1
|
Karunanidhi D, Rhishi Hari Raj M, D Roy P, Subramani T. Health hazards from perchlorate enriched groundwater of a semi-arid river basin of south India and suggesting in-situ remediation through Managed Aquifer Recharge. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136231. [PMID: 39467436 DOI: 10.1016/j.jhazmat.2024.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
The present study was conducted to assess the groundwater quality and perchlorate contents in the pre- and post-monsoon groundwater samples along with its associated health concerns with suggesting in-situ remediation in semi-arid Arjunanadi River basin of south India. Most of the samples (86 in pre-monsoon and 84 in post-monsoon out of total 94) showed secondary salinity and secondary alkalinity, and the perchlorate showed positive relations with Na+, K+, SO42-, Cl-, and NO3- contents. The main source of perchlorate could be fireworks manufacturing industries with 23 % of pre-monsoon (246.5 km2) and 33 % of post-monsoon samples (360 km2) showing perchlorate above the World Health Organization (WHO) standard (>0.07 mg/l). Perchlorate health risk assessment (PHRA) and total hazard index (THI) indicated more effect from oral pathway compared to the dermal pathway with about 80 %, 79 %, 65 %, and 60 % of samples causing health complications for infants, children, women, and men during the pre-monsoon. The post-monsoon groundwater showed increased health risks with 90 %, 82 %, 74 %, and 69 % of samples remaining hazardous for infants, children, women, and men. Artificial recharge through Managed Aquifer Recharge (MAR) techniques in the high-risk area could be useful to minimize the perchlorate contamination in groundwater and associated health risks under the United Nations Development Programme (UNDP) Sustainable Development Goals 3 and 6 (SDGs) for a healthy society.
Collapse
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore 641032, India.
| | - M Rhishi Hari Raj
- Department of Civil Engineering, Hindusthan College of Engineering and Technology (Autonomous), Coimbatore 641032, India
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma deMéxico, Ciudad Universitaria, Ciudad de Mexico 04510, CP, Mexico
| | - T Subramani
- Department of Geology, College of Engineering Guindy (CEG), Anna University, Chennai 600025, India; Department of Mining Engineering, College of Engineering Guindy (CEG), Anna University, Chennai 600025, India
| |
Collapse
|
2
|
Yang R, Shen H, Wang M, Zhao Y, Zhu S, Jiang H, Li Y, Pu G, Chen X, Chen P, Lu Q, Ma J, Zhang Q. Expression of SDF-1/CXCR4 and related inflammatory factors in sodium fluoride-treated hepatocytes. PLoS One 2024; 19:e0302530. [PMID: 38905184 PMCID: PMC11192373 DOI: 10.1371/journal.pone.0302530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 06/23/2024] Open
Abstract
At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1β. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.
Collapse
Affiliation(s)
- Rui Yang
- Department of Public Health, Medical College, Qinghai University, Xi’ning, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Hongting Shen
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Mingjun Wang
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Yaqian Zhao
- Department of Public Health, Medical College, Qinghai University, Xi’ning, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Shiling Zhu
- Department of Public Health, Medical College, Qinghai University, Xi’ning, China
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Hong Jiang
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Yanan Li
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Guanglan Pu
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Xun Chen
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Ping Chen
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Qing Lu
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Jing Ma
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| | - Qiang Zhang
- Department of Endemic Disease Prevention and Control, Qinghai Institute for Endemic Disease Prevention and Control, Xi’ning, China
| |
Collapse
|
3
|
Ratandeep, Dharmani AB, Verma M, Rani S, Narang A, Singh MR, Saya L, Hooda S. Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104303. [PMID: 38244426 DOI: 10.1016/j.jconhyd.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Groundwater, a vital global resource, is essential for sustaining life and various human activities. However, its quality and availability face increasing threats from both natural and human-induced factors. Widespread contamination, arising from both natural origins and human activities such as agriculture, industry, mining, improper waste disposal, and wastewater release, poses significant risks to human health and water security. India, known for its dense population and pronounced groundwater challenges, serves as a prominent case study. Notably, in most of its regions, groundwater resources have been found to be severely contaminated by various chemical, biological, and radioactive contaminants. This review presents an examination of contamination disparities across various states of semi-arid and cold regions, encompassing diverse assessment methods. The studies conducted in semi-arid regions of North, South, West, and East India highlight the consistent presence of fluorides and nitrates majorly, as well as heavy metals in some areas, with values exceeding the permissible limits recommended by both the Bureau of Indian Standards (BIS) and the World Health Organization (WHO). These contaminants pose skeletal and dental threats, methemoglobinemia, and even cancer. Similarly, in cold regions, nitrate exposure and pesticide residues, reportedly exceeding BIS and WHO parameters, pose gastrointestinal and other waterborne health concerns. The findings also indicated that the recommended limits of several quality parameters, including pH, electrical conductivity, total dissolved solids (TDS), total hardness, and total alkalinity majorly surpassed. Emphasising the reported values of the various contaminant levels simultaneously with addressing the challenges and future perspectives, the review unravels the complex landscape of groundwater contamination and its health-related implications in semi-arid and cold regions of India.
