1
|
Wang X, Yang Z, Zeng Q, Wang X, Liu S, Wang E, Wu Y, Zeng Y, He M, Wang Y, Shen G, Jing X, Ping R, Zhang X, Chen B. Chitosan hydrogel microspheres loaded with Bacillus subtilis promote plant growth and reduce chromium uptake. Int J Biol Macromol 2024; 286:138401. [PMID: 39643173 DOI: 10.1016/j.ijbiomac.2024.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Cr contamination can lead to reduced crop yields and threaten food security. Eliminating soil Cr contamination or improving crop resistance to Cr is challenging in terms of costly, environment and biodiversity risk. Here, we used chitosan hydrogel microspheres loaded with Bacillus subtilis to cope with plant stress caused by Cr contamination. The addition of chitosan hydrogel microspheres loaded with Bacillus subtilis increased shoot biomass by 88 % and decreased the plant Cr concentration by 17 %. The bacterial chitosan hydrogel microsphere treatment enhanced the decomposition of organic matter and facilitated the uptake of nutrients by the plants. It also significantly increased the abundance of anti-heavy metal stress functional bacteria (Proteobacteria, Actinobacteria, and Chloroflexi), strongly promoting interactions and correlations between microbes. This technology of bacterial-chitosan hydrogel microspheres presents promising opportunities for sustainable strategies for addressing heavy metal pollution and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Xia Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhonglin Yang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Qin Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xueli Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Song Liu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Engui Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangjin Wu
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Yinan Zeng
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Maolin He
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Yan Wang
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Guoqiang Shen
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xuemin Jing
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ren Ping
- The Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, College of Geography and Resources, Sichuan Normal University, Chengdu 610066, China
| | - Xin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baodong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Diaz Appella MN, Kolender A, Oppezzo OJ, López NI, Tribelli PM. The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles. FEBS Lett 2024; 598:2702-2716. [PMID: 39152523 DOI: 10.1002/1873-3468.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
Collapse
Affiliation(s)
- Mateo N Diaz Appella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adriana Kolender
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Liu L, Xiao C, Gao Y, Jiang T, Xu K, Chen J, Lin Z, Chen J, Tian S, Lu L. Inoculation of multi-metal-resistant Bacillus sp. to a hyperaccumulator plant Sedum alfredii for facilitating phytoextraction of heavy metals from contaminated soil. CHEMOSPHERE 2024; 366:143464. [PMID: 39368497 DOI: 10.1016/j.chemosphere.2024.143464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Co-contamination of soil by multiple heavy metals is a significant global challenge. An effective strategy to address this issue involves using hyperaccumulators such as Sedum alfredii (S. alfredii). The efficiency of phytoremediation can be improved by supplementing with plant growth-promoting bacteria (PGPB). However, bacteria resources of PGPB resistant to multi-heavy metal contamination are still lacking. This study focused nine different strains of Bacillus and screened for resistance to heavy metals including cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb). A superior strain, Bacillus subtilis PY79 (B. subtilis), showed tolerance for all tested metals. Inoculation with B. subtilis in the rhizosphere of S. alfredii increased the accumulation of Cd, Zn, Cu, and Pb by 88.02%, 58.99%, 90.22%, and 54.97% in the plant shoots after 30 days respectively. B. subtilis application lowered the pH of the rhizosphere soil, thereby increasing the bioavailability of nutrients and heavy metals. Furthermore, B. subtilis helped S. alfredii recruit PGPB and heavy metal-resistant bacteria such as Edaphobacter, Niastella, and Chitinophaga, enhancing the growth and phytoremediation efficiency. Moreover, inoculation with B. subtilis not only upregulated genes of the ABC, HMA, ZIP, and MTP families involved in the translocation and detoxification of heavy metals but also increased the secretion of antioxidants within the cells. These findings indicate that B. subtilis enhances the tolerance, uptake, and translocation of heavy metals in S. alfredii, offering valuable insights for the phytoremediation of multi-metal-contaminated soils.
Collapse
Affiliation(s)
- Lianghui Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Chun Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Gao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Tianchi Jiang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Kuan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
5
|
Solanki B, Saleem S, Khan MS. Amelioration of phytotoxic impact of biosynthesized zinc oxide nanoparticles: Plant growth promoting rhizobacteria facilitates the growth and biochemical responses of Eggplant (Solanum melongena) under nanoparticles stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108678. [PMID: 38714126 DOI: 10.1016/j.plaphy.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.
Collapse
Affiliation(s)
- Bushra Solanki
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
6
|
Sharma S, Saraf M. Enhanced exopolysaccharide production by multi metal tolerant Klebsiella variicolaSMHMZ46 isolated from mines area and application in metal bioremediation. Int Microbiol 2023; 26:1167-1183. [PMID: 37147491 DOI: 10.1007/s10123-023-00366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
The current study aimed to enhance exopolysaccharide production by Klebsiella variicolaSMHMZ46 isolated from the Zawar mines area in Udaipur, Rajasthan, India, by optimizing the medium with OFAT and a central composite design. The trial including sucrose (9.5%), casein hydrolysate (3%), and NaCl (0.5%) yielded the maximum EPS production as indicated by applying the CCD-RSM biostatistical program. The composition of exopolysaccharides produced by Klebsiella variicolaSMHMZ46 culture was characterized. Growth under Pb(II), Cd(II), and Ni(II) metal amended conditions induced EPS production relative to control. TLC was used for identifying the sugar residues of EPS, in addition to determination of both total carbohydrate and protein contents. According to FT-IR analysis, EPS can interact with metal ions via their functional chemical groups, thereby supporting their bioremediation potential. The metal removal efficiency of bacteria and their produced EPS in broth individually spiked with Pb(II), Ni(II), and Cd(II) was 99.18%, 97.60%, and 98.20%, respectively, and powdered EPS from contaminated water was 85.76%, 72.40%, and 71.53%, respectively. According to FEG-SEM observations, the surface morphology of EPS becomes rough, demonstrating sharp bumps after metal binding. A FEG-SEM analysis of the structure of EPS was performed; the surface structure of EPS (with metal) was more rigid than that of control EPS (without metal). The interaction between the EPS system and Pb(II) ions was investigated using FEG-SEM coupled with energy dispersive X-ray spectra, and a strong peak of C, O, and Pb elements was observed, indicating successful Pb adsorption. These findings suggest that EPS from Klebsiella variicolaSMHMZ46 has a good metal adsorbing nature and could be a promising biosorbent for metal bioremediation of contaminated water.
