1
|
Aghad M, Manaouch M, Sadiki M, Pham QB, Al Karkouri J. Integrating fuzzy-AHP and GIS for solid waste disposal site selection in Kenitra province, NW Morocco. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:537. [PMID: 38730190 DOI: 10.1007/s10661-024-12711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Selecting an optimal solid waste disposal site is one of the decisive waste management issues because unsuitable sites cause serious environmental and public health problems. In Kenitra province, northwest Morocco, sustainable disposal sites have become a major challenge due to rapid urbanization and population growth. In addition, the existing disposal sites are traditional and inappropriate. The objective of this study is to suggest potential suitable disposal sites using fuzzy logic and analytical hierarchy process (fuzzy-AHP) method integrated with geographic information system (GIS) techniques. For this purpose, thirteen factors affecting the selection process were involved. The results showed that 5% of the studied area is considered extremely suitable and scattered in the central-eastern parts, while 9% is considered almost unsuitable and distributed in the northern and southern parts. Thereafter, these results were validated using the area under the curve (AUC) of the receiver operating characteristics (ROC). The AUC found was 57.1%, which is a moderate prediction's accuracy because the existing sites used in the validation's process were randomly selected. These results can assist relevant authorities and stakeholders for setting new solid waste disposal sites in Kenitra province.
Collapse
Affiliation(s)
- Mohamed Aghad
- Department of Geography, Faculty of Social Scineces and Humanities, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Manaouch
- Department of Geography, Faculty of Social Scineces and Humanities, Ibn Tofail University, Kenitra, Morocco.
| | - Mohamed Sadiki
- Geosciences Laboratory, Department of Geology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Quoc Bao Pham
- Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200, Sosnowiec, Poland
| | - Jamal Al Karkouri
- Department of Geography, Faculty of Social Scineces and Humanities, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Díaz Alarcón JA, Fonseca Alfonso PM, Vergara Gómez I, Díaz Lagos M, Videira-Quintela D, Montalvo G. Assessment of potentially hazardous elements in soils of the Boyacá industrial corridor (Colombia) using GIS, multivariate statistical analysis, and geochemical indexes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115725. [PMID: 38029580 DOI: 10.1016/j.ecoenv.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
In the industrial corridor of Boyacá, Colombia, population growth is accompanied by anthropogenic activities such as industrial operations, vehicle exhaust fumes, mining, smelting, atmospheric deposition, and excessive use of chemical products to promote crop growth. These activities are known to have a significant impact on urban and rural soils, contributing significantly to elevated concentrations of potentially hazardous elements in the environment. This industrial corridor is an area of economic and social development that needs to provide reference information that will allow us to know the state of soil quality to preserve and manage the public and geoenvironmental health of this region. Anthropogenic activities have contributed to the accumulation of potentially hazardous elements in the environment, affecting various levels of life and creating risks with economic and social implications. However, igneous activity or detrital deposition also enriches soils and creates geochemical anomalies in specific locations. In these cases, the identification of potentially hazardous elements involves the determination of likely sources of contamination and their relationship to the geological setting. In this study, the concentrations of As, Cd, Pb, Mn, Fe, Zn, Hg, Cu and Ni were determined in eighty-one soil samples from the Boyacá industrial corridor (Colombia). The sequential trend of the concentrations of potentially hazardous elements was as follows: Fe > Mn > Zn > Ni > Cu> Pb > As > Cd > Hg. Furthermore, the application of spatial analysis criteria in GIS software with multivariate statistical tools and geochemical indices allowed the identification of anthropogenic and geogenic sources. Most of the potentially hazardous elements were found in soils exposed to industrial and agricultural activities, except for iron. This element showed low variability in all samples, regardless of the geological formations. Due to the lack of reference values for potentially hazardous elements in Colombia, the concentrations were compared with the environmental standards of the Environmental Protection Agency (EPA) and the Ecuadorian Ministry of Environment, Water and Ecological Transition (MAE). The results demonstrate the complexity of the soil and represent the first exploratory study of potentially hazardous elements in this industrial corridor. These results are the starting point for the establishment of geochemical background lines in Colombia and for inspection policies for areas where productive activities converge.
Collapse
Affiliation(s)
- Jhonathan A Díaz Alarcón
- Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Geológica, Grupo de investigación CITESA, Calle 4 Sur No. 15-134, Sogamoso, Boyacá 152210, Colombia.
| | - Paola M Fonseca Alfonso
- Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Industrial, Calle 4 Sur No. 15-134, Sogamoso, Boyacá 152210, Colombia
| | - Inés Vergara Gómez
- Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Geológica, Grupo de investigación CITESA, Calle 4 Sur No. 15-134, Sogamoso, Boyacá 152210, Colombia
| | - Mercedes Díaz Lagos
- Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Geológica, Grupo de investigación CITESA, Calle 4 Sur No. 15-134, Sogamoso, Boyacá 152210, Colombia
| | - Diogo Videira-Quintela
- Universidad de Alcalá, Facultad de Farmacia, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33.6, 28871, Alcalá de Henares, Madrid, Spain
| | - Gemma Montalvo
- Universidad de Alcalá, Facultad de Farmacia, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33.6, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
3
|
Li C, Yang Z, Yu T, Jiang Z, Huang Q, Yang Y, Liu X, Ma X, Li B, Lin K, Li T. Cadmium accumulation in paddy soils affected by geological weathering and mining: Spatial distribution patterns, bioaccumulation prediction, and safe land usage. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132483. [PMID: 37683340 DOI: 10.1016/j.jhazmat.2023.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The abnormal enrichment of cadmium (Cd) in soil caused by rock weathering and mining activities is an issue in southern China. Although the soil Cd content in these regions is extremely high, the bioavailability of Cd in the soils differs significantly. The carbonate area (CBA) and tin-mining area (TIA) in Hezhou City were investigated to determine the primary features of soil Cd mobility in these regions and improve environmental management. Lateral and vertical spatial distributions revealed different accumulation and migration mechanisms of soil Cd in the CBA and TIA. Further analyses revealed that mining activities and geological weathering resulted in different soil geochemical parameters, thus yielding significantly lower levels of Cd in rice grains in the CBA than in the TIA. The random forest (RF) model predicted the bioaccumulation factor (BAF) (R2 = 0.69) better than the support vector machine (SVM) model (R2 = 0.68). Subsequently, a novel land management scheme was proposed based on soil Cd and the prediction of Cd in rice to optimize the spatial resources of agricultural land and ensure the safety of rice for consumption. This study provides a novel approach for land management in Cd-contaminated areas.
Collapse
Affiliation(s)
- Cheng Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, PR China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China.
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Zhongcheng Jiang
- Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, PR China.
| | - Qibo Huang
- Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, PR China
| | - Yeyu Yang
- Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, PR China
| | - Xu Liu
- Ministry Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Kun Lin
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Tengfang Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, PR China
| |
Collapse
|
4
|
Xu H, Wang H, Singh BP, Croot P, Zhang C. Identification of possible sources for potentially toxic elements and polycyclic aromatic hydrocarbons and their spatially varying relationships in urban soils of Dublin, Ireland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122034. [PMID: 37339731 DOI: 10.1016/j.envpol.2023.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) harm the ecosystem and human health, especially in urban areas. Identifying and understanding their potential sources and underlying interactions in urban soils are critical for informed management and risk assessment. This study investigated the potential sources and the spatially varying relationships between 9 PTEs and PAHs in the topsoil of Dublin by combining positive matrix factorisation (PMF) and geographically weighted regression (GWR). The PMF model allocated four possible sources based on species concentrations and uncertainties. The factor profiles indicated the associations with high-temperature combustion (PAHs), natural lithologic factors (As, Cd, Co, Cr, Ni), mineralisation and mining (Zn), as well as anthropogenic inputs (Cu, Hg, Pb), respectively. In addition, selected representative elements Cr, Zn, and Pb showed distinct spatial interactions with PAHs in the GWR model. Negative relationships between PAHs and Cr were observed in all samples, suggesting the control of Cr concentrations by natural factors. Negative relationships between PAHs and Zn in the eastern and north-eastern regions were related to mineralisation and anthropogenic Zn-Pb mining. In contrast, the surrounding regions exhibited a natural relationship between these two variables with positive coefficients. Increasing positive coefficients from west to east were observed between PAHs and Pb in the study area. This special pattern was consistent with prevailing south-westerly wind direction in Dublin, highlighting the predominant influences on PAHs and Pb concentrations from vehicle and coal combustion through atmospheric deposition. Our results provided a better understanding of geochemical features for PTEs and PAHs in the topsoil of Dublin, demonstrating the efficiency of combined approaches of receptor models and spatial analysis in environmental studies.
Collapse
Affiliation(s)
- Haofan Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Bhupinder Pal Singh
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Peter Croot
- Irish Centre for Research in Applied Geoscience (iCRAG), Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Ireland
| | - Chaosheng Zhang
- International Network for Environment and Health (INEH), School of Geography, Archaeology & Irish Studies, University of Galway, Ireland.
| |
Collapse
|
5
|
Zhang J, Tao H, Ge H, Shi J, Zhang M, Xu Z, Xiao R, Li X. Assessment of heavy metal contamination of an electrolytic manganese metal industrial estate in northern China from an integrated chemical and magnetic investigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2963-2983. [PMID: 36123510 DOI: 10.1007/s10653-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
Heavy metal concentrations (Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb) and the magnetic properties of soil and sediment samples in/around an electrolytic manganese metal (EMM) industrial estate in northern China were investigated. Potential enrichment of Mn, Zn, and Pb was found in/around the core area of the EMM industrial estate; however, the pollution load index (PLI) values did not indicate severely polluted levels. For adults, all hazard index (HI) values of noncarcinogenic risks in the soil samples were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, except Mn (HI = 1.23) in one industrial estate sample. The particle size of magnetic materials was mostly in the range of stable single-domain, and coarser ferrimagnetic phases enhanced the magnetic parameters in the industrial estate soils. Highly positive correlations were found between magnetic parameters, heavy metal concentrations, and PLI values, demonstrating that the magnetic parameters are an efficient proxy for assessing heavy metal contamination. Enrichment of Mn, Zn, and Pb was mainly derived from the EMM industry. The data showed that the EMM industrial estate under cleaner production had limited adverse impacts on the adjacent environment from the perspective of heavy metal contamination.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Barbieri M, Watts MJ. Special Issue 'Society for Environmental Geochemistry and Health (SEGH): 50th anniversary'. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1063-1066. [PMID: 36930408 PMCID: PMC10021042 DOI: 10.1007/s10653-023-01538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Maurizio Barbieri
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Rome, Italy
| | - Michael J. Watts
- Inorganic Geochemistry, British Geological Survey, Nottingham, UK
| |
Collapse
|
7
|
Spatial Assessment of Potentially Toxic Elements (PTE) Concentration in Agaricus bisporus Mushroom Collected from Local Vegetable Markets of Uttarakhand State, India. J Fungi (Basel) 2022; 8:jof8050452. [PMID: 35628708 PMCID: PMC9143082 DOI: 10.3390/jof8050452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
This study presents a spatial assessment of eight potentially toxic elements (PTE: Cd, Cr, Cu, Fe, Pb, Ni, Mn, and Zn) in white button (Agaricus bisporus J.E. Lange) mushroom samples collected from the local vegetable markets of Uttarakhand State, India. Fresh A. bisporus samples were collected from thirteen districts and fifteen sampling locations (M1-M15) and analyzed for the concentration of these PTE using atomic absorption spectroscopy (AAS). The results revealed that A. bisporus contained all eight selected PTE in all sampling locations. Based on the inverse distance weighted (IDW) interpolation, principal component (PC), and hierarchical cluster (HC) analyses, the areas with a plane geographical distribution showed the highest PTE concentrations in the A. bisporus samples as compared to those in hilly areas. Overall, the decreasing order of PTE concentration in A. bisporus was recognized as Fe > Zn > Mn > Cr > Cu > Ni > Cd > Pb. The Kruskal−Wallis ANOVA tests displayed a highly significant (p < 0.05) difference among the sampling locations. However, the concentration of PTE was below permissible limits, indicating no potential hazard in consuming the A. bisporus. Similarly, the health risk assessment studies using the target hazard quotient (THQ) also showed no significant health risk associated with the consumption of A. bisporus being sold in the local mushroom markets of Uttarakhand, India. This study is the first report on state-level monitoring of PTE in A. bisporus mushrooms, which provides crucial information regarding the monitoring and occurrence of potentially toxic metallic elements.
Collapse
|
8
|
Abstract
The COVID-19 pandemic is a severe ongoing health crisisworldwide. Studying the socio-economic impacts of COVID-19 can help policymakers develop successful pandemic management plans. This paper focuses on the spatial epidemiology of COVID-19 among different social classes in the Kermanshah metropolis, Iran. This cross-sectional study uses the data of people infected with COVID-19 in the Kermanshah metropolis in 2020, acquired from the official COVID-19 Registry of Kermanshah. The results show that 2013 people were infected with COVID-19 (male = 1164 and female = 849). The mean age of the patients was 45 ± 18.69. The Moran’s I show that COVID-19 in different social classes was clustered across the neighbourhoods in the Kermanshah metropolis. The mean ages of men and women were 44.51 ± 18.62 and 45.69 ± 18.76, respectively. Importantly, COVID-19 was highly prevalent in the middle-class groups. Age group comparisons indicate that older people were the most infected in poorer neighbourhoods. In the middle-classtheage group of 0–14 years and in the rich neighbourhoods the age group of 15–64 years were the most exposed to the disease. The findings of this study suggest that older people and lower socioeconomic classes should be prioritised while developing and implementing preventative programs for COVID-19 and similar pandemics.
Collapse
|