Collapse
Affiliation(s)
- Ratandeep
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akshat Bhanu Dharmani
- School Of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Anita Narang
- Department of Botany, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi 110009, India
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| |
Collapse
|
4
|
Das SK, Ghosh J, Pramanik AK, Majumdar D, Hossain M, Chatterjee A. Evaluation of non-cancer risk owing to groundwater fluoride and iron in a semi-arid region near the Indo-Bangladesh international frontier. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:33. [PMID: 38227158 DOI: 10.1007/s10653-023-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/03/2023] [Indexed: 01/17/2024]
Abstract
Groundwater quality in Hili, a semi-arid border region at Indo-Bangladesh border, was investigated in the post-monsoon season of 2021, succeeded by assessment of probabilistic health risk arising from fluoride (F-) and iron (Fe) intake, with the hypothesis that groundwater quality of the region was not satisfactory for human consumption and health, considering earlier reports on high groundwater F- and Fe in few of the neighboring districts. All water samples were found to be potable in terms of Ca2+, Mg2+, Cl-, SO42- and NO3-, , but F- and Fe exceeded prescribed safe limits for drinking water in about 48% and 7% samples. Almost all water samples were found to be good for irrigation in terms of sodium adsorption ratio (SAR), soluble sodium percentage (SSP), Kelly's index (KI), %Na and magnesium ratio (MR). The principal component analysis (PCA) identified three major factors influencing groundwater quality, explaining about 71.8% of total variance and indicated that groundwater quality was primarily influenced by geochemical factors. Carbonate and silicate weathering were mainly responsible for dissolution of minerals in groundwater. Non-carcinogenic risk due to cumulative impact of F-and Fe intake was in the order of THIChildren > THIInfant > THIAdult. As per Monte Carlo simulation run with 5000 trials to ascertain the order of probabilistic health risk, the most dominant governing factors behind non-carcinogenic risk caused by F-and Fe intake were their concentration (Ci) followed by ingestion rate (IR), and exposure duration (ED).
Collapse
Affiliation(s)
- Sandip Kumar Das
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, Raiganj, 733134, India
| | - Joydeep Ghosh
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, Raiganj, 733134, India
| | - Arun Kumar Pramanik
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, Raiganj, 733134, India
- Chemical Laboratory, Damodar Valley Corporation (DVC), Koderma, India
| | - Deepanjan Majumdar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), i-8, Sector C, EM Bypass, EKADP, Kolkata-700107, India
| | - Mobarok Hossain
- Department of Applied Geosciences, GZG-University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| | - Abhik Chatterjee
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, Raiganj, 733134, India.
| |
Collapse
|
5
|
Singh A, Patani A, Patel M, Vyas S, Verma RK, Amari A, Osman H, Rathod L, Elboughdiri N, Yadav VK, Sahoo DK, Chundawat RS, Patel A. Tomato seed bio-priming with Pseudomonas aeruginosa strain PAR: a study on plant growth parameters under sodium fluoride stress. Front Microbiol 2024; 14:1330071. [PMID: 38239735 PMCID: PMC10794310 DOI: 10.3389/fmicb.2023.1330071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The primary goal of this experiment is to examine the effectiveness of Pseudomonas aeruginosa strain PAR as a rhizobacterium that promotes plant growth in mitigating the negative effects of fluoride-induced stress in tomato (Lycopersicon esculentum Mill.) plants. A total of 16 rhizobacterial strains were tested for plant growth-promoting (PGP) attributes, with isolates S1, S2, and S3 exhibiting different characteristics. Furthermore, growth kinetics studies revealed that these isolates were resilient to fluoride stress (10, 20, 40, and 80 ppm), with isolate S2 exhibiting notable resilience compared to the other two strains. Phylogenetic analysis revealed isolate S2 as P. aeruginosa strain PAR. Physiological analyses demonstrated that P. aeruginosa strain PAR had a beneficial impact on plant properties under fluoride stress, comprising seed germination, root length, shoot height, relative water content, and leaf area, the strain also impacted the buildup of glycine betaine, soluble sugar, and proline, demonstrating its significance in enhancing plant stress tolerance. In P. aeruginosa strain PAR-treated plants, chlorophyll content increased while malondialdehyde (MDA) levels decreased, indicating enhanced photosynthetic efficiency and less oxidative stress. The strain modified antioxidant enzyme action (catalase, ascorbate, glutathione reductase, peroxidase, and superoxide dismutase), which contributed to improved stress resilience. Mineral analysis revealed a decrease in sodium and fluoride concentrations while increasing magnesium, potassium, phosphorus, and iron levels, emphasizing the strain's significance in nutrient management. Correlation and principal component analysis revealed extensive correlations between physiological and biochemical parameters, underscoring P. aeruginosa strain PAR's multifaceted impact on plant growth and stress response. This study offers valuable information on effectively utilizing PGPR, particularly P. aeruginosa strain PAR, in fluoride-contaminated soils for sustainable agriculture. It presents a promising biological strategy to enhance crop resilience and productivity.
Collapse
Affiliation(s)
- Anamika Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Suhas Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| | - Rakesh Kumar Verma
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Haitham Osman
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Lokendra Rathod
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, Tunisia
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|