Collapse
Affiliation(s)
- Sarita Sharma
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
7
|
Pagnucco G, Overfield D, Chamlee Y, Shuler C, Kassem A, Opara S, Najaf H, Abbas L, Coutinho O, Fortuna A, Sulaiman F, Farinas J, Schittenhelm R, Catalfano B, Li X, Tiquia-Arashiro SM. Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Front Microbiol 2023; 14:1278886. [PMID: 37942073 PMCID: PMC10630031 DOI: 10.3389/fmicb.2023.1278886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Rapid industrialization and urbanization have led to widespread metal contamination in aquatic ecosystems. This study explores the metal tolerance and biosorption characteristics of four bacterial strains (Serratia sp. L2, Raoultella sp. L30, Klebsiella sp. R3, and Klebsiella sp. R19) isolated from Saint Clair River sediments. These strains effectively removed various metal cations (As3+, Pb2+, Cu2+, Mn2+, Zn2+, Cd2+, Cr6+, and Ni2+) in single and multi-metal solutions. Minimum inhibitory concentration (MIC) assays revealed strain-specific variations in metal tolerance, with L2 and L30 exhibiting higher tolerance. Surprisingly, R3 and R19, despite lower tolerance, demonstrated superior metal removal efficiency, challenging the notion that tolerance dictates removal efficacy. In single-metal solutions, R3 and R19 excelled at extracting various metal ions, while competitive binding in multi-metal solutions hindered removal. However, R3 and R19 retained higher removal efficiencies, possibly due to enhanced flocculation activities facilitating metal-ion contact. Comprehensive Fourier-transform infrared (FTIR) analysis highlighted the strains' metal-binding capabilities, with novel peaks emerging after metal exposure, indicative of extracellular polymeric substance (EPS) production. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed metal accumulation on bacterial surfaces and within cytoplasmic regions and revealed morphological changes and metal adsorption patterns, emphasizing the strains' ability to adapt to metal stress. Scanning transmission microscopy (STEM) and EDX analysis uncovered metal accumulation within bacterial cells, underscoring the complexity of microbial-metal interactions. This study also confirms that the simultaneous presence of an aqueous solution may cause a mutual inhibition in the adsorption of each metal to the EPS resulting in reduced metal uptake, which emphasizes the need to select specific bacterial strains for a given metal-containing effluent. The differences in metal distribution patterns between Klebsiella sp. R19 and Raoultella sp. L30 suggest species-specific metal accumulation strategies driven by environmental conditions and metal availability. The heavy metal-removing capabilities and the ability to grow over a wide range of metal concentrations of the strains used in this study may offer an advantage to employ these organisms for metal remediation in bioreactors or in situ.
Collapse
|
8
|
Fakhry H, Ghoniem AA, Al-Otibi FO, Helmy YA, El Hersh MS, Elattar KM, Saber WIA, Elsayed A. A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers (Basel) 2023; 15:3754. [PMID: 37765609 PMCID: PMC10537747 DOI: 10.3390/polym15183754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling.
Collapse
Affiliation(s)
- Hala Fakhry
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11865, Egypt
- Department of Aquatic Environmental Science, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Abeer A. Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Mohammed S. El Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
9
|
Tong C, Luo J, Xie C, Wei J, Pan G, Zhou Z, Li C. Characterization and Biological Activities of Melanin from the Medicinal Fungi Ophiocordyceps sinensis. Int J Mol Sci 2023; 24:10282. [PMID: 37373428 DOI: 10.3390/ijms241210282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Melanin is a complex natural pigment that is widely present in fungi. The mushroom Ophiocordyceps sinensis has a variety of pharmacological effects. The active substances of O. sinensis have been extensively studied, but few studies have focused on the O. sinensis melanin. In this study, the production of melanin was increased by adding light or oxidative stress, namely, reactive oxygen species (ROS) or reactive nitrogen species (RNS), during liquid fermentation. Subsequently, the structure of the purified melanin was characterized using elemental analysis, ultraviolet-visible absorption spectrum, Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR), and pyrolysis gas chromatography and mass spectrometry (Py-GCMS). Studies have shown that O. sinensis melanin is composed of C (50.59), H (6.18), O (33.90), N (8.19), and S (1.20), with maximum absorbance at 237 nm and typical melanin structures such as benzene, indole, and pyrrole. Additionally, the various biological activities of O. sinensis melanin have been discovered; it can chelate heavy metals and shows a strong ultraviolet-blocking ability. Moreover, O. sinensis melanin can reduce the levels of intracellular reactive oxygen species and counteract the oxidative damage of H2O2 to cells. These results can help us to develop applications of O. sinensis melanin in radiation resistance, heavy metal pollution remediation, and antioxidant use.
