1
|
Salvatore MM, Nicoletti R, Russo MT, Mahamedi AE, Berraf-Tebbal A, DellaGreca M, Anna A. First report of 6-methylpyridione analogues from Dothiorella sarmentorum, a botryosphaeriaceous fungus associated with grapevine trunk diseases. Nat Prod Res 2024; 38:2748-2755. [PMID: 37436783 DOI: 10.1080/14786419.2023.2232083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Dothiorella species are fungal plant pathogens associated with Botryosphaeria dieback of grapevine. Symptoms caused by these fungi on grapevines suggest possible implication of phytotoxic metabolites in the infection mechanisms. However, few studies were conducted to investigate the secondary metabolism of these fungi. In this study, 6-methylpyridione analogues were isolated and identified for the first time in liquid cultures of Dothiorella sarmentorum isolated from symptomatic grapevine in Algeria.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maria Teresa Russo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alla Eddine Mahamedi
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, Ghardaïa, Algeria
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Akila Berraf-Tebbal
- Mendeleum-Insiìtitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Andolfi Anna
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Brandenburg EM, Voegele RT, Fischer M, Behrens FH. Arthropods as Vectors of Grapevine Trunk Disease Pathogens: Quantification of Phaeomoniella chlamydospora on Arthropods and Mycobiome Analysis of Earwig Exoskeletons. J Fungi (Basel) 2024; 10:237. [PMID: 38667908 PMCID: PMC11051531 DOI: 10.3390/jof10040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Viticulture worldwide is challenged by grapevine trunk diseases (GTDs). Involvement of arthropods in the dissemination process of GTD pathogens, notably esca pathogens, is indicated after detection of associated pathogens on arthropod exoskeletons, and demonstration of transmission under artificial conditions. The present study is the first to quantify spore loads via qPCR of the esca-relevant pathogen Phaeomoniella chlamydospora on arthropods collected in German vineyards, i.e., European earwigs (Forficula auricularia), ants (Formicidae), and two species of jumping spiders (Marpissa muscosa and Synageles venator). Quantification of spore loads showed acquisition on exoskeletons, but most arthropods carried only low amounts. The mycobiome on earwig exoskeletons was described for the first time to reveal involvement of earwigs in the dispersal of GTDs in general. Metabarcoding data support the potential risk of earwigs as vectors for predominantly Pa. chlamydospora and possibly Eutypa lata (causative agent of Eutypa dieback), as respective operational taxonomical unit (OTU) assigned genera had relative abundances of 6.6% and 2.8% in total reads, even though with great variation between samples. Seven further GTD-related genera were present at a very low level. As various factors influence the successful transmission of GTD pathogens, we hypothesize that arthropods might irregularly act as direct vectors. Our results highlight the importance of minimizing and protecting pruning wounds in the field.
Collapse
Affiliation(s)
- Elisa Maria Brandenburg
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Michael Fischer
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
| | - Falk Hubertus Behrens
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
| |
Collapse
|
3
|
Derviş S, Özer G. Plant-Associated Neoscytalidium dimidiatum-Taxonomy, Host Range, Epidemiology, Virulence, and Management Strategies: A Comprehensive Review. J Fungi (Basel) 2023; 9:1048. [PMID: 37998855 PMCID: PMC10672476 DOI: 10.3390/jof9111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neoscytalidium dimidiatum, a plant- and human-associated fungus, has emerged as a substantial global ecological and agricultural threat aggravated by global warming. It inflicts various diseases, including canker, blight, dieback, leaf spot, root rot, and fruit rot, across a wide spectrum of fruit trees, field crops, shrubs, and arboreal species, with a host range spanning 46 plant families, 84 genera, and 126 species, primarily affecting eudicot angiosperms. Six genera are asymptomatic hosts. Neoscytalidium dimidiatum exhibits worldwide distribution, with the highest prevalence observed in Asia and North America, notably in Iran, Turkey, and California. Rising disease prevalence and severity, aggravated by climate change, particularly impact tropical arid places across 37 countries spanning all 7 continents. This comprehensive review encapsulates recent advancements in the understanding of N. dimidiatum, encompassing alterations in its taxonomic classification, host range, symptoms, geographic distribution, epidemiology, virulence, and strategies for effective management. This study also concentrates on comprehending the taxonomic relationships and intraspecific variations within N. dimidiatum, with a particular emphasis on N. oculus and N. hylocereum, proposing to consider these two species as synonymous with N. dimidiatum. Furthermore, this review identifies prospective research directions aimed at augmenting our fundamental understanding of host-N. dimidiatum interaction.
Collapse
Affiliation(s)
- Sibel Derviş
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Turkey
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| |
Collapse
|
4
|
Wang Y, Wu W, Zhang L, Jiang H, Mei L. Variations in amino acids caused by drought stress mediate the predisposition of Carya cathayensis to Botryosphaeria canker disease. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4628-4641. [PMID: 37129574 DOI: 10.1093/jxb/erad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Abiotic stresses can affect the outcome of plant-pathogen interactions, mostly by predisposing the host plant to infection; however, the crosstalk between pathogens and plants related to such predisposition remains unclear. Here, we investigated the predisposition of Carya cathayensis to infection by the fungal pathogen Botryosphaeria dothidea (Bd) caused by drought in the host plant. High levels of drought stress resulted in a significant increase in plant susceptibility to Bd. Drought significantly induced the accumulation of H2O2 and the free amino acids Pro, Leu, and Ile, and in the phloem tissues of plants, and decreased the content of non-structural carbohydrates. In vitro assays showed that Bd was sensitive to H2O2; however, Pro played a protective role against exogenous H2O2. Leu, Ile, and Pro induced asexual reproduction of Bd. Our results provide the first analysis of how drought predisposes C. cathayensis to Botrysphaeria canker via amino acid accumulation in the host plant, and we propose a model that integrates the plant-pathogen interactions involved.
