1
|
Shuvaeva VA, Mazarji M, Nevidomskaya D, Minkina TM, Fedorenko AG, Rajput VD, Kirichkov MV, Tsitsuashvili VS, Mandzhieva SS, Veligzhanin AA, Svetogorov RD, Khramov EV, Wong MH. Synthesis and properties of nano-cadmium oxide and its size-dependent responses by barley plant. ENVIRONMENTAL RESEARCH 2024; 246:118045. [PMID: 38160969 DOI: 10.1016/j.envres.2023.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.
Collapse
Affiliation(s)
- Victoria A Shuvaeva
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - Mahmoud Mazarji
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - DinaG Nevidomskaya
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - Tatiana M Minkina
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - Aleksei G Fedorenko
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - Vishnu D Rajput
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia.
| | - Mikhail V Kirichkov
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | | | - Saglara S Mandzhieva
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia
| | - Aleksei A Veligzhanin
- National Research Center "Kurchatov Institute", pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Roman D Svetogorov
- National Research Center "Kurchatov Institute", pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Evgeniy V Khramov
- National Research Center "Kurchatov Institute", pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Ming Hung Wong
- Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
2
|
Kirichkov MV, Polyakov VA, Shende SS, Minkina TM, Nevidomskaya DG, Wong MH, Bauer TV, Shuvaeva VA, Mandzhieva SS, Tsitsuashvili VS. Application of X-ray based modern instrumental techniques to determine the heavy metals in soils, minerals and organic media. CHEMOSPHERE 2024; 349:140782. [PMID: 38013028 DOI: 10.1016/j.chemosphere.2023.140782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
To evaluate the environmental concerns associated with heavy metals (HMs) during their translocations in food chains, it is crucial to gather data on the types of HMs present in soils in order to ascertain their toxicity and potential to migrate. An overview of the findings from several physical techniques used to determine and identify the HMs, sediments, individual minerals, and organic components in contaminated agricultural and industrial soils, is provided in this review article. These studies cover a variety of X-ray-based analytical techniques, including most widely used ones like X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray diffraction, and less popular ones X-ray fluorescence, etc. When compared to techniques that rely on laboratory radiation sources, synchrotron radiation offers more precision and efficiency. These methods could pinpoint the primary mechanisms influencing the soil's ability to transport contaminants and track their subsequent migration up the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don, 344090, Russia; Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
3
|
Kumari A, Mandzhieva SS, Minkina TM, Rajput VD, Shuvaeva VA, Nevidomskaya DG, Kirichkov MV, Veligzhanin AA, Svetogorov RD, Khramov EV, Ahmed B, Singh J. Speciation of macro- and nanoparticles of Cr 2O 3 in Hordeum vulgare L. and subsequent toxicity: A comparative study. ENVIRONMENTAL RESEARCH 2023; 223:115485. [PMID: 36775087 DOI: 10.1016/j.envres.2023.115485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-on-Don, 344006, Russia; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | | | | - Alexei A Veligzhanin
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Rоman D Svetogorov
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Evgeniy V Khramov
- National Research Center "Kurchatov Institute", Pl. Akademika Kurchatova 1, Moscow, 123182, Russia
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jagpreet Singh
- University Centre for Research & Development Chandigarh University, Mohali, 140413, Punjab, India
| |
Collapse
|
4
|
The life cycle study revealed distinct impact of foliar-applied nano-Cu on antioxidant traits of barley grain comparing with conventional agents. Food Res Int 2023; 164:112303. [PMID: 36737907 DOI: 10.1016/j.foodres.2022.112303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Despite that the applicability of Cu-based engineered nanoparticles (ENPs) as an antibacterial and antifungal agent for plant protection has been studied widely, little is known about their role in the improvement of crop yield and quality. Here, a full life study was performed to investigate the nutritional quality and bioactivity of barley grains under foliar application of nano-/microparticulate (nano-Cu, nano-CuO, micro-Cu) and ionic Cu compounds (CuSO4, CuEDTA). Hordeum vulgaris L. plants were sprayed with Cu compounds at 500 mg/L during the end of tillering and the beginning of heading. Yield, mineral composition, protein and dietary content, antioxidant (phenolic, anthocyanin, flavonoid, tannin, flavanol) content and antioxidant capacity of barley grain were evaluated. Grain yield was unaffected by all treatments. Only nano-Cu and ionic compounds enhanced Cu accumulation in grain: 2-fold increase was observed compared to the control (2.6 µg/kg). Nano-Cu also increased the dietary fiber content by 19.9 %, while no impact of the other treatments was determined. The content of phenolic compounds, the main group of antioxidants, remained unchanged after Cu supply. In general, for all Cu treatment, antiradical and reducing abilities were decreased or were at the similar level in relation to the control. On the other hand, chelating power in grain extracts was 2-4 times higher under nano-Cu/nano-CuO/micro-Cu than in the untreated sample, while the ionic compounds had no impact on the chelating indicator. Our results demonstrated that more favorable effects were triggered by nano-Cu than CuSO4 or CuEDTA on the tested indicators of barley grain, despite that both compounds resulted in similar superior Cu acquisition. It suggests that nano-Cu may be considered as an alternative agent to be used as economic and traditional fertilizers.