Collapse
Affiliation(s)
- Chaoqun Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Jian Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Chaolu Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Yang C, Zeng Z, Wang Y, He G, Hu Y, Gao D, Dai Y, Li Q, Zhang H. Ecological risk assessment and identification of the distinct microbial groups in heavy metal-polluted river sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1311-1329. [PMID: 35939250 DOI: 10.1007/s10653-022-01343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
To assess the health of river ecosystems, it is essential to quantify the ecological risk of heavy metals in river sediments and the structure of microbial communities. As important tributaries of the Tuo River in the upper reaches of the Yangtze River, the Mianyuan River and the Shiting River, are closely related to the economic development and human daily life in the region. This study assessed the ecological risks of heavy-metal-polluted river sediments, the heavy-metal-driven bacterial communities were revealed, and the relationships between the ecological risks and the identical bacterial communities were discussed. The Cd content was significantly greater than the environmental background value, leading to a serious pollution and very high ecological risk at the confluence of the two rivers and the upper reaches of the Mianyuan River. Microbial community analysis showed that Rhodobacter, Nocardioides, Sphingomonas, and Pseudarthrobacter were the dominant bacterial genera in the sediments of the Shiting River. However, the dominant bacterial genera in the Mianyuan River were Kouleothrix, Dechloromonas, Gaiella, Pedomicrobium, and Hyphomicrobium. Mantel test results showed (r = 0.5977, P = 0.005) that the Cd, As, Zn, Pb, Cr, and Cu were important factors that influenced differences in the distribution of sediment bacterial communities Mianyuan and Shiting rivers. A correlation heatmap showed that heavy metals were negatively correlated for most bacterial communities, but some bacterial communities were tolerant and showed a positive correlation. Overall, the microbial structure of the river sediments showed a diverse spatial distribution due to the influence of heavy metals. The results will improve the understanding of rivers contaminated by heavy metals and provide theoretical support for conservation and in situ ecological restoration of river ecosystems.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Yonghong Dai
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qingyu Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
11
|
Kalsoom A, Jamil N, Hassan SMU, Khan JA, Batool R. Chromate Removal by Enterobacter cloacae Strain UT25 from Tannery Effluent and Its Potential Role in Cr (VI) Remediation. Curr Microbiol 2023; 80:99. [PMID: 36745203 DOI: 10.1007/s00284-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
An indigenous chromate-resistant bacterial strain isolated from tannery effluent was identified based on morphological, biochemical, and 16S rRNA gene sequencing, as Enterobacter cloacae UT25. It was found to resist heavy metal ions such as Cr (VI), Pb (II), Cu (II), Co (II), Ni (II), Hg (II), and Zn (II) and antibiotics. The strain was able to remove 89 and 86% chromate, after 24 h of incubation in a Luria-Bertani (LB) medium at an initial Cr (VI) concentration of 1000 and 1500 µg/ml, respectively. Minimum inhibitory concentration (MIC) was observed for chromate to be 80,000 and 1850 µg/ml, after 48 h of incubation in LB and acetate minimal media (AMM), respectively. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis showed discrete cells with intact and smooth cell walls and homogenous cytoplasm in the absence of metal stress, whereas chromate stress caused cell lysis and reduction in size, which was a characteristic response to Cr (VI) toxicity. Energy Dispersive X-Ray Spectroscopy (EDX) confirmed the adsorption of oxyanions to the cell wall which was one of the Cr (VI) removal mechanisms by the bacterium. Atomic Force Microscopy (AFM) micrographs of chromate-untreated and treated cells revealed Root Mean Square roughness (Rq) values of 16.25 and 11.26 nm, respectively, indicating less roughness in the presence of stress. The partial gene sequence of class 1 integrons (intI1) of strain UT25 showed 94% homology with intI1 gene of strain Enterobacter hormaechei strain ECC59 plasmid pECC59-1. The present analysis highlighted the potential of E. cloacae UT25 as a promissory bacterium that could be applied in removing chromate from polluted environments.
Collapse
Affiliation(s)
- Asma Kalsoom
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Junaid Ahmed Khan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
12
|
Saleem S, Khan MS. Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:146-160. [PMID: 36403488 DOI: 10.1016/j.plaphy.2022.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The iron oxide nanoparticles (IONPs) prepared by green synthesis method using Syzigium cumini leaf extract was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD confirmed the crystalline structure of green synthesized NPs measuring around 33 nm while SEM revealed its nearly spherical shape. Rhizobium species recovered from greengram nodules, identified by 16s rRNA gene sequencing as Rhizobium pusense produced 30% more exopolysaccharides (EPS) in basal medium treated with 1000 μg IONPs/ml. Compositional variation in EPS was observed by Fourier-transform infrared spectroscopy (FTIR). There was no reduction in rhizobial viability and no damage to bacterial membrane was observed under SEM and confocal laser scanning microscopy (CLSM), respectively. Effects of IONPs and R. pusense, used alone and in combination on the growth and development of greengram plants varied considerably. Plants grown with IONPs and R. pusence, used alone and in combination, showed a significant increase in seed germination rate, length and dry biomass of plant organs and seed components compared to controls. The IONPs in the presence of rhizobial strain further increased seed germination, plant growth, seed protein and pigments. Greater protein content (442 mg/g) was observed in seeds at 250 mg/kg of IONPs compared to control. Plants raised with mixture of IONPs plus R. pusense had maximum chlorophyll content (39.2 mg/g FW) while proline content decreased by 53% relative to controls. This study confirms that the green synthesis of IONPs from S. cumini leaf possess useful plant growth promoting effects and could be developed as a nano-biofertilizer for optimizing legume production.