Collapse
Affiliation(s)
- Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenbin Wu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Li Mei
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
5
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Maiorano A, Pautasso M, Reignault PL. Pest categorisation of Neoscytalidium dimidiatum. EFSA J 2023; 21:e08001. [PMID: 37179656 PMCID: PMC10171073 DOI: 10.2903/j.efsa.2023.8001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The EFSA Plant Health Panel performed a pest categorisation of Neoscytalidium dimidiatum, a clearly defined plant pathogenic fungus of the family Botryosphaeriaceae. The pathogen affects a wide range of woody perennial crops and ornamental plants causing symptoms such as leaf spot, shoot blight, branch dieback, canker, pre- and post-harvest fruit rot, gummosis and root rot. The pathogen is present in Africa, Asia, North and South America, and Oceania. It has also been reported from Greece, Cyprus and Italy, with a restricted distribution. Nevertheless, there is a key uncertainty on the geographical distribution of N. dimidiatum worldwide and in the EU, because in the past, when molecular tools were not available, the two synanamorphs of the pathogen (Fusicoccum-like and Scytalidium-like) might have been misidentified based only on morphology and pathogenicity tests. N. dimidiatum is not included in Commission Implementing Regulation (EU) 2019/2072. Because of the wide host range of the pathogen, this pest categorisation focuses on those hosts for which there is robust evidence that the pathogen was formally identified by a combination of morphology, pathogenicity and multilocus sequence analysis. Plants for planting, fresh fruits and bark and wood of host plants as well as soil and other plant growing media are the main pathways for the further entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the further establishment of the pathogen. In the areas of its present distribution, including Italy, the pathogen has a direct impact on cultivated hosts. Phytosanitary measures are available to prevent the further introduction and spread of the pathogen into the EU. N. dimidiatum satisfies the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.
Collapse
|
6
|
Zhao L, Sun W, Zhao L, Zhang L, Yin Y, Zhang Y. Neofusicoccum vaccinii: A Novel Species Causing Stem Blight and Dieback of Blueberries in China. PLANT DISEASE 2022; 106:2338-2347. [PMID: 35100841 DOI: 10.1094/pdis-09-21-2068-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Blueberries (Vaccinium spp.) have been considered to be a superfood because of their health benefits. Stem blight or dieback of blueberry has been frequently observed in commercial plantations, with incidences between 15 and 30% being observed in China. The causal agents of blueberry stem blight and dieback were surveyed at four commercial blueberry plantations in the Shandong, Fujian, Guizhou, and Yunnan Provinces of China during 2017 and 2019. Twenty-eight isolates of Neofusicoccum were obtained from 75 diseased and dead stem samples. Two taxa were identified. Of these, one novel species, Neofusicoccum vaccinii, was identified based on morphological characteristics and DNA sequence analysis of the concatenated internal transcribed spacer, the translation elongation factor-1α gene, and the beta-tubulin gene. Koch's postulates tests indicated that N. vaccinii was pathogenic toward blueberry. N. parvum is the other species isolated in this study. The optimal temperature for mycelial growth was 30°C for both N. vaccinii and N. parvum. N. vaccinii, however, was more virulent than N. parvum in this study at temperatures ranging from 25 to 30°C. Coinoculation of N. vaccinii and N. parvum did not lead to increased disease severity. On the contrary, the aggressiveness of N. vaccinii was suppressed by the presence of N. parvum at 25 to 35°C.
Collapse
Affiliation(s)
- Lin Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Wei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Lili Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Lin Zhang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yueqi Yin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Ying Zhang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
7
|
Reis P, Gaspar A, Alves A, Fontaine F, Rego C. Combining an HA + Cu (II) Site-Targeted Copper-Based Product with a Pruning Wound Protection Program to Prevent Infection with Lasiodiplodia spp. in Grapevine. PLANTS (BASEL, SWITZERLAND) 2021; 10:2376. [PMID: 34834739 PMCID: PMC8625631 DOI: 10.3390/plants10112376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
The genus Lasiodiplodia has been reported from several grape growing regions and is considered as one of the fastest wood colonizers, causing Botryosphaeria dieback. The aim of this study was to (i) evaluate the efficacy of Esquive®, a biocontrol agent, on vineyard pruning wound protection, applied single or, in a combined protection strategy with a new site-targeted copper-based treatment (LC2017), and (ii) compare their efficacy with chemical protection provided by the commercially available product, Tessior®. For two seasons, protectants were applied onto pruning wounds, while LC2017 was applied throughout the season according to the manufacturer's instructions. Pruning wounds of two different cultivars were inoculated with three isolates of Lasiodiplodia spp. Efficacy of the wound protectants, varied between both years of the assay and according to the cultivar studied but were able to control the pathogen to some extent. The application of LC2017 did not show clear evidence of improving the control obtained by the sole application of the other products tested. Nevertheless, LC2017 showed a fungistatic effect against Lasiodiplodia spp., in vitro, and has previously shown an elicitor effect against grapevine trunk diseases. Therefore, this combination of two protection strategies may constitute a promising long-term approach to mitigate the impact of Botryosphaeria dieback.
Collapse
Affiliation(s)
- Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| | - Ana Gaspar
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| | - Artur Alves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Florence Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Cecília Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| |
Collapse
|