1
|
Kapwata T, Wright CY, Reddy T, Street R, Kunene Z, Mathee A. Relations between personal exposure to elevated concentrations of arsenic in water and soil and blood arsenic levels amongst people living in rural areas in Limpopo, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65204-65216. [PMID: 37079235 PMCID: PMC10116462 DOI: 10.1007/s11356-023-26813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Exposure to arsenic even at low levels can lead to adverse health outcomes, however, there is a paucity of research from South Africa in relation to human exposure to arsenic. We investigated long-term exposure of residents in Limpopo province, South Africa, in a cross-sectional study by analysing water, soil and blood arsenic concentrations from two arsenic-exposed (high and medium-low exposure) villages and one non-exposed (control) village. There were statistically significant differences in the distribution of arsenic in water, soil and blood amongst the three sites. The median drinking water arsenic concentration in the high-exposure village was 1.75 µg/L (range = 0.02 to 81.30 µg/L), 0.45 µg/L (range = 0.100 to 6.00 µg/L) in the medium- / low-exposure village and 0.15 µg/L (range = < limit of detection (LOD) to 29.30 µg/L) in the control site. The median soil arsenic concentration in the high-exposure village was 23.91 mg/kg (range = < LOD to 92.10 mg/kg) whilst arsenic concentrations were below the limit of detection in all soil samples collected from the medium-/low-exposure and control villages. In the high-exposure village, the median blood arsenic concentration was 1.6 µg/L (range = 0.7 to 4.2 µg/L); 0.90 µg/L (range = < LOD to 2.5 µg/L) in the medium-/low-exposure village and 0.6 µg/L (range = < LOD to 3.3 µg/L) in the control village. Significant percentages of drinking water, soil and blood samples from the exposed sites were above the internationally recommended guidelines (namely, 10 µg/L, 20 mg/kg and 1 µg/L, respectively). Majority of participants (86%) relied on borehole water for drinking and there was a significant positive correlation between arsenic in blood and borehole water (p-value = 0.031). There was also a statistically significant correlation between arsenic concentrations in participants' blood and soil samples collected from gardens (p-value = 0.051). Univariate quantile regression found that blood arsenic concentrations increased by 0.034 µg/L (95% CI = 0.02-0.05) for each one unit increase in water arsenic concentrations (p < 0.001). After adjusting for age, water source and homegrown vegetable consumption in multivariate quantile regression, participants from the high-exposure site had significantly higher blood concentrations than those in the control site (coefficient: 1.00; 95% CI = 0.25-1.74; p-value = 0.009) demonstrating that blood arsenic is a good biomarker of arsenic exposure. Our findings also provide new evidence for South Africa on the association between drinking water and arsenic exposure, emphasising the need for the provision of potable water for human consumption in areas with high environmental arsenic concentrations.
Collapse
Affiliation(s)
- Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa.
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa.
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, 0084, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, 0001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4001, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu Natal, Pietermaritzburg, 3201, South Africa
| | - Renee Street
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- Environment and Health Research Unit, South African Medical Research Council, Durban, 4001, South Africa
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, 2028, South Africa
| |
Collapse
|
2
|
du Plessis DM, Curtis CJ. Trace element contaminants associated with historic gold mining in sediments of dams and pans across Benoni, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:122. [PMID: 33580837 DOI: 10.1007/s10661-021-08854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
As a historic gold mining area, the City of Benoni has numerous water bodies close to major tailings dams and mine dumps. Here we assess spatial patterns in the sediment geochemistry of five dams and four natural pans within a 5-km radius of the core mining area to determine the degree of contamination7 by mining-associated pollutants. XRF analysis was used with a geoaccumulation index to assess the degree of contamination above background levels. Prevailing winds blow from the north and north-west with less dominant winds from the east. Sediment concentrations of As, Cu, Pb, Ni and Zn are highly correlated across the region, suggestive of a common source. Except for one pan showing evidence of local industrial pollution, the most contaminated sites are the dams to the west of the mine dumps where concentrations of As, Cu, Pb and Zn increase towards the central mining area, with highest trace metal concentrations in Kleinfontein Dam, adjacent to a reworked mine dump. Sites upwind of the central mining area showed little evidence of mining-related contamination. Trace contaminant concentrations in sediments of these dams are much greater than those found in the nearby Springs-Blesbokspruit wetlands adjacent to more recently active mines. The potential risks to aquatic ecosystems and recreational users of these urban and suburban water bodies from these wind-blown, legacy mining contaminants merit further investigation.
Collapse
Affiliation(s)
- D M du Plessis
- School or Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, South Africa.
| | - C J Curtis
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Corner Ditton and University Avenue, Auckland Park, Johannesburg, South Africa
| |
Collapse
|
3
|
Lotfi S, Chakit M, Belghyti D. Groundwater Quality and Pollution Index for Heavy Metals in Saïs Plain, Morocco. J Health Pollut 2020; 10:200603. [PMID: 32509404 PMCID: PMC7269321 DOI: 10.5696/2156-9614-10.26.200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Heavy metals contamination threatens groundwater resources in many areas around the world. Various methods to evaluate groundwater quality have been used to characterize sources of contamination and associated parameters. For assessment of heavy metals contamination, calculation of pollution indices is an effective tool for assessing water quality. OBJECTIVES The purpose of the present study was to assess heavy metal concentrations and determine distributions in Saïs plain, Morocco using multivariate analysis. METHODS A total of 144 groundwater samples were collected from twelve stations in Saïs from January 2018 to January 2019, and were analyzed for heavy metals (arsenic, cadmium, total chromium, lead, copper, iron, manganese and zinc) using atomic absorption spectrophotometry. RESULTS Chromium was found to be a major contaminant affecting water quality in Station 2 (0.057 mg/l) and Station 8 (0.065 mg/l), while elevated levels of iron were found in Station 7 (1.4 mg/l) and Station 11 (0.45 mg/l), and elevated levels of copper (2.9 mg/l) and zinc (3.39 mg/l) were found in Station 11, relative to other heavy metals. The high concentrations of these elements are related to anthropogenic pollutants. The factor analysis showed two components controlling groundwater chemistry. The results of the present study demonstrate that the concentrations of toxic metals, like Fe and Cr, are present in slight excess in one or two stations during one season. The calculated heavy metal pollution level for the groundwater of Saïs plain was below the index limit of 100. CONCLUSIONS The results show that groundwater is not polluted with respect to heavy metals and is acceptable for drinking. However, precautionary measures, such as managing the use of agricultural inputs and avoiding the use of wastewater in agriculture, are recommended in this area. COMPETING INTERESTS The authors declare no completing financial interests.
Collapse
Affiliation(s)
- Said Lotfi
- Laboratory of Agrophysiology, Biotechnology, Environment and Quality, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Miloud Chakit
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Driss Belghyti
- Laboratory of Agrophysiology, Biotechnology, Environment and Quality, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties. RECENT FINDINGS Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson's disease. Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.
Collapse
|
5
|
Edokpayi JN, Enitan AM, Mutileni N, Odiyo JO. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chem Cent J 2018; 12:2. [PMID: 29327318 PMCID: PMC5764906 DOI: 10.1186/s13065-017-0369-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Groundwater is considered as good alternative to potable water because of its low turbidity and perceived low contamination. The study assessed the physio-chemical and heavy metals concentrations in eight randomly selected boreholes water at Muledane village in Limpopo Province of South Africa and the results were compared with South African National standard permissible limit. The impacts of heavy metals on human health was further determined by performing quantitative risk assessment through ingestion and dermal adsorption of heavy metals separately for adults and children in order to estimate the magnitude of heavy metals in the borehole samples. Parameters such as turbidity, nitrate, iron, manganese and chromium in some investigated boreholes did not comply with standard limits sets for domestic water use. Multivariate analyses using principal component analysis and hierarchical cluster analysis revealed natural and anthropogenic activities as sources of heavy metal contamination in the borehole water samples. The calculated non-carcinogenic effects using hazard quotient toxicity potential, cumulative hazard index and chronic daily intake of groundwater through ingestion and dermal adsorption pathways were less than a unity, which showed that consumption of the water could pose little or no significant health risk. However, maximum estimated values for an individual exceeded the risk limit of 10-6 and 10-4 with the highest estimated carcinogenic exposure risk (CRing) for Cr and Pb in the groundwater. This could pose potential health risk to both adults and children in the investigated area. Therefore, precaution needs to be taken to avoid potential CRing of people in Muledane area especially, children using the borehole water.
Collapse
Affiliation(s)
- Joshua Nosa Edokpayi
- Department of Hydrology and Water Resources, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Abimbola Motunrayo Enitan
- Department of Hydrology and Water Resources, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| | - Ntwanano Mutileni
- Department of Hydrology and Water Resources, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - John Ogony Odiyo
- Department of Hydrology and Water Resources, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|