Collapse
Affiliation(s)
- Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
13
|
Hao T. Adaptive response mechanisms of granular and flocculent sulfate-reducing sludge toward acidic multi-metal-laden wastewater. WATER RESEARCH 2022; 226:119227. [PMID: 36240714 DOI: 10.1016/j.watres.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dissimilatory sulfate reduction-based processes have long been a viable option for treating acidic metal-laden wastewater (AMW). Such processes can be optimized through enhancing sulfidogenic activity and the microbial consortia's resilience against a harsh environment. This study investigated how granular and flocculent sulfate-reducing bacteria (SRB) sludge respond to AMW as well as the mechanisms through which they adapt to the wastewater, with particular focuses on the stability of the sulfidogenic activities, metal removal, and the bacteria's resistance over the long-term: the flocculent SRB lost more than 50% of their treatment capacity after 35 days of treating AMW with the presence of Cd2+, Cu2+, Zn2+, and Ni2+ at 30 mg/L each, under pH = 4.5. In contrast, the granular SRB maintained its metal removal rate at 91% throughout the 161-day trial. Despite the SRB abundance remaining at approximate 40%, organics-partial oxidizing genera (Desulfobulbus and Desulfobacter) began to dominate due to their kinetic advantage. The extracellular glycosyl compositions were revealed to be critical for the stability of the granular structure and microbial activity as the extracellular proteins disintegrated irreversible. Usage the molecular dynamic simulation, the mobility of the metal ions in the SRB granular system was suppressed by the presence of a more diverse glycosyl composition compared with the flocculent system (10-50% diffusion coefficients differences). All of the identified glycosyls (especially xylose and rhamnose) exhibited strong interactions with Cu2+ (-470 kJ mol-1), while the maximum binding strength of Cd2+ to glycosyls was greater than -40 kJ mol-1, suggesting a low Cd2+complexation efficiency. The findings of this study shed light on the defensive mechanisms of SRB granules against multi-metal stress, and provide clues for efficient AMW treatment.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
14
|
Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. FRONTIERS IN PLANT SCIENCE 2022; 13:1002448. [PMID: 36186083 PMCID: PMC9523260 DOI: 10.3389/fpls.2022.1002448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Recent decades have witnessed increased agricultural production to match the global demand for food fueled by population increase. Conventional agricultural practices are heavily reliant on artificial fertilizers that have numerous human and environmental health effects. Cognizant of this, sustainability researchers and environmentalists have increased their focus on other crop fertilization mechanisms. Biofertilizers are microbial formulations constituted of indigenous plant growth-promoting rhizobacteria (PGPR) that directly or indirectly promote plant growth through the solubilization of soil nutrients, and the production of plant growth-stimulating hormones and iron-sequestering metabolites called siderophores. Biofertilizers have continually been studied, recommended, and even successfully adopted for the production of many crops in the world. These microbial products hold massive potential as sustainable crop production tools, especially in the wake of climate change that is partly fueled by artificial fertilizers. Despite the growing interest in the technology, its full potential has not yet been achieved and utilization still seems to be in infancy. There is a need to shed light on the past, current, and future prospects of biofertilizers to increase their understanding and utility. This review evaluates the history of PGPR biofertilizers, assesses their present utilization, and critically advocates their future in sustainable crop production. It, therefore, updates our understanding of the evolution of PGPR biofertilizers in crop production. Such information can facilitate the evaluation of their potential and ultimately pave the way for increased exploitation.
Collapse
Affiliation(s)
- Becky N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Vishal Tripathi
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Billy A. Makumba
- Department of Biological and Physical Sciences, Moi University, Eldoret, Kenya
| | - Ernest R. Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
15
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
16
|
Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022; 10:microorganisms10030610. [PMID: 35336185 PMCID: PMC8953973 DOI: 10.3390/microorganisms10030610] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022] Open
Abstract
Rapid industrialization has led to the pollution of soil and water by various types of contaminants. Heavy metals (HMs) are considered the most reactive toxic contaminants, even at low concentrations, which cause health problems through accumulation in the food chain and water. Remediation using conventional methods, including physical and chemical techniques, is a costly treatment process and generates toxic by-products, which may negatively affect the surrounding environment. Therefore, biosorption has attracted significant research interest in the recent decades. In contrast to existing methods, bacterial biomass offers a potential alternative for recovering toxic/persistent HMs from the environment through different mechanisms for metal ion uptake. This review provides an outlook of the advantages and disadvantages of the current bioremediation technologies and describes bacterial groups, especially extremophiles with biosorbent potential for heavy metal removal with relevant examples and perspectives.
Collapse
|
17
|
Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112863. [PMID: 34619478 DOI: 10.1016/j.ecoenv.2021.112863] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination poses a serious environmental hazard, globally necessitating intricate attention. Heavy metals can cause deleterious health hazards to humans and other living organisms even at low concentrations. Environmental biotechnologists and eco-toxicologists have rigorously assessed a plethora of bioremediation mechanisms that can hamper the toxic outcomes and the molecular basis for rejuvenating the hazardous impacts, optimistically. Environmental impact assessment and restoration of native and positive scenario has compelled biological management in ensuring safety replenishment in polluted realms often hindered by heavy metal toxicity. Copious treatment modalities have been corroborated to mitigate the detrimental effects to remove heavy metals from polluted sites. In particular, Biological-based treatment methods are of great attention in the metal removal sector due to their high efficiency at low metal concentrations, ecofriendly nature, and cost-effectiveness. Due to rapid multiplication and growth rates, bacteria having metal resistance are advocated for metal removal applications. Evolutionary implications of coping with heavy metals toxicity have redressed bacterial adaptive/resistance strategies related to physiological and cross-protective mechanisms. Ample reviews have been reported for the bacterial adaptive strategies to cope with heavy metal toxicity. Nevertheless, a holistic review summarizing the redox reactions that address the cross-reactivity mechanisms between metallothionein synthesis, extracellular polysaccharides production, siderophore production, and efflux systems of metal resistant bacteria are scarce. Molecular dissection of how bacteria adapt themselves to metal toxicity can augment novel and innovative technologies for efficient detoxification, removal, and combat the restorative difficulties for stress alleviations. The present comprehensive compilation addresses the identification of newer methodologies, summarizing the prevailing strategies of adaptive/resistance mechanisms in bacterial bioremediation. Further pitfalls and respective future directions are enumerated in invigorating effective bioremediation technologies including overexpression studies and delivery systems. The analysis will aid in abridging the gap for limitations in heavy metal removal strategies and necessary cross-talk in elucidating the complex cascade of events in better bioremediation protocols.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China.
