1
|
Rex KR, Vinod PG, Praveen KS, Chakraborty P. Sediment-water exchange and risk assessment of pesticidal persistent organic pollutants in Bharathappuzha and Periyar Riverine region along the Arabian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:144. [PMID: 38538830 DOI: 10.1007/s10653-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and β-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - P G Vinod
- GeoVin Solutions Pvt. Ltd, Thiruvananthapuram, Kerala, India
- Neuvo Chakra (OPC) Pvt. Ltd., Vasai, India
| | - K S Praveen
- Liquid Waste Management Division, Suchitwa Mission, Government of Kerala, Thiruvananthapuram, Kerala, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, The University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Wang W, Zheng H, Huang P, Ye J, Liu M, Lin Y, Li Y, Chen M, Ke H, Cai M. Can water dating trace the transport history of HCHs in the ocean? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166227. [PMID: 37574073 DOI: 10.1016/j.scitotenv.2023.166227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Long-range atmospheric and oceanic transport play a crucial role in the accumulation of persistent organic pollutants (POPs), including hexachlorocyclohexanes (HCHs), in the Arctic Ocean. Herein, transient tracers, specifically chlorofluorocarbon-12 and sulfur hexafluoride, were used to determine the ventilation time of HCHs. Results revealed that dissolved HCHs can penetrate to a depth of ~500 m in the western Arctic Ocean, corresponding to water masses with a mean age of 45 ± 14 years. The average long-range transport time for α-HCH from initial atmospheric release to entering the western Arctic Ocean was estimated to be >30 ± 5 years, indicating continued moderate to high ecological risks from HCHs in the Arctic. This study demonstrates that transient tracers serve as effective water dating tools to elucidate the transport history of stable POPs in the ocean, contributing to a better understanding of their environmental characteristics and fate.
Collapse
Affiliation(s)
- Weimin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Zhejiang Institute of Tianjin University, Ningbo 315000, China
| | - Haowen Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiandong Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifan Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mian Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Schilling Costello MC, Asad N, Haris M, Yousefi P, Khan B, Lee LS. Reconnaissance Survey of Organic Contaminants of Emerging Concern in the Kabul and Swat Rivers of Pakistan. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2599-2613. [PMID: 37750569 DOI: 10.1002/etc.5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
The Swat and Kabul rivers of northern Pakistan are within an important regional watershed that supports river-based livelihoods and is impacted by untreated effluent discharges and municipal solid waste. Evidence indicates that fish populations are decreasing in these rivers. One potential cause of poor aquatic health is pollution; therefore, we investigated the presence of contaminants of emerging concern (CECs) in the river systems. Water samples were collected in the Kabul River (n = 9) and Swat River (n = 10) during seasons of high (summer 2018) and low (winter 2019) river flow. Agrochemicals, pharmaceuticals, plasticizers, chemicals in personal care products, and hormones were quantified via liquid chromatography high-resolution mass spectrometry. In the Swat River, caffeine (18-8452 ng/L), N,N-diethyl-meta-toluamide (DEET; 16-56 ng/L), and plasticizers (13-7379 ng/L) were detected at all sites during both seasons, while butachlor (16-98 ng/L) was detected only during high flow. In the Kabul River, caffeine (12-2081 ng/L) and several plasticizers (91-722 ng/L) were detected at all sites during both seasons, while DEET (up to 97 ng/L) was detected only during high flow. During low flow, pharmaceuticals (analgesics and nonsteroidal anti-inflammatory drugs) were quantified in both rivers (up to 823 ng/L), with detection frequencies from 70% to 100% and 0% to 78% in the Swat and Kabul Rivers, respectively. Intermittent-use and natural seasonal processes (increased runoff and dilution from rainfall and snowmelt) yielded higher agrochemical concentrations and lower concentrations of continuous-use compounds (e.g., caffeine) during high flow. The present study provides the first insight into CEC concentrations in the Swat River, additional insight into the Kabul River stressors, and, overall, contaminant risks to aquatic life. Environ Toxicol Chem 2023;42:2599-2613. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Christina Schilling Costello