Collapse
|
5
|
Budiyanti DS, Moeller ME, Thit A. Influence of copper treatment on bioaccumulation, survival, behavior, and fecundity in the fruit fly Drosophila melanogaster: Toxicity of copper oxide nanoparticles differ from dissolved copper. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103852. [PMID: 35307570 DOI: 10.1016/j.etap.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Copper oxide (CuO) NPs are widely used and subsequently released into terrestrial ecosystems. In the present study, bioaccumulation and effects of CuO NPs and dissolved Cu was examined in the fruit fly Drosophila melanogaster after 7 and 10 days dietary exposure at concentrations ranging between 0.09 and 1.2 mg Cu ml-1 for dissolved Cu and between 0.2 and 11 mg Cu ml-1 for CuO NPs. Both Cu forms were bioaccumulated and affected survival and climbing in flies, but not egg-to-adult development. Dissolved Cu caused higher mortality than CuO NPs (CuO NPs 10-days LC50 was 2 times higher), whereas NPs affected climbing and decreased the number of eggs laid per female, potentially affecting fruit fly population size in terrestrial environments. Thus, the study indicates that CuO NPs might cause effects that are different from dissolved Cu due to differences in the mechanism of uptake or toxicity. Therefore, we need to consider relevant sublethal endpoints when assessing these CuO NPs to ensure that we do not overlook long-term effects.
Collapse
Affiliation(s)
- Dwi Sari Budiyanti
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Morten Erik Moeller
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
6
|
Tighe-Neira R, Gonzalez-Villagra J, Nunes-Nesi A, Inostroza-Blancheteau C. Impact of nanoparticles and their ionic counterparts derived from heavy metals on the physiology of food crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:14-23. [PMID: 35007890 DOI: 10.1016/j.plaphy.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Heavy metals and their engineered nanoparticle (NP) counterparts are emerging contaminants in the environment that have captured the attention of researchers worldwide. Although copper, iron, zinc and manganese are essential micronutrients for food crops, higher concentrations provoke several physiological and biochemical alterations that in extreme cases can lead to plant death. The effects of heavy metals on plants have been studied but the influence of nanoparticles (NPs) derived from these heavy metals, and their comparative effect is less known. In this critical review, we have found similar impacts for copper and manganese ionic and NP counterparts; in contrast, iron and zinc NPs seem less toxic for food crops. Although these nutrients are metals that can be dissociated in water, few authors have conducted joint ionic state and NP assays to evaluate their comparative effect. More efforts are thus required to fully understand the impact of NPs and their ion counterparts at the physiological, metabolic and molecular dimensions in crop plants.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Jorge Gonzalez-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|
7
|
Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:173. [PMID: 35010126 PMCID: PMC8746782 DOI: 10.3390/nano12010173] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance and enhance crop production with quality fruits/grains. The management of macro-micronutrients is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be environmentally friendly for human beings and may be expensive for farmers. NFs may enhance nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere; extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms. They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable for stimulation of plant development. They are associated with mitigating environmental stresses and enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-technology for agri-improvement in the near future. Interestingly, they do confer stress resistance capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to update researchers widely.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India;
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Bech J. Special Issue on "Metallophytes for soil remediation" - Preface. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1319-1325. [PMID: 33683534 DOI: 10.1007/s10653-021-00852-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|