| |
Collapse
|
18
|
An Q, Deng S, Liu M, Li Z, Wu D, Wang T, Chen X. Study on the aerobic remediation of Ni(II) by Pseudomonas hibiscicola strain L1 interaction with nitrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113641. [PMID: 34479150 DOI: 10.1016/j.jenvman.2021.113641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Aerobic denitrifying bacteria have the potential to remove the co-pollutants Ni(II) and nitrate in industrial wastewater. In this study, aerobic denitrifying bacteria with significant Ni(II) removal efficiency was isolated from the biological reaction tank and named as Pseudomonas hibiscicola L1 strain after 16 S rRNA identification analysis. The removal of ever-increasing Ni(II) and NO3--N wastewater under aerobic conditions by strain L1 was discussed. The experimental results showed that strain L1 removed 84% of Ni(II) and 81% of COD, with the use of 34.8 mg L-1 of nitrogen source and without nitrite accumulation yet. Strain L1 had remarkable activity (OD600 = 0.51-0.56 (p < 0.05)) at 20 mg L-1 of Ni(II) and 100 mg L-1 of NO3--N. It was found that high Ni(II) gradients (2-10 mg L-1) had little effect on nitrate removal ratio (35-34% (p > 0.05), and the removal ratios of Ni(II) was enhanced (from 42% to 83% (p < 0.05)) by increasing nitrate (25-100 mg L-1). Also, the results indicated that strain L1 could reduce Ni(II) and nitrate under different pH (6-9); electron donor-glucose, sodium acetate, sodium succinate and trisodium citrate; C/N (5-20) and coexisting ions (Cu(II) and Zn(II)). Notably, the nitrogen balance analysis showed 32.4% of TN was lost nitrogen and 19.7% of TN was assimilated for cell growth, which indicated aerobic denitrification process of strain L1. Meanwhile, characterization technology (SEM, FTIR, and XRD) showed Ni(II) was bioadsorbed in the form of Ni(NH2)2, NiCO3, and Ni(OH)2·2H2O through surface functional groups. This research provides new microbial method for the simultaneous removal of nitrate and Ni(II) in wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Meng Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Danqing Wu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Tuo Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
19
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
20
|
Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, Minkina T, Bahkali AH, Lee J. Drought Tolerant Enterobacter sp./ Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. BIOLOGY 2021; 10:1149. [PMID: 34827142 PMCID: PMC8614786 DOI: 10.3390/biology10111149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Drought or water stress is a limiting factor that hampers the growth and yield of edible crops. Drought-tolerant plant growth-promoting rhizobacteria (PGPR) can mitigate water stress in crops by synthesizing multiple bioactive molecules. Here, strain PAB19 recovered from rhizospheric soil was biochemically and molecularly characterized, and identified as Enterobacter sp./Leclercia adecarboxylata (MT672579.1). Strain PAB19 tolerated an exceptionally high level of drought (18% PEG-6000) and produced indole-3-acetic acid (176.2 ± 5.6 µg mL-1), ACC deaminase (56.6 ± 5.0 µg mL-1), salicylic acid (42.5 ± 3.0 µg mL-1), 2,3-dihydroxy benzoic acid (DHBA) (44.3 ± 2.3 µg mL-1), exopolysaccharide (204 ± 14.7 µg mL-1), alginate (82.3 ± 6.5 µg mL-1), and solubilized tricalcium phosphate (98.3 ± 3.5 µg mL-1), in the presence of 15% polyethylene glycol. Furthermore, strain PAB19 alleviated water stress and significantly (p ≤ 0.05) improved the overall growth and biochemical attributes of Vigna radiata (L.) R. Wilczek. For instance, at 2% PEG stress, PAB19 inoculation maximally increased germination, root dry biomass, leaf carotenoid content, nodule biomass, leghaemoglobin (LHb) content, leaf water potential (ΨL), membrane stability index (MSI), and pod yield by 10%, 7%, 14%, 38%, 9%, 17%, 11%, and 11%, respectively, over un-inoculated plants. Additionally, PAB19 inoculation reduced two stressor metabolites, proline and malondialdehyde, and antioxidant enzymes (POD, SOD, CAT, and GR) levels in V. radiata foliage in water stress conditions. Following inoculation of strain PAB19 with 15% PEG in soil, stomatal conductance, intercellular CO2 concentration, transpiration rate, water vapor deficit, intrinsic water use efficiency, and photosynthetic rate were significantly improved by 12%, 8%, 42%, 10%, 9% and 16%, respectively. Rhizospheric CFU counts of PAB19 were 2.33 and 2.11 log CFU g-1 after treatment with 15% PEG solution and 8.46 and 6.67 log CFU g-1 for untreated controls at 40 and 80 DAS, respectively. Conclusively, this study suggests the potential of Enterobacter sp./L. adecarboxylata PAB19 to alleviate water stress by improving the biological and biochemical features and of V. radiata under water-deficit conditions.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Li X, Jia R, Lu X, Xu Y, Liang X, Shen L, Li B, Ma C, Wang N, Yao C, Zhang S. The use of mercapto-modified palygorskite prevents the bioaccumulation of cadmium in wheat. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125917. [PMID: 34004579 DOI: 10.1016/j.jhazmat.2021.125917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
In this study, the mechanism by which mercapto-modified palygorskite (MPAL) mediates Cd and Mn absorption by wheat was elucidated. In the aqueous phase, MPAL can react with Cd to form Cd-thiol complexes and CdO and with Mn to form MnO. In the wheat-soil system, 0.1-0.3% MPAL application increased the biomass of wheat by 18.6-29.4% and decreased the Cd concentration in shoots and roots by 19.4-51.8% and 35.9-64%, respectively; however, MPAL application did not decrease the diethylenetriaminepentaacetic acid (DTPA)-extracted Cd concentration in soil, probably because the formed Cd-thiol complexes and CdO could not be taken up by plants but could be extracted by DTPA. MPAL appeared to increase the Mn concentration in plants and the DTPA-extracted Mn concentration in soil, possibly because of the reduction in soil Mn oxides to more soluble Mn(Ⅱ) by the thiol groups in MPAL. MPAL enriched plant growth-promoting rhizobacteria and Cd-immobilizing bacteria and strengthened the sulfate reduction metabolism in rhizosphere soil, which partly contributed to the improvement in plant growth and the reduction in Cd bioaccumulation in wheat. These findings highlight the importance of the thiol group in MPAL and the regulation of the rhizosphere bacterial community in mediating Cd and Mn bioaccumulation in wheat.