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Neelam Asad
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Haris
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Peyman Yousefi
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Bushra Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Linda S Lee
- Ecological Sciences and Engineering IGP, Purdue University, West Lafayette, Indiana, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Aamir M, Guo Z, Yu J, Zhao L, Xu D, Sun X, Xu C, Niu L, Liu W. Integrating compound-specific stable isotope and enantiomer-specific analysis to characterize the isomeric and enantiomeric signatures of hexachlorocyclohexanes (HCHs) in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132196. [PMID: 37536155 DOI: 10.1016/j.jhazmat.2023.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Organic pollutants in paddy fields may undergo different processes from those in dryland due to the anaerobic environment. The integrated use of compound-specific stable isotope analysis (CSIA) and enantiomer-specific analysis is a promising technique for understanding the behavior and fate of organic pollutants in soils. In this study, soil samples were collected from paddy fields in three major rice cultivation regions of China, spanning a transect of 4000 km. The mean concentrations of ƩHCHs in paddy soils from the Taihu Plain were the highest (1.44 ng/g). The ratios of α-HCH/β-HCH (all below 11.8) and α-HCH/γ-HCH (92% below 4.64), as well as the enantiomeric fractions (EFs) of chiral α-HCH (mean of 0.81), reflected that the distribution of HCHs was affected by the use of both technical HCHs and lindane. The preferential depletion of (-)-α-HCH and pronounced carbon isotope fractionation of α-HCH (δ13C of -28.22 ± 0.92‰ -23.63 ± 1.89‰) demonstrated its effective transformation. Factors such as altitude, soil temperature, soil pH, soil conductivity and soil organic matter significantly influenced the fate and transformation of HCHs. The current study highlights the integrated application of CSIA and enantiomer-specific analysis to provide multiple lines of evidence for the transformation of HCHs in soils.
Collapse
Affiliation(s)
- Muhammad Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiawei Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou 310012, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Wang C, Feng L, Thakuri B, Chakraborty A. Ecological risk assessment of organochlorine pesticide mixture in South China Sea and East China Sea under the effects of seasonal changes and phase-partitioning. MARINE POLLUTION BULLETIN 2022; 185:114329. [PMID: 36356345 DOI: 10.1016/j.marpolbul.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs), chlorinated hydrocarbon derivatives extensively used in agriculture and chemical industry, have been banned for several decades in most developed countries. However, OCPs act as persistent organic pollutants due to their semi-volatility nature, high ability for wide range transportation and faster bioaccumulation, and thus it has remained as a topical global concern. This study focuses on OCP distributions, sources and associated ecological risks in the globally important OCP source-sink regions of South China Sea (SCS) and East China Sea (ECS). Given the co-exposure of multiple OCPs that undermine the classical risk assessment of single OCP species, a two-tier mixture risk assessment approach has been employed with explicit consideration of seasonal changes and phase-partitioning effects. The results indicate existence of multiple sources varied across the seasons and between the dissolved and particulate phases. Potential sources include the current-use of lindane or historical use of technical HCH, input of technical DDTs, long-range atmospheric transport, and deposition of HCB from land surfaces. There are no wide high-risk zones. Dissolved HCB and DDTs have posed low-to-medium levels of risks broadly distributed across the seasons. Relatively greater risks are observed in summer in the both dissolved and particulate phases. The study has shown the importance of considering mixture risk assessments with the effects of phase-partitioning and seasonal changes for efficient oceanic risk management.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, PR China.
