1
|
Anzalone SE, Fuller NW, Hartz KEH, Whitledge GW, Magnuson JT, Schlenk D, Acuña S, Whiles MR, Lydy MJ. The Roles of Diet and Habitat Use in Pesticide Bioaccumulation by Juvenile Chinook Salmon: Insights from Stable Isotopes and Fatty Acid Biomarkers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:234-248. [PMID: 38555540 DOI: 10.1007/s00244-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish. Relationships between DDX and both sulfur (δ34S) and carbon (δ13C) SI ratios in salmon indicated that diet is a major exposure route for DDX, particularly for individuals with a benthic detrital energy base. Greater use of a benthic detrital energy base likely accounted for the higher frequency of salmon with DDX concentrations > 60 ng/g dw in the Yolo Bypass compared to the Sacramento River. Chironomid larvae and zooplankton were implicated as prey items likely responsible for trophic transfer of DDX to salmon. Sulfur SI ratios enabled identification of hatchery-origin fish that had likely spent insufficient time in the wild to substantially bioaccumulate DDX. Bifenthrin concentration was unrelated to SI or FA biomarkers in salmon, potentially due to aqueous uptake, biotransformation and elimination of the pesticide, or indistinct biomarker compositions among invertebrates with low and high bifenthrin concentrations. One FA [docosahexaenoic acid (DHA)] and DDX were negatively correlated in salmon, potentially due to a greater uptake of DDX from invertebrates with low DHA or effects of DDX on FA metabolism. Trophic biomarkers may be useful indicators of DDX accumulation and effects in juvenile Chinook Salmon in the Sacramento River Delta.
Collapse
Affiliation(s)
- Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Matt R Whiles
- Department of Soil and Water Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
2
|
Gültekin VK, Atamanalp M, Ucar A, Alak G, Parlak V. Testing the detoxification power of black cumin oil ( Nigella sativa) over cypermethrin insecticide effects in rainbow trout ( Oncorhynchus mykiss) at multiple scales. Drug Chem Toxicol 2024:1-14. [PMID: 38326995 DOI: 10.1080/01480545.2024.2311279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
This study investigated the curative effect of black cumin oil (Nigella sativa, NS), which is a phytotherapeutic agent against to cypermethrin (CYP), which is known to have adverse effects on rainbow trout (Oncorhynchus mykiss)'s behavioral changes, oxidative stress-mediated neurotoxicity, hematotoxicity and hepatotoxicity parameters.At the end of the trial period; (i) evaluation of critical swimming speed (Ucrit) (ii) hematology indices [white blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb), hematocrit (Hct), mean cell volume (MCV), mean cell hemoglobin) (MCH), mean cell hemoglobin concentration (MCHC)] (iii) Elucidation of the mechanism of functional damage in brain tissue of O. mykiss by neurological parameter [acetylcholinesterase (AChE)] (iv) Evaluation of oxidative damage in oxidative stress-mediated neurotoxicity and hepatotoxicity in liver, gill and brain tissue of O. mykiss with antioxidant enzymes [(Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Glutathione (GSH)] and [(detection by means of malondialdehyde (MDA)] (v) Obtaining applicable data in the toxicological field using a multi-biomarker approach to investigate the modulation of NS administration via target markers in the physiological pathway of O. mykiss were aimed.As a result of CYP application, it was determined that the Ucrit value of O. mykiss decreased significantly. It was determined that the changes in the values of RBC, Hgb and Hct, which are among the hematology parameters examined in the blood tissue, were statistically significant (p < 0.05). It was determined that WBC value was inhibited by CYP application and NS tried to make a positive contribution to WBC. It was determined that the AChE activity of O. mykiss in the brain tissue had a statistically significant inhibition in the CYP-treated group (p < 0.05). SOD, CAT, GPx, enzyme activities were found to be inhibited by CYP application and were statistically significant (p < 0.05). Acute toxicity of CYP was determined by antioxidant enzyme biomarkers in gill tissue. In the results obtained; While inhibitions were determined in SOD, CAT, GPx activities compared to the control group, an induction occurred in MDA value.NS administration was noted to be an important modulator of the SOD-CAT system against CYP exposure at both concentrations. Thus, it can be said that it indirectly functions as an effective antioxidant through the NS receptor protein and structurally stimulates the synthesis and activity of antioxidative enzymes under oxidative stress.