Collapse
Affiliation(s)
- Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Jia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiazi Lu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingming Xu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Xuefeng Liang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Lianfeng Shen
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Benyin Li
- Plant Nutrition & Resources and Environment Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Ning Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Yao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shimin Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Singh S, Nimse SB, Mathew DE, Dhimmar A, Sahastrabudhe H, Gajjar A, Ghadge VA, Kumar P, Shinde PB. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnol Adv 2021; 53:107773. [PMID: 34022328 DOI: 10.1016/j.biotechadv.2021.107773] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Melanin is a common name for a group of biopolymers with the dominance of potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. The broad distribution of these pigments suggests their role to combat abiotic and biotic stresses in diverse life forms. Biosynthesis of melanin in fungi and bacteria occurs by oxidative polymerization of phenolic compounds predominantly by two pathways, 1,8-dihydroxynaphthalene [DHN] or 3,4-dihydroxyphenylalanine [DOPA], resulting in different kinds of melanin, i.e., eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin. The enzymes responsible for melanin synthesis belong mainly to tyrosinase, laccase, and polyketide synthase families. Studies have shown that manipulating culture parameters, combined with recombinant technology, can increase melanin yield for large-scale production. Despite significant efforts, its low solubility has limited the development of extraction procedures, and heterogeneous structural complexity has impaired structural elucidation, restricting effective exploitation of their biotechnological potential. Innumerable studies have been performed on melanin pigments from different taxa of life in order to advance the knowledge about melanin pigments for their efficient utilization in diverse applications. These studies prompted an urgent need for a comprehensive review on melanin pigments isolated from microorganisms, so that such review encompassing biosynthesis, bioproduction, characterization, and potential applications would help researchers from diverse background to understand the importance of microbial melanins and to utilize the information from the review for planning studies on melanin. With this aim in mind, the present report compares conventional and modern ideas for environment-friendly extraction procedures for melanin. Furthermore, the characteristic parameters to differentiate between eumelanin and pheomelanin are also mentioned, followed by their biotechnological applications forming the basis of industrial utilization. There lies a massive scope of work to circumvent the bottlenecks in their isolation and structural elucidation methodologies.
Collapse
Affiliation(s)
- Sanju Singh
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish B Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Republic of Korea
| | - Doniya Elze Mathew
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Asmita Dhimmar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshal Sahastrabudhe
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Apexa Gajjar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal A Ghadge
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Kumar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Yan X, Liu X, Zhang M, Wang J, Zhong J, Ma D, Tang C, Hu X. Lab-scale evaluation of the microbial bioremediation of Cr(VI): contributions of biosorption, bioreduction, and biomineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22359-22371. [PMID: 33417128 DOI: 10.1007/s11356-020-11852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.
Collapse
Affiliation(s)
- Xiao Yan
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China.
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China.
- GRIMAT Engineering Institute Co., Ltd., Beijing, 101407, China.
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Jianlei Wang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
| | - Juan Zhong
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Daozhi Ma
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Chuiyun Tang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xuewu Hu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, 100088, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Tang D, Liu R, Shi X, Shen C, Bai Y, Tang B, Wang Z. Toxic effects of metal copper stress on immunity, metabolism and pathologic changes in Chinese mitten crab (Eriocheir japonica sinensis). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:632-642. [PMID: 33728520 DOI: 10.1007/s10646-021-02367-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu2+), which represents a major physiological challenge for crab culture, is ubiquitous in the aquatic culture environment, and gills are the first organs that come into direct contact with the environment. However, the molecular basis of the response of crabs to Cu2+ stress remains unclear. Here, we conducted a transcriptome and differential expression analysis on the gills from Chinese mitten crab unexposed and exposed to Cu2+ for 24 h. The comparative transcriptome analysis identified 2486 differentially expressed genes (DEGs). GO functional analysis and KEGG pathway analysis revealed some DEGs, which were mostly related to immunity, metabolism, osmotic regulation, Cu2+ homeostasis regulation, antioxidant activity, and detoxification process. Some pathways related to humoral and cellular immunity, such as phagosome, peroxisome, lysosome, mTOR signaling pathway, PI3K-Akt signaling pathway, Toll-like receptor signaling pathway, and T cell receptor signaling pathway were enhanced under Cu2+ stress. In addition, Cu2+ stress altered the expression patterns of key phagocytosis and apoptosis genes (lectin, cathepsin L, Rab7, and HSP70), confirming that Cu2+ can induce oxidative stress and eventually even apoptosis. Histological analysis revealed that the copper can induce damage at the cellular level. This comparative transcriptome analysis provides valuable molecular information to aid future study of the immune mechanism of Chinese mitten crab in response to Cu2+ stress and provides a foundation for further understanding of the effects of metal toxicity.