| | - Lan Feng
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bikash Thakuri
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Amit Chakraborty
- Department of Mathematics, School of Physical Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
6
|
Khan K, Younas M, Zhou Y, Sharif HMA, Li X, Yaseen M, Ibrahim SM, Baninla Y, Cao X, Lu Y. First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System: Occurrence, source and environmental risk. ENVIRONMENTAL RESEARCH 2022; 211:113113. [PMID: 35283080 DOI: 10.1016/j.envres.2022.113113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are of global interest due to their persistence in the aquatic environment. This study assessed the occurrence of PFAAs in the Indus Drainage System and discerned their potential sources and environmental risks for the first time in Pakistan. 13 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) were analyzed to verify the dominant prevalence of short-chain PFAAs in the environment since the phase-out of long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). A significant variation (p ≤ 0.05) of individual PFAAs between the monitoring sites was confirmed by data normality tests Kolmogorov-Smirnov and Shapiro-Wilk, suggesting that different locations contribute differently to individual PFAAs concentrations. ΣPFAAs concentrations in riverine water and sediments ranged from 2.28 to 221.75 ng/L and 0.78-29.19 ng/g dw, respectively. PFBA, PFPeA, and PFHxA were the most abundant PFAAs, and on average accounted for 14.64, 13.75, and 12.97 ng/L of ∑PFAAs in riverine water and 0.34, 0.64, and 0.79 ng/g dw of ∑PFAAs in sediments. ΣPFAAs mean contamination in the drainage was significantly (p < 0.05) high in River Chenab followed by River Indus > Soan > Ravi > Kabul > Swat with more prevalence of short-chain (C4-C7) PFCAs followed by PFOA, PFBS, PFOS, PFNA, PFDA, PFHxS, PFUnDA, and PFDoDA. The correlation analysis determined the PFAAs' fate and distribution along the drainage, indicating that PFAAs with carbon chains C4-C12, except for PFSAs with carbon chains C6-C8, were most likely contaminated by the same source, the values of Kd and Koc increased linearly with the length of the perfluoroalkyl carbon chain, better understand the transport and partitioning of individual PFAAs between riverine water and sediments, where the HCA and PCA discerned industrial/municipal wastewater discharge, agricultural and surface runoff from nearby fields, and urban localities as potential sources of PFAAs contamination. The collective mass flux of short-chain (C4-C7) PFCAs was 5x higher than that of PFOS + PFOA, suggesting a continuous shift in the production and usage of fluorinated replacements for long-chain PFAAs with short-chain homologs. In terms of risk, individual PFAAs pollution in the drainage was within the world's risk thresholds for human health, with the exception of PFBA, PFPeA, PFHpA, PFHxA, PFOA, PFNA, and PFBS, whereas for ecology, the concentrations of individual PFAAs did not exceed the ecological risk thresholds of the United States of America, Canada, European Union (EU), Italy, Australia, and New Zealand, with the exception of PFSAs, whose detected individual concentrations were significantly higher than the EU, Australian and New Zealander PFSAs guidelines of 0.002 μg/L, 0.00047 μg/L, 0.00065 μg/L, 0.00013 μg/L, and 0.00023 μg/L, respectively, which may pose chronic risks to the regional ecosystem and population.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Xu Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sobhy Mostafa Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Yvette Baninla
- Graduate School of Humanities and Social Science, University of Hiroshima, Higashihiroshima, Hiroshima, 739-8511, Japan; Department of Geology, Mining and Environmental Science, University of Bamenda, P. O Box 39, Bambili, North West Region, Cameroon
| | - Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| |
Collapse
|
7
|
Rashid S, Rashid W, Tulcan RXS, Huang H. Use, exposure, and environmental impacts of pesticides in Pakistan: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43675-43689. [PMID: 35435556 DOI: 10.1007/s11356-022-20164-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The excessive use of pesticides is posing major threats to humans and the environment. However, the environmental exposure and impact of pesticides in Pakistan have yet been systematically reviewed, despite the country's leading role in pesticide use. Therefore, this study identified and then reviewed 85 peer-reviewed scientific publications on the topic. It was found that, compared to the worldwide average, Pakistan had high consumptions of pesticides, with an alarming increase of 1169% in the last two decades. The quantities of pesticides used followed an order of pyrethroids > organophosphates > organochlorines > carbamates, but organochlorines were the most problematic due to their environmental occurrence, the ability to transport across the media, and identified human and ecological toxicities. Additionally, the misuse or overuse of pesticides by farmers is prevailing due to insufficient knowledge about the risks, which leads to high risks in occupational exposure. These issues are further aggravated by the illegal use or continuous impacts of banned organochlorine pesticides. For the future, we suggested the establishment of organized monitoring, assessment, and reporting program based on environmental laws to minimize contamination and exposure to pesticides in Pakistan. Remediation of the contaminated areas to mitigate the adverse environmental-cum-health impacts are recommended in the most affected regions.