Collapse
Affiliation(s)
| | | | - Arzu Ucar
- Department of Aquaculture, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Magnuson JT, Fuller N, McGruer V, Huff Hartz KE, Acuña S, Whitledge GW, Lydy MJ, Schlenk D. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120938. [PMID: 36572271 DOI: 10.1016/j.envpol.2022.120938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Fuller N, Magnuson JT, Huff Hartz KE, Whitledge GW, Acuña S, McGruer V, Schlenk D, Lydy MJ. Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120308. [PMID: 36181938 DOI: 10.1016/j.envpol.2022.120308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Umax) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p'-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Umax of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Umax among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Victoria McGruer
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences; University of California, Riverside; Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences; Department of Zoology; Southern Illinois University; Carbondale, Illinois, 62901, USA.
| |
Collapse
|
5
|
Magnuson JT, Caceres L, Sy N, Ji C, Tanabe P, Gan J, Lydy MJ, Schlenk D. The Use of Non-targeted Lipidomics and Histopathology to Characterize the Neurotoxicity of Bifenthrin to Juvenile Rainbow Trout ( Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11482-11492. [PMID: 35876619 PMCID: PMC9387103 DOI: 10.1021/acs.est.2c01542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 05/25/2023]
Abstract
Due to the detection frequencies and measured concentrations in surface water, the type I pyrethroid insecticide, bifenthrin, has been of particular concern within the Sacramento-San Joaquin Delta in California. Concentrations have been detected above levels previously reported to impair neuroendocrine function and induce neurotoxicity to several species of salmonids. Metabolomic and transcriptomic studies indicated impairment of cellular signaling within the brain of exposed animals and potential alteration of lipid metabolism. To better understand the potential impacts of bifenthrin on brain lipids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to mean bifenthrin concentrations of 28 or 48 ng/L for 14 days, and non-targeted lipidomic profiling in the brain was conducted. Brain tissue sections were also assessed for histopathological insult following bifenthrin treatment. Bifenthrin-exposed trout had a concentration-dependent decrease in the relative abundance of triglycerides (TGs) with levels of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) significantly altered following 48 ng/L bifenthrin exposure. An increased incidence of histopathological lesions, such as focal hemorrhages and congestion of blood vessels, was noted in the brains of bifenthrin-treated animals, suggesting an association between altered lipid metabolism and neuronal cell structure and integrity.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Leslie Caceres
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Nathan Sy
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Chenyang Ji
- College
of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Philip Tanabe
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Yanagitsuru YR, Daza IY, Lewis LS, Hobbs JA, Hung TC, Connon RE, Fangue NA. Growth, osmoregulation and ionoregulation of longfin smelt ( Spirinchus thaleichthys) yolk-sac larvae at different salinities. CONSERVATION PHYSIOLOGY 2022; 10:coac041. [PMID: 35795015 PMCID: PMC9252123 DOI: 10.1093/conphys/coac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Longfin smelt (Spirinchus thaleichthys) is a threatened anadromous fish species that spawns in freshwater to moderately brackish (i.e. 5-10 ppt) reaches of the upper San Francisco Estuary and has declined to ~1% of its pre-1980s abundances. Despite 50+ years of population monitoring, the efficacy of 10+ years of conservation efforts for longfin smelt remain uncertain due to a limited understanding of how the species responds to environmental variation, such as salinity. For example, high mortality during larval stages has prevented culture efforts from closing the life cycle in captivity. Here, we investigated the effects of salinity on longfin smelt yolk-sac larvae. Newly hatched larvae from four single-pair crosses were acutely transferred to and reared at salinities of 0.4, 5, 10, 20 or 32 ppt. We compared whole-body water and sodium ion (Na+) content, notochord length and yolk-sac volume at 12, 24, 48, 72, and 96 hours post-transfer for each salinity treatment. We found that larvae maintained osmotic and ionic balance at 0.4-10 ppt, whereas salinities ˃10 ppt resulted in decreased water and increased whole-body Na+ content. We also found that larvae grew largest and survived the longest when reared at 5 and 10 ppt, respectively, and that yolk resorption stalled at 0.4 ppt. Finally, there were significant but small interclutch variations in responses to different salinities, with clutch accounting for <8% of the variance in our statistical models. Overall, our results indicate that longfin smelt yolk-sac larvae likely perform best at moderately brackish conditions, thus yielding a mechanism that explains their distribution in field surveys and providing key information for future conservation efforts.
Collapse
Affiliation(s)
- Yuzo R Yanagitsuru
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Itza Y Daza
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Levi S Lewis
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, 95616, USA
| | - James A Hobbs
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, 95616, USA
- California Department of Fish and Wildlife, Bay-Delta IEP, Stockton, CA, 95206, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Nann A Fangue
- Corresponding author: Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA 95616, USA. Tel: 530-752-4997.
| |
Collapse
|
7
|
Fuller N, Anzalone SE, Huff Hartz KE, Whitledge GW, Acuña S, Magnuson JT, Schlenk D, Lydy MJ. Bioavailability of legacy and current-use pesticides in juvenile Chinook salmon habitat of the Sacramento River watershed: Importance of sediment characteristics and extraction techniques. CHEMOSPHERE 2022; 298:134174. [PMID: 35276115 DOI: 10.1016/j.chemosphere.2022.134174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The Sacramento River watershed, California, provides important rearing and migratory habitat for several species of conservation concern. Studies have suggested significant benefits for juvenile fish rearing in floodplain habitats of the watershed compared to the mainstem Sacramento River. However, the potential for contaminant exposure in each of these two habitats is poorly understood. Consequently, the present study aimed to determine the distribution and occurrence of bioavailable pesticides within two known salmon habitats using a suite of approaches including exhaustive chemical extraction, single-point Tenax extraction (SPTE) and ex situ passive sampling. Sediment samples were collected from sites within both habitats twice annually in 2019 and 2020, with inundation of the floodplain and high flows for both areas in 2019 and low flow conditions observed in 2020. Sediment characteristics including total organic carbon, black carbon and particle size distribution were determined to elucidate the influence of physical characteristics on pesticide distribution. Using exhaustive extractions, significantly greater sediment concentrations of organochlorines were observed in the floodplain compared to the Sacramento River in both years, with bioaccessible organochlorine concentrations also significantly greater in the floodplain (ANOVA, p < 0.05). Using both SPTEs and exhaustive extractions, significantly fewer pesticides were detected across both sites under low flow conditions as compared to high flow conditions (Poisson regression, p < 0.05). Sediment characteristics including percent fines and black carbon had significant positive relationships with total and bioaccessible pyrethroid and organochlorine concentrations. Fewer analytes were detected using low-density polyethylene (LDPE) passive samplers as compared to SPTEs, suggesting greater sensitivity of the Tenax technique for bioavailability assessments. These findings suggest that threatened juvenile fish populations rearing on the floodplain may have greater exposure to organochlorines than fish inhabiting adjacent riverine habitats, and that pesticide exposure of resident biota may be exacerbated during high-flow conditions.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
8
|
Anzalone SE, Fuller NW, Huff Hartz KE, Fulton CA, Whitledge GW, Magnuson JT, Schlenk D, Acuña S, Lydy MJ. Pesticide residues in juvenile Chinook salmon and prey items of the Sacramento River watershed, California - A comparison of riverine and floodplain habitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119102. [PMID: 35257807 DOI: 10.1016/j.envpol.2022.119102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Juvenile Chinook salmon (Oncorhynchus tshawytscha) of the Sacramento River system encounter many anthropogenically-induced stressors while rearing and migrating to the Pacific Ocean. Located in a prominent agricultural region, the watershed serves as a source of notable contaminants including pesticides. Salmon rearing in riverine and floodplain areas are potentially exposed to these compounds via dietary exposure, which can vary based on selected food webs. Previous studies have suggested that juvenile Chinook salmon rearing in riverine and floodplain environments of the Sacramento River watershed are characterized by different dietary preferences, with potential for contrasting pesticide exposure between habitats. To examine the potential for pesticide exposure, juvenile Chinook salmon and known dietary items were collected in the mainstem Sacramento River and an adjacent floodplain, the Yolo Bypass, in 2019 and 2020, and analyzed for 33 pesticides, including degradates and isomers. Organochlorine pesticides including the DDX group (p,p'-DDT, p,p'-DDD and p,p'-DDE) were prevalent in all examined biota. There was a significantly greater number of total pesticide detections across all classes in zooplankton compared to macroinvertebrates, coupled with higher bifenthrin concentrations in zooplankton across regions and years, which may indicate different exposure potential depending on fish dietary preferences. Detection frequencies and concentrations of organochlorines were higher in prey items during flooding than in drought conditions, suggesting resuspension of legacy compounds. Significantly higher concentrations of organochlorines were recorded in floodplain rearing fish compared to the Sacramento River. These findings suggest that within these habitats, juvenile Chinook salmon feeding primarily on zooplankton within the water column may be exposed to a greater range of pesticides than those feeding on benthic macroinvertebrates, and that the benefits of floodplain rearing may come at a cost of increased organochlorine exposure.
Collapse
Affiliation(s)
- Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Neil W Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Corie A Fulton
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
9
|
Magnuson JT, Fuller N, Huff Hartz KE, Anzalone S, Whitledge GW, Acuña S, Lydy MJ, Schlenk D. Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook Salmon ( Oncorhynchus tshawytscha). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5071-5080. [PMID: 35353479 PMCID: PMC9354086 DOI: 10.1021/acs.est.1c06609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance (Umax) using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity). Chinook exposed to bifenthrin and bifenthrin and fipronil mixtures had a significantly reduced swimming performance, although not when exposed to fipronil alone. The AST activity was significantly increased in bifenthrin and mixture treatments and glucose levels were increased in Chinook following a mixture treatment, although not when exposed to fipronil alone. These findings suggest that there are different metabolic processes between bifenthrin and fipronil following dietary uptake that may influence toxicity. The significant reductions in swimming performance and increased levels of biochemical processes involved in energetics and fish heath could have implications for foraging activity and predator avoidance in wild fish at sensitive life stages.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
| | - Neil Fuller
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kara E. Huff Hartz
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sara Anzalone
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Gregory W. Whitledge
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Shawn Acuña
- Metropolitan
Water District of Southern California, 1121 L Street, Suite 900, Sacramento, California 95814, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Li B, Wang Y, Zhao H, Yin K, Liu Y, Wang D, Zong H, Xing M. Oxidative stress is involved in the activation of NF-κB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19594-19607. [PMID: 34718981 DOI: 10.1007/s11356-021-17197-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
At present, the concentration of environmental pollutants, such as pesticides and antibiotics exposed in environment, especially in aquatic environment is increasing. Research on environmental pollutants has exploded in the last few years. However, studies on the combined effects of pesticides and antibiotics on fish are rare, especially the toxic damage to gill tissue is vague. In this paper, cypermethrin (CMN) and sulfamethoxazole (SMZ) were analyzed and found that there was a strong correlation between the pathways affected by the first 30 genes regulated by CMN and SMZ, respectively. Therefore, the toxic effects of CMN (0.651 μg L-1) and/or SMZ (0.3 μg L-1) on grass carp gill were studied in this paper. Histopathology, quantitative real-time PCR, and other methods were used to detect the tissue morphology, oxidative stress level, inflammation, and apoptosis-related indicators of the fish gills after exposure of 42 days. It was found that compared with the single exposure (CMN/SMZ) group, the combined exposure (MIX) group had a more pronounced oxidative stress index imbalance. At the same time, nuclear factor-κB (NF-κB) signal pathway was activated and immuno-inflammatory reaction appeared in MIX group. The expression of tumor necrosis factor (TNF-α) in the rising range is 2.94 times that of the C group, while the expression of interleukin 8 (IL-8) is as high as 32.67 times. This study reveals the harm of CMN and SMZ to fish, and provides a reference and basis for the rational use of pesticides and antibiotics.
Collapse
Affiliation(s)
- Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou, 510000, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
11
|
Fuller N, Huff Hartz KE, Johanif N, Magnuson JT, Robinson EK, Fulton CA, Poynton HC, Connon RE, Lydy MJ. Enhanced trophic transfer of chlorpyrifos from resistant Hyalella azteca to inland silversides (Menidia beryllina) and effects on acetylcholinesterase activity and swimming performance at varying temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118217. [PMID: 34583267 DOI: 10.1016/j.envpol.2021.118217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos, an organophosphate (OP) insecticide, is prevalent in aquatic systems globally and is often implicated in aquatic toxicity during storm events. Chlorpyrifos induces toxicity by inhibition of acetylcholinesterase (AChE) activity, which has been related to alterations to fish swimming performance. Resistance to organophosphate insecticides, including chlorpyrifos, is prevalent in populations of the epibenthic amphipod Hyalella azteca in areas with known OP exposure. Previous studies have demonstrated an elevated bioaccumulation potential of insecticide-resistant prey items, however the potential for trophic transfer of chlorpyrifos from OP-resistant prey items and associated neurotoxic effects in fish predators has not been studied. Consequently, the present study aimed to determine the potential for trophic transfer of chlorpyrifos from OP-resistant H. azteca to a known predator, the inland silverside, Menidia beryllina at two temperatures (18 and 23 °C) to simulate temperature changes associated with global climate change (GCC). Fish were fed either 14C-chlorpyrifos-dosed H. azteca or control animals for 7 d, after which total bioaccumulation, percent parent chlorpyrifos, brain AChE activity and swimming performance (ramp-Ucrit) were determined. Fish fed chlorpyrifos-dosed H. azteca bioaccumulated chlorpyrifos ranging from 29.9 to 1250 ng/g lipid, demonstrating the potential for trophic transfer. Lower bioaccumulation and greater biotransformation were observed in M. beryllina at 23 °C as compared to 18 °C, though this was not statistically significant. A significant 36.5% reduction in brain AChE activity was observed in fish fed chlorpyrifos-dosed H. azteca at 23 °C only, which may be attributed to increased biotransformation of parent chlorpyrifos to more potent AChE-inhibiting metabolites. Dietary chlorpyrifos exposure had no significant effect on swimming performance in M. beryllina, though ramp-Ucrit was significantly increased by 25% at 23 as compared to 18 °C. These findings confirm the potential for trophic transfer of chlorpyrifos from OP-resistant prey to fish predators and the potential for elevated temperatures to exacerbate the neurotoxic effects of chlorpyrifos.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Nadhirah Johanif
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, 92591, USA
| | - Eleni K Robinson
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology University of California, Davis, CA, 95616, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|