Collapse
Affiliation(s)
- Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu Province, China
| | - Ruobing Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Xueling Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Yuze Bai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224001, Jiangsu Province, China.
| |
Collapse
|
25
|
Liu Y, Serrano A, Wyman V, Marcellin E, Southam G, Vaughan J, Villa-Gomez D. Nickel complexation as an innovative approach for nickel-cobalt selective recovery using sulfate-reducing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123506. [PMID: 32712361 DOI: 10.1016/j.jhazmat.2020.123506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the differences in nickel (Ni) and cobalt (Co) solubility in the presence of sulfate reducing bacteria (SRB) to evaluate the feasibility of selective recovery of both metals from mine-impacted waters. A series of sulfate reducing activity tests with Ni, Co and both metals showed that up to 99 % Ni remained soluble despite the availability of sulfide for precipitation, while Co sulfide precipitation always occurred (over 84.5 %). The characterization of proteins in the liquid phase of the experiments revealed that some proteins were only produced in the experiments where Ni displayed higher solubility, suggesting their involvement in metal complexation. Some functions of these proteins included maintaining Ni homeostasis, acting as metalloenzymes and containing Ni-binding ligands. Desulfomicrobium baculatum, Stenotrophomonas maltophilia, and Desulfovibrio magneticus, were the main responsible species producing these proteins.
Collapse
Affiliation(s)
- Yun Liu
- School of Civil Engineering, The University of Queensland, 4072 QLD, Australia.
| | - Antonio Serrano
- School of Civil Engineering, The University of Queensland, 4072 QLD, Australia
| | - Valentina Wyman
- School of Civil Engineering, The University of Queensland, 4072 QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 QLD, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, 4072 QLD, Australia
| | - James Vaughan
- School of Chemical Engineering, The University of Queensland, 4072 QLD, Australia
| | - Denys Villa-Gomez
- School of Civil Engineering, The University of Queensland, 4072 QLD, Australia
| |
Collapse
|
26
|
Mathivanan K, Chandirika JU, Mathimani T, Rajaram R, Annadurai G, Yin H. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111567. [PMID: 33396096 DOI: 10.1016/j.ecoenv.2020.111567] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 05/26/2023]
Abstract
In this study, the production and compositional analysis of exopolysaccharides produced by Bacillus cereus KMS3-1 grown in metal amended conditions were investigated. In addition, the metal adsorption efficacy of exopolysaccharides (EPS) produced by KMS3-1 strain was evaluated in a batch mode. Increased production of exopolysaccharides by KMS3-1 strain was observed while growing under metal amended conditions (100 mg/L) and also, the yield was in the order of Pb(II)>Cu(II)>Cd(II)>Control. Characterization of EPS using FT-IR, XRD, and SEM analysis revealed that the EPS can interact with metal ions through their functional groups (O‒H, CH, C˭O, C‒O, and C‒C˭O) and assist the detoxification process. Further, equilibrium results were fitted with the Langmuir model and notably, the maximum adsorption capacity (Qmax) of EPS for Cd(II), Cu(II), and Pb(II) found to be 54.05, 71.42, and 78.74 mg/g, respectively. To the best of our knowledge, EPS demonstrating proficient metal adsorption was substantiated by XRD analysis in this study. Owing to good adsorbing nature, the exopolysaccharides could be used as chelating substances for wastewater treatment.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627 412, India.
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627 412, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Gurusamy Annadurai
- Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627 412, India
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
27
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:801. [PMID: 33263175 DOI: 10.1007/s10661-020-08758-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/16/2020] [Indexed: 05/22/2023]
Abstract
Heavy metals discharge at an unrestrained rate from various industries into the environment pose serious human health problems. Considering this, the present study aimed at exploring the metal biosorbing potentials of bacterial strains recovered from polluted soils. The bacterial strains (CPSB1, BM2 and CAZ3) belonging to genera Pseudomonas, Bacillus and Azotobacter expressing multi-metal tolerance ability were identified to species level as P. aeruginosa, B. subtilis and A. chroococcum, respectively, by 16S rRNA partial gene sequence analysis. The biosorption of cadmium, chromium, copper, nickel, lead and zinc by three dead bacterial genera were studied as a function of metal concentration, variable pH of the medium and reaction (contact) time. The three bacterial strains exhibited a tremendous metal removal ability which continued even at the highest tested concentration of some metals. Later, a decline in the percentage of biosorbed metals was recorded as the metal concentration was increased with the simultaneous generation of a driving force to overcome mass transfer resistance for movement of metal ions between the solution and the surface of adsorbent. Among test bacteria, B. subtilis biosorbed a maximum of 96% chromium at 25 μg mL-1 while the maximum percentage (91%) of biosorbed metals recorded at 400 μg Cd mL-1 was observed for P. aeruginosa. The sorption of metal ions by dead biomass of three bacterial genera at optimum conditions followed the order-(i) B. subtilis BM2: Pb > Cu > Ni > Cd > Cr, (ii) A. chroococcum CAZ3: Cr > Cd > Cu > Ni > Pb and (iii) P. aeruginosa CPSB1: Cd > Cr > Ni > Cu > Pb > Zn. It was found that the optimum pH for metal adsorption ranged between pH 8 and 9 which, however, declined substantially at pH 5.0 for all three bacterial strains. In general, the biosorption of Cd, Cr, Cu, Ni and Pb by B. subtilis and A. chroococcum and such metals along with Zn by P. aeruginosa occurred maximally up to 60 min of bacterial growth. The adsorption data with regard to five metals provide an outstanding fit to the Langmuir and Freundlich isotherms. The biosorptive ability of three bacterial genera correlated strongly (r2 > 0.9) with each metal. The bacteria belonging to two Gram-negative genera Pseudomonas (P. aeruginosa) and Azotobacter (A. chroococcum) and one Gram-positive genus Bacillus (B. subtilis) demonstrated exceptional metal removal efficiency and, hence, provides a comprehensive understanding of metal-bacteria sorption process which in effect paves the way for detoxifying/removing metals from contaminated environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Almas Zaidi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
28
|
Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Int J Biol Macromol 2020; 161:147-154. [DOI: 10.1016/j.ijbiomac.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
30
|
Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Khan MS, Musarrat J. Destruction of Cell Topography, Morphology, Membrane, Inhibition of Respiration, Biofilm Formation, and Bioactive Molecule Production by Nanoparticles of Ag, ZnO, CuO, TiO 2, and Al 2O 3 toward Beneficial Soil Bacteria. ACS OMEGA 2020; 5:7861-7876. [PMID: 32309695 PMCID: PMC7160826 DOI: 10.1021/acsomega.9b04084] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
The unregulated discharge of nanoparticles (NPs) from various nanotechnology industries into the environment is expected to alter the composition and physiological functions of soil microbiota. Considering this knowledge gap, the impact of five NPs (Ag, ZnO, CuO, Al2O3, and TiO2) differing in size and morphology on growth behavior and physiological activity of Azotobacter chroococcum, Bacillus thuringiensis, Pseudomonas mosselii, and Sinorhizobium meliloti were investigated. Various biochemical and microscopic approaches were adopted. Interestingly, all bacterial strains were found sensitive to Ag-NPs and ZnO-NPs but showed tolerance toward CuO, Al2O3, and TiO2-NPs. The loss of cellular respiration due to NPs was coupled with a reduction in population size. ZnO-NPs at 387.5 μg mL-1 had a maximum inhibitory impact on A. chroococcum and reduced its population by 72%. Under Ag-NP stress, the reduction in IAA secretion by bacterial strains followed the order S. meliloti (74%) > P. mosselii (63%) > A. chroococcum (49%). The surface of bacterial cells had small- or large-sized aggregates of NPs. Also, numerous gaps, pits, fragmented, and disorganized cell envelopes were visible. Additionally, a treated cell surface appeared corrugated with depressions and alteration in cell length and a strong heterogeneity was noticed under atomic force microscopy (AFM). For instance, NPs induced cell roughness for P. mosselii followed the order 12.6 nm (control) > 58 nm (Ag-NPs) > 41 nm (ZnO-NPs). TEM analysis showed aberrant morphology, cracking, and disruption of the cell envelope with extracellular electron-dense materials. Increased permeability of the inner cell membrane caused cell death and lowered EPS production. Ag-NPs and ZnO-NPs also disrupted the surface adhering ability of bacteria, which varied with time and concentration of NPs. Conclusively, a plausible mechanism of NP toxicity to bacteria has been proposed to understand the mechanistic basis of ecological interaction between NPs and resourceful bacteria. These results also emphasize to develop strategies for the safe disposal of NPs.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Fuad Ameen
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asfa Rizvi
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Khursheed Ali
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Hana Sonbol
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Almas Zaidi
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Mohammad Saghir Khan
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
| | - Javed Musarrat
- Department
of Agricultural Microbiology, Aligarh Muslim
University, Aligarh 202002, India
- School
of Biosciences and Biotechnology, Baba Ghulam
Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
31
|
Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MDF, Khan MS. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 2020; 10:38379-38403. [PMID: 35693041 PMCID: PMC9121104 DOI: 10.1039/d0ra05610c] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. Due to these problems, soil biologists/agronomists in recent times have also raised concerns over heavy metal pollution, which indeed are unpleasantly affecting agro-ecosystems and crop production. The toxic heavy metals once deposited beyond certain permissible limits, obnoxiously affect the density, composition and physiological activities of microbiota, dynamics and fertility of soil leading eventually to reduction in wheat production and via food chain, human and animal health. Therefore, the metal induced phytotoxicity problems warrant urgent and immediate attention so that the physiological activities of microbes, nutrient pool of soils and concurrently the production of wheat are preserved and maintained in a constantly deteriorating environment. To mitigate the magnitude of metal induced changes, certain microorganisms have been identified, especially those belonging to the plant growth promoting rhizobacteria (PGPR) group endowed with the distinctive property of heavy metal tolerance and exhibiting unique plant growth promoting potentials. When applied, such metal-tolerant PGPR have shown variable positive impact on wheat production, even in soils contaminated with metals, by supplying macro and micro nutrients and secreting active biomolecules like EPS, melanins and metallothionein (MTs). Despite some reports here and there, the phytotoxicity of metals to wheat and how wheat production in metal-stressed soil can be enhanced is poorly explained. Thus, an attempt is made in this review to better understand the mechanistic basis of metal toxicity to wheat, and how such phytotoxicity can be mitigated by incorporating microbiological remediation strategies in wheat cultivation practices. The information provided here is likely to benefit wheat growers and consequently optimize wheat production inexpensively under stressed soils. Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety.![]()
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Fuad Ameen
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Muneera D. F. AlKahtani
- Department of Biology
- College of Science
- Princess Nourah Bint Abdulrahman University
- Riyadh
- Saudi Arabia
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
32
|
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol 2019; 104:1357-1370. [PMID: 31811318 DOI: 10.1007/s00253-019-10245-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|