Collapse
Affiliation(s)
- Sajid Rashid
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Wajid Rashid
- Department of Environmental and Conservation Sciences, University of Swat, 19130, Swat, Pakistan
| | - Roberto Xavier Supe Tulcan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Haiou Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Tran TD, Dao NT, Sasaki R, Tu MB, Dang GHM, Nguyen HG, Dang HM, Vo CH, Inigaki Y, Van Nguyen N, Sakakibara Y. Accelerated remediation of organochlorine pesticide-contaminated soils with phyto-Fenton approach: a field study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3597-3608. [PMID: 32415403 DOI: 10.1007/s10653-020-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation and advanced oxidation processes are among the most promising techniques for removing organic pollutants from soils. A field trial was performed for six months to evaluate the effect of nano-Fe3O4 on the degradation of organochlorine pesticide residues including Lindane, p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and p,p'-dichlorodiphenyldichloroethane (DDD) in pesticide-contaminated soils in the presence of vetiver in Bac Giang province, Vietnam. Vetiver was planted in three zones with different nano-Fe3O4 concentrations. Soil samples from each zone were periodically collected to determine the remaining concentrations of selected organochlorine pesticides via gas chromatography-electron capture detector. Results indicated that the total DDT concentrations in the examined soil were 1.9-13 times higher than the permissible threshold level (10 µg g-1) established by the national technical regulation on pesticide residues in soil. The (p,p'-DDE + p,p'-DDD)/p,p'-DDT ratios ranged from 13.5 to 114, indicating the absence of recent inputs of technical DDTs at the study area. DDT dechlorination mainly occurred under aerobic pathways to form DDE. Furthermore, DDE degradation in soil was adequately described by the pseudo-first-order kinetics model (R2 > 0.892). In the presence of vetiver, the rate constants of DDE degradation were 0.264, 0.350, and 0.434 month-1 with 0, 25, and 100 mg kg-1 of added nano-Fe3O4, respectively, indicating that the degradation of DDE correlated positively with Fe3O4 concentration in the soil. Additionally, the presence of vetiver and nano-Fe3O4 in the soil increased DDT removal rates, which might be linked to the involvement of Fenton/Fenton-like reactions.
Collapse
Affiliation(s)
- Trinh Dinh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam.
| | - Nhung Thi Dao
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam
| | - Rei Sasaki
- Waseda University, 1-104 Totsukamachi, Shinjuku-ku, Tokyo, Japan
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam.
| | - Giang Huong Minh Dang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam
| | - Han Gia Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam
| | - Hieu Minh Dang
- Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Cong Huu Vo
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | | | - Noi Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hoan Kiem, Hanoi, Vietnam
| | | |
Collapse
|
9
|
Nawab J, Wang X, Khan S, Tang YT, Rahman Z, Ali A, Dotel J, Li G. New insights into the bioaccumulation of persistent organic pollutants in remote alpine lakes located in Himalayas, Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020:114952. [PMID: 32933786 DOI: 10.1016/j.envpol.2020.114952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The current study assesses the persistent organic pollutants (POPs) in water and their bioaccumulation in Brown Trout (BT) and Rainbow Trout (RT) present in the remote alpine lakes (RALs) of Himalayas, Pakistan. Hence, these environments might receive POPs by long range atmospheric transport (LRAT) with little interferences from local anthropogenic activities. The potential transportation pathways for such accumulation can be atmospheric precipitation, melting ice and glacial runoff. The results indicated that the sum of mean concentrations of organochlorine pesticides (OCPs (DDTs + HCHs)) in water of Glacial-fed lakes, Ice melting-fed lake and Rain-fed lake ranged from 0.21 to 317, 0.14-293, 0.16-235 pg L-1, respectively, while those of polychlorinated biphenyls (PCBs) are 0.275-16.02, 0-15.88, 0.234-14.46 pg L-1, respectively. Similarly, the sum of mean concentrations of all investigated PCBs and OCPs in BT ranged from 0.008 to 0.715 ng g-1 and 0.003-3.835 ng g-1 based on wet weight (ww), while for RT these concentrations were 0.002-0.557 ng g-1 and 0.001-1.402 ng g-1 (ww), respectively in the selected RALs. The PCBs and OCPs levels in both water and fish tissues were observed in order of Glacial-fed lakes > Ice melting-fed lake > Rain-fed lake. The results proposed that melting of ice and glacial water are more significant sources of the contaminants (PCBs and OCPs) in the freshwaters of RALs of Himalayas as compared to rainfall water. The positive correlation between water contamination and the selected fish species confirmed that these can be used as a bio-indicator for future research studies. However, the impact of POPs as they cascade through downstream ecosystems remains largely unexplored. The additional study of contaminant dynamics should be extended to a wide range of mountain environments of Himalayas, where melt-water used for drinking and irrigation purposes by billions of people reside alone the waterways that originated from these remote areas.
