1
|
Bensadi L, Azzoug M, Benslimane A, Benlaribi R, Bouledouar S, Merzeg FA. Distribution, levels, sources and risk assessment of polycyclic aromatic hydrocarbons in the bottom sediments of a Mediterranean river under multiple anthropopressures (Soummam River), Algeria. MARINE POLLUTION BULLETIN 2024; 202:116416. [PMID: 38669853 DOI: 10.1016/j.marpolbul.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The Soummam River, a vital watercourse in Algeria is threatened by anthropogenic activities despite its protected wetland status. This study is the first to assess sediment pollution in the Soummam River, examining levels, compositions, sources of 16 PAHs and their effects on the environment and human health. Analysis employing Principal Component Analysis (PCA) and molecular diagnostic ratios pointed to petrogenic sources, likely stemming from petroleum leaks originating from aging pipeline and vehicles, as well as pyrogenic sources arising from vehicle exhaust and biomass combustion. Environmental and health risks were assessed through risk quotients (RQ), Sediments Quality Guidelines (SQG) and Total Lifetime Cancer Risk (TLCR). Ecological risk was found to range from moderate to high, with anticipated biological impacts, while cancer risk was deemed low. Toxicity assessment, measured by TEQ, revealed that the majority of monitoring stations exceeded safe levels. Consequently, urgent action by local authorities is warranted to implement ecosystem rehabilitation measures.
Collapse
Affiliation(s)
- Lydia Bensadi
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000 Bejaia, Algeria.
| | - Moufok Azzoug
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000 Bejaia, Algeria
| | - Abdelhakim Benslimane
- Université de Bejaia, Faculté de Technologie, Laboratoire Mécanique, Matériaux et Energétique, 06000 Bejaia, Algeria
| | - Rabia Benlaribi
- Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN), Cheraga, Algeria
| | - Samira Bouledouar
- Université de Bejaia, Faculté de Technologie, Laboratory of Materials and Process Engineering (LTMGP), 06000 Bejaia, Algeria; Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria
| | - Farid Ait Merzeg
- Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria; Research Unit in Physico-Chemical Analyzes of Fluids and Soils (URAPC-FS), 11 Chemin, Doudou Mokhtar, Ben Aknoun, 16028 Alger, Algeria; Technical Platform for Physico-chemical Analyzes (PTAPC-Bejaia), Targa Ouzemmour, 06000 Bejaia, Algeria
| |
Collapse
|
2
|
Lorre E, Bianchi F, Mėžinė J, Politi T, Vybernaite-Lubiene I, Zilius M. The seasonal distribution of plasticizers in estuarine system: Controlling factors, storage and impact on the ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123539. [PMID: 38341066 DOI: 10.1016/j.envpol.2024.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Plasticizers such as phthalate esters (PAEs) are commonly used in various consumer and industrial products. This widespread use raises valid concerns regarding their ubiquity in the environment and potential negative impacts. The present study investigates the distribution of eight common plasticizers in the largest European lagoon (Curonian Lagoon) located in the SE Baltic Sea. The concentration levels of plasticizers in the water column, containing both the dissolved and particulate-bound phases, and in sediments were evaluated to reveal seasonal patterns in distribution and potential effects on the lagoon ecosystem. A total of 24 water samples and 48 sediment samples were collected across all four seasons from the two dominant sedimentary areas within the lagoon. The average concentration of total PAEs in the water column ranged from 1 to 21 μg L-1, whereas sediment concentration varied from 5.0 to 250 ng g-1. The distribution of plasticizers was influenced by the patterns in hydrodynamics and water circulation within the lagoon. The confined south-central area contained a higher amount of PAEs in sediments, accounting for most of the lagoon's plasticizer accumulation. More than 7 tons of plasticizers are stored in the 5 upper centimetres of sediment, with over 3 tons persisting for more than five years. Di(2-ethylhexyl) phthalate (DEHