1
|
Hewage IM, Church KEM, Schwartz EJ. Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis. JOURNAL OF BIOLOGICAL DYNAMICS 2024; 18:2298988. [PMID: 38174737 DOI: 10.1080/17513758.2023.2298988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Throughout the last two centuries, vaccines have been helpful in mitigating numerous epidemic diseases. However, vaccine hesitancy has been identified as a substantial obstacle in healthcare management. We examined the epidemiological dynamics of an emerging infection under vaccination using an SVEIR model with differential morbidity. We mathematically analyzed the model, derived R 0 , and provided a complete analysis of the bifurcation at R 0 = 1 . Sensitivity analysis and numerical simulations were used to quantify the tradeoffs between vaccine efficacy and vaccine hesitancy on reducing the disease burden. Our results indicated that if the percentage of the population hesitant about taking the vaccine is 10%, then a vaccine with 94% efficacy is required to reduce the peak of infections by 40%. If 60% of the population is reluctant about being vaccinated, then even a perfect vaccine will not be able to reduce the peak of infections by 40%.
Collapse
Affiliation(s)
- Indunil M Hewage
- Department of Mathematics & Statistics, Washington State University, Pullman, Washington, USA
| | - Kevin E M Church
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Quebec, Canada
| | - Elissa J Schwartz
- Department of Mathematics & Statistics and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Iuliano M, Mongiovì RM, Parente A, Grimaldi L, Kertusha B, Carraro A, Marocco R, Mancarella G, Del Borgo C, Dorrucci M, Lichtner M, Mangino G, Romeo G. Memory T Cells Subpopulations in a Cohort of COVID-19 Vaccinated or Recovered Subjects. Viral Immunol 2024; 37:440-445. [PMID: 39474707 DOI: 10.1089/vim.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Following viral infection, antigen-restricted T lymphocytes are activated and recognize infected cells to eliminate them. A subset of T cells differentiates into memory lymphocytes able to counteract viral rechallenge in a faster and enhanced way. SARS-CoV-2 can escape immune responses leading to a poor clinical outcome. Immune escape can be associated with the failure of the development of T cell memory compartments. The aim of this study is to characterize the T memory subsets and to test the immune response against class I- and II-restricted immunodominant epitopes shared by ancestral and SARS-CoV-2 variants strains. T memory subsets and recognition of SARS-CoV-2S Spike-specific epitopes were analyzed by flow cytometry on 14 fully vaccinated healthy donors (HDV) and 18 COVID-19 recovered patients (CD). The results obtained showed that CD8+ T naïve subset numbers decreased in association with a significant increase of the effector memory T cell subset whereas there was a small increase in the percentage of SARS-CoV-2 antigen-restricted T clones in both CD4+ and CD8+ subset in the CD compared to HDV sample. Collectively, these features may reflect a broader cytotoxic T cell repertoire stimulated by the virus during the natural infection compared to the spike-restricted response activated during vaccination.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alberico Parente
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Raffaella Marocco
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Giulia Mancarella
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Cosmo Del Borgo
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Maria Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Miriam Lichtner
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
3
|
Aziz AB, Sugimoto JD, Hong SL, You YA, Bravo L, Roa C, Borja-Tabora C, Montellano MEB, Carlos J, de Los Reyes MRA, Alberto ER, Salvani-Bautista M, Kim HY, Njau I, Clemens R, Marks F, Tadesse BT. Indirect effectiveness of a novel SARS-COV-2 vaccine (SCB-2019) in unvaccinated household contacts in the Philippines: A cluster randomised analysis. J Infect 2024; 89:106260. [PMID: 39218309 DOI: 10.1016/j.jinf.2024.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Though observational evidence supports indirect effects of SARS-CoV-2 vaccines, randomised experiments are lacking. To address this gap, the double-blinded, prospective follow-up of the household contacts (HHCs) of Philippine participants of the individually-randomised, placebo-controlled trial of the adjuvanted-subunit protein COVID-19 vaccine, SCB-2019, (EudraCT, 2020-004272-17; ClinicalTrials.gov, NCT04672395) was analyzed in a cluster-randomised fashion. METHODS Over an eight-week period, HHCs were followed by rRT-PCR and paired rapid antibody tests (RATs) to detect symptomatic (SCI, primary) and all (ACI, secondary) SARS-CoV-2 infection. A standard analysis estimated the indirect effectiveness of SCB-2019 for each endpoint, excluding HHC RAT-positive at enrollment. A secondary analysis employed enzyme-linked immunosorbent assay (ELISA) results to correct for suspected bias. FINDINGS SCB-2019 (N = 3470) and placebo (N = 3225) exposed HHCs contributed to at least one analysis. The standard analysis estimated that SCB-2019 reduced the risk of SCI by 83% (95% confidence/credible interval [CI: 32% to 96%), with no effect against ACI. The bias-corrected relative risk reduction was 97% (95% CI: 74% to 100%) for SCI and 79% (95% CI: 14% to 96%) for ACI, with an estimated one SARS-CoV-2 infection prevented per 4.8 households where one member received SCB-2019. INTERPRETATION SCB-2019 demonstrated bias-corrected indirect effectiveness against SARS-CoV-2 infection among HHC, even at a modest coverage level in the household (approximately 25%). Further research into the indirect effects of SARS-CoV-2 vaccines is needed to optimize the impact of limited doses in low and middle-income settings.
Collapse
Affiliation(s)
- Asma Binte Aziz
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jonathan Dewing Sugimoto
- International Vaccine Institute, Seoul 08826, Republic of Korea; Department of Epidemiology, University of Washington, 3980 15th Ave NE, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Research Center, 1100 Fairview Avenue N., Seattle, WA, USA
| | - Sye Lim Hong
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Young Ae You
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Lulu Bravo
- University of the Philippines Manila, Ermita, Manila, Philippines
| | - Camilo Roa
- Manila Doctors Hospital, Manila, Philippines
| | | | | | | | | | | | | | - Hwa Young Kim
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Irene Njau
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Ralf Clemens
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Florian Marks
- International Vaccine Institute, Seoul 08826, Republic of Korea; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom; Heidelberg Institute of Global Health, University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany; Madagascar Institute for Vaccine Research, University of Antananarivo, 3HM2+QH7, Antananarivo, Madagascar
| | - Birkneh Tilahun Tadesse
- International Vaccine Institute, Seoul 08826, Republic of Korea; Heidelberg Institute of Global Health, University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Lee B, Bae GE, Jeong IH, Kim JH, Kwon MJ, Kim J, Kim B, Lee JW, Nam JH, Huh HJ, Kang ES. Age-Related Differences in Neutralizing Antibody Responses against SARS-CoV-2 Delta and Omicron Variants in 151 SARS-CoV-2-Naïve Metropolitan Residents Boosted with BNT162b2. J Appl Lab Med 2024; 9:741-751. [PMID: 38531067 DOI: 10.1093/jalm/jfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Although age negatively correlates with vaccine-induced immune responses, whether the vaccine-induced neutralizing effect against variants of concern (VOCs) substantially differs across age remains relatively poorly explored. In addition, the utility of commercial binding assays developed with the wild-type SARS-CoV-2 for predicting the neutralizing effect against VOCs should be revalidated. METHODS We analyzed 151 triple-vaccinated SARS-CoV-2-naïve individuals boosted with BNT162b2 (Pfizer-BioNTech). The study population was divided into young adults (age < 30), middle-aged adults (30 ≤ age < 60), and older adults (age ≥ 60). The plaque reduction neutralization test (PRNT) titers against Delta (B.1.617.2) and Omicron (B.1.1.529) variants were compared across age. Antibody titers measured with commercial binding assays were compared with PRNT titers. RESULTS Age-related decline in neutralizing titers was observed for both Delta and Omicron variants. Neutralizing titers for Omicron were lower than those against Delta in all ages. The multiple linear regression model demonstrated that duration from third dose to sample collection and vaccine types were also significant factors affecting vaccine-induced immunity along with age. The correlation between commercial binding assays and PRNT was acceptable for all age groups with the Delta variant, but relatively poor for middle-aged and older adults with the Omicron variant due to low titers. CONCLUSIONS This study provides insights into the age-related dynamics of vaccine-induced immunity against SARS-CoV-2 VOCs, corroborating the need for age-specific vaccination strategies in the endemic era where new variants continue to evolve. Moreover, commercial binding assays should be used cautiously when estimating neutralizing titers against VOCs, particularly Omicron.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Go Eun Bae
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Hwa Jeong
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Dong-A University Hospital, Busan, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Hyun Nam
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Beukenhorst AL, Frallicciardi J, Rice KL, Koldijk MH, Moreira de Mello JC, Klap JM, Hadjichrysanthou C, Koch CM, da Costa KAS, Temperton N, de Jong BA, Vietsch H, Ziere B, Julg B, Koudstaal W, Goudsmit J. A pan-influenza monoclonal antibody neutralizes H5 strains and prophylactically protects through intranasal administration. Sci Rep 2024; 14:3818. [PMID: 38360813 PMCID: PMC10869794 DOI: 10.1038/s41598-024-53049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
Avian A(H5N1) influenza virus poses an elevated zoonotic threat to humans, and no pharmacological products are currently registered for fast-acting pre-exposure protection in case of spillover leading to a pandemic. Here, we show that an epitope on the stem domain of H5 hemagglutinin is highly conserved and that the human monoclonal antibody CR9114, targeting that epitope, potently neutralizes all pseudotyped H5 viruses tested, even in the rare case of substitutions in its epitope. Further, intranasal administration of CR9114 fully protects mice against A(H5N1) infection at low dosages, irrespective of pre-existing immunity conferred by the quadrivalent seasonal influenza vaccine. These data provide a proof-of-concept for broad, pre-exposure protection against a potential future pandemic using the intranasal administration route. Studies in humans should assess if autonomous administration of a broadly-neutralizing monoclonal antibody is safe and effective and can thus contribute to pandemic preparedness.
Collapse
Affiliation(s)
- Anna L Beukenhorst
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Leyden Laboratories BV, Leiden, The Netherlands.
- Centre for Epidemiology, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | | | | | | | | | - Jaco M Klap
- Leyden Laboratories BV, Leiden, The Netherlands
| | | | | | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| | | | | | | | - Boris Julg
- Leyden Laboratories BV, Leiden, The Netherlands
| | | | - Jaap Goudsmit
- Leyden Laboratories BV, Leiden, The Netherlands
- Departments of Epidemiology, Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Kassianos G, MacDonald P, Aloysius I, Pather S. Responses to Common Misconceptions Relating to COVID-19 Variant-Adapted mRNA Vaccines. Vaccines (Basel) 2024; 12:57. [PMID: 38250870 PMCID: PMC10819631 DOI: 10.3390/vaccines12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of immunity over time has necessitated the use of booster doses of original coronavirus disease 2019 (COVID-19) vaccines. This has also led to the development and implementation of variant-adapted messenger RNA (mRNA) vaccines that include an Omicron sub-lineage component in addition to the antigen based on the wild-type virus spike protein. Subsequent emergence of the recombinant XBB sub-lineages triggered the development of monovalent XBB-based variant-adapted mRNA vaccines, which are available for vaccination campaigns in late 2023. Misconceptions about new variant-adapted vaccines may exacerbate vaccine fatigue and drive the lack of vaccine acceptance. This article aims to address common concerns about the development and use of COVID-19 variant-adapted mRNA vaccines that have emerged as SARS-CoV-2 has continued to evolve.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London NW1 2FB, UK;
- British Global and Travel Health Association, London NW1 2FB, UK
| | | | | | | |
Collapse
|
7
|
Hogan AB, Wu SL, Toor J, Olivera Mesa D, Doohan P, Watson OJ, Winskill P, Charles G, Barnsley G, Riley EM, Khoury DS, Ferguson NM, Ghani AC. Long-term vaccination strategies to mitigate the impact of SARS-CoV-2 transmission: A modelling study. PLoS Med 2023; 20:e1004195. [PMID: 38016000 PMCID: PMC10715640 DOI: 10.1371/journal.pmed.1004195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alexandra B. Hogan
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Sean L. Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Daniela Olivera Mesa
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver J. Watson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Giovanni Charles
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Gregory Barnsley
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Eleanor M. Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Harthaller T, Falkensammer B, Bante D, Huber M, Schmitt M, Benainouna H, Rössler A, Fleischer V, von Laer D, Kimpel J, Würzner R, Borena W. Retained avidity despite reduced cross-binding and cross-neutralizing antibody levels to Omicron after SARS-COV-2 wild-type infection or mRNA double vaccination. Front Immunol 2023; 14:1196988. [PMID: 37545492 PMCID: PMC10401431 DOI: 10.3389/fimmu.2023.1196988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The rapid evolution of SARS-CoV-2 has posed a challenge to long-lasting immunity against the novel virus. Apart from neutralizing function, binding antibodies induced by vaccination or infection play an important role in containing the infection. Methods To determine the proportion of wild-type (WT)-generated antibodies recognizant of more recent variants, plasma samples from either SARS-CoV-2 WT-infected (n = 336) or double-mRNA (Comirnaty)-vaccinated individuals (n = 354, age and sex matched to the convalescent group) were analyzed for binding antibody capacity against the S1 protein of the BA.1 omicron variant. Results Overall, 38.59% (95% CI, 37.01- 40.20) of WT-generated antibodies recognized Omicron BA.1 S1 protein [28.83% (95% CI, 26.73-30.91) after infection and 43.46% (95% CI, 41.61-45.31) after vaccination; p < 0.001]. Although the proportion of WT-generated binding and neutralizing antibodies also binding to BA.1 is substantially reduced, the avidity of the remaining antibodies against the Omicron variant was non-inferior to that of the ancestral virus: Omicron: 39.7% (95% CI: 38.1-41.3) as compared to the avidity to WT: 27.0% (95% CI, 25.5-28.4), respectively (p < 0.001). Furthermore, we noticed a modestly yet statistically significant higher avidity toward the Omicron epitopes among the vaccinated group (42.2%; 95% CI, 40.51-43.94) as compared to the convalescent counterparts (36.4%; 95% CI, 33.42-38.76) (p = 0.003), even after adjusting for antibody concentration. Discussion Our results suggest that an aspect of functional immunity against the novel strain was considerably retained after WT contact, speculatively counteracting the impact of immune evasion toward neutralization of the strain. Higher antibody levels and cross-binding capacity among vaccinated individuals suggest an advantage of repeated exposure in generating robust immunity.
Collapse
Affiliation(s)
- Teresa Harthaller
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Falkensammer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - David Bante
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Huber
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Melanie Schmitt
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Habib Benainouna
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Verena Fleischer
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Dorothee von Laer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Wegene Borena
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
9
|
Luebben G, González-Parra G, Cervantes B. Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10828-10865. [PMID: 37322963 PMCID: PMC11216547 DOI: 10.3934/mbe.2023481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.
Collapse
Affiliation(s)
- Giulia Luebben
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| | | | - Bishop Cervantes
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| |
Collapse
|