Collapse
Affiliation(s)
- Javed Nawab
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Environmental Sciences Abdul Wali Khan University Mardan, Pakistan
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sardar Khan
- Department of Environmental Sciences University of Peshawar, Pakistan
| | - Yu-Ting Tang
- School of Geographical Sciences, Research Group of Natural Resources and Environment, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ziaur Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Pakistan
| | - Jagdish Dotel
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Li
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo, 315830, China
| |
Collapse
|
10
|
Lu Q, Qiu L, Yu L, Zhang S, de Toledo RA, Shim H, Wang S. Microbial transformation of chiral organohalides: Distribution, microorganisms and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:849-861. [PMID: 30772625 DOI: 10.1016/j.jhazmat.2019.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/27/2023]
Abstract
Chiral organohalides including dichlorodiphenyltrichloroethane (DDT), Hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) raise a significant concern in the environmental occurrence, fate and ecotoxicology due to their enantioselective biological effects. This review provides a state-of-the-art overview on enantioselective microbial transformation of the chiral organohalides. We firstly summarized worldwide field assessments of chiral organohalides in a variety of environmental matrices, which suggested the pivotal role of microorganisms in enantioselective transformation of chiral organohalides. Then, laboratory studies provided experimental evidences to further link enantioselective attenuation of chiral organohalides to specific functional microorganisms and enzymes, revealing mechanistic insights into the enantioselective microbial transformation processes. Particularly, a few amino acid residues in the functional enzymes could play a key role in mediating the enantioselectivity at the molecular level. Finally, major challenges and further developments toward an in-depth understanding of the enantioselective microbial transformation of chiral organohalides are identified and discussed.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Lan Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, 510275 Guangzhou, China.
| |
Collapse
|
11
|
Aamir M, Khan S, Li G. Dietary exposure to HCH and DDT congeners and their associated cancer risk based on Pakistani food consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8465-8474. [PMID: 29307071 DOI: 10.1007/s11356-017-1129-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Dietary exposure to organochlorine pesticides such as hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) congeners was assessed using diet study approach, and for this purpose, different food items were collected in August 2014. The levels of ∑(HCHs + DDTs) in different food groups were ranged from 2.57 to 206 ng g-1, ww, with contamination order of fish > poultry > milk > vegetables > cereals > flour > fruits. In the present study, the ratios of β-HCH/∑HCH (0.19-0.40) were < 0.5, where the ratios of (DDE + DDD)/∑DDT (0.48-6.70 with mean value of 0.61) were > 0.5 demonstrated the recent and past inputs of HCH and DDT, respectively. The major contributing groups (6.3-70.3%) to total dietary intake of HCHs and DDTs were animal origin (fish, poultry, and milk), while the less contributing food groups (2-4.5%) were vegetarian origin (vegetables, cereals, flour, and fruits). Cancer risk was estimated for HCHs and DDTs ingested via local foodstuffs. On the basis of both average and high end (95th percentile) exposure levels, the HRs for HCHs and DDTs were found greater than one (safety limit), indicating a potential cancer risk for Pakistani people from life-time consumption of contaminated food items selected in this study. The congener-specific cancer risk was found in order of α-HCH > β-HCH > ∑DDT > γ-HCH > p,p'-DDE > p,p'-DDT. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Muhammad Aamir
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sardar Khan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|