accumulated contents were different. Therefore, we also determined the detoxification processes of the four PAH mixtures in gills and digestive glands. The bioaccumulation of Chr was higher than the other three PAHs, probably because clams have a lower metabolic capacity for Chr than for BaP, BbF, and BaA. Exposure to PAH mixtures can result in oxidative damage, as indicated by the fact that DNA strand breaks, lipid peroxidation (LPO), and protein carbonyl (PC) were induced significantly (P < 0.05), except in the low-dose groups of PAHs, and different trends were detected with time of exposure. According to the correlation analysis, aryl hydrocarbon hydroxylase, glutathione s-transferase, superoxide dismutase, DNA strand break, PC, and LPO in both the gill and digestive gland are potential early indicators of PAH mixtures. We investigated the accumulation rules of R. philippinarum exposed to the selected PAHs and screened the potential biomarkers. The results of our study provide important scientific information for the purpose of monitoring marine pollution.
Collapse
Affiliation(s)
- Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Tong Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Fengxiao Hu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Qian Jin
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
15
|
Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041340. [PMID: 32093017 PMCID: PMC7068557 DOI: 10.3390/ijerph17041340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that exert harmful effects on marine invertebrates; however, the molecular mechanism underlying PAH action remains unclear. We investigated the effect of PAHs on the ascidian Ciona intestinalis type A (Ciona robusta). First, the influence of PAHs on early Ciona development was evaluated. PAHs such as dibenzothiophene, fluorene, and phenanthrene resulted in formation of abnormal larvae. PAH treatment of swimming larva induced malformation in the form of tail regression. Additionally, we observed the Cionaaryl hydrocarbon receptor (Ci-AhR) mRNA expression in swimming larva, mid body axis rotation, and early juvenile stages. The time correlation between PAH action and AhR mRNA expression suggested that Ci-AhR could be associated with PAH metabolism. Lastly, we analyzed Ci-AhR mRNA localization in Ciona juveniles. Ci-AhR mRNA was localized in the digestive tract, dorsal tubercle, ganglion, and papillae of the branchial sac, suggesting that Ci-AhR is a candidate for an environmental pollutant sensor and performs a neural function. Our results provide basic knowledge on the biological function of Ci-AhR and PAH activity in marine invertebrates.
Collapse
|
16
|
De Witte B, Walgraeve C, Demeestere K, Van Langenhove H. Oxygenated polycyclic aromatic hydrocarbons in mussels: analytical method development and occurrence in the Belgian coastal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9065-9078. [PMID: 30715706 DOI: 10.1007/s11356-019-04259-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
An analytical method was developed for the trace quantification of oxygenated polycyclic aromatic hydrocarbons (oxyPAHs) in mussels. Compounds included were naphthalene-1-ol, 9H-fluoren-9-one, anthracene-9,10-dione, 7H-benz[de]anthracene-7-one, naphtacene-5,12-dione, and benzo[a]anthracene-7,12-dione. Pyrene-1-carboxaldehyde was applied as an internal standard. Sample extraction by pressurized liquid extraction was followed by cleanup on silica, separation by high performance liquid chromatography, and quantitative measurement by mass spectrometry with atmospheric pressure chemical ionization. The method was validated by the analysis of spiked mussel samples, resulting in trueness values of 90-124% and measurement uncertainties of 6-49%, except for naphthalene-1-ol. Quantification limits varied from 0.25 ng·g-1 to 10.7 ng·g-1. The developed analytical oxyPAH method was applied on mussel samples from groynes and quaysides along the Belgian coastline and oxyPAH data were compared to PAH concentration data. The sum of 14 US EPA priority PAHs reached maxima at the eastern side of the Belgian coastal zone, with on average 202 ng·g-1 wet weight for quayside Zeebrugge and 38.4 ng·g-1 wet weight for groyne Knokke mussels. Anthracene-9,10-dione concentrations reached maxima of 19.1 ng·g-1 wet weight at the most industrialized quayside of Zeebrugge. For other oxyPAHs, no clear relationship could be made with direct PAH emissions. Concentrations of anthracene-9,10-dione and 9H-fluoren-9-one were found to exceed corresponding parent PAH concentrations.
Collapse
Affiliation(s)
- Bavo De Witte
- Institute of Agricultural and Fisheries Research, Animal Sciences Unit-Aquatic Environment and Quality, Ankerstraat 1, 8400, Ostend, Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
17
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
18
|
Sarker S, Vashistha D, Saha Sarker M, Sarkar A. DNA damage in marine rock oyster (Saccostrea Cucullata) exposed to environmentally available PAHs and heavy metals along the Arabian Sea coast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:132-143. [PMID: 29331918 DOI: 10.1016/j.ecoenv.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Molecular biomarkers are used world wide for quick assessment of the immediate effect of environmental pollution on marine ecosystems. Recently, we evaluated oxidative stress responses of marine rock oyster, Saccostrea cucullata impacted due to polycyclic aromatic hydrocarbons (PAHs) accumulated in their tissues at a few sampling sites along the coast of Goa around the region of the Arabian sea coast, India (Sarkar et al., 2017). Using a combination of partial alkaline unwinding and comet assays, we now report a comprehensive study on the impairment of DNA integrity (DI) in S. cucullata due to exposure to environmentally available PAHs and also heavy metals (Pb, Cd, Cu, Fe and Mn) along the Arabian Sea coast, Goa, India exclusively around the entire coast of Goa. First, we determined significant correlation between DI in S. cucullata and the extent of exposure to and bioaccumulation of different PAH compounds including 2-3 aromatic ring PAHs (R2, 0.95), 4-6 aromatic ring PAHs (R2, 0.85), oxygenated-PAHs (oxy-PAHs, R2, 0.84) and total PAHs (t-PAHs, R2, 0.98). Second, we observed dose-dependent decrease in DI in S. cucullata with increasing concentrations of different PAH components in oyster tissues. We substantiated our field observations with appropriate laboratory controls using benzo[a]pyrene (BaP). Third, we performed stepwise multiple regression analyses of different water quality parameters including pH, salinity, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrite (NO2), nitrate (NO3), phosphate (PO4), turbidity and also t-PAH-biota, t-PAH-water with DI as the dependent variable. Among all these parameters, only four parameters such as t-PAH-biota in combination with DO, BOD and NO2 showed significant correlation (R¯2 = 0.95) with loss in DI in S. cucullata. Based on these results, we created a map indicating the percentage of DNA damage in S. cucullata exposed to PAHs and heavy metals at each sampling location along the west coast of India around Goa, India.
Collapse
Affiliation(s)
- Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| | - Deepti Vashistha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India
| | - Munmun Saha Sarker
- Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India; Rabindra Bharati University, Emerald Bower Campus, Kolkata 700050, India.
| | - A Sarkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| |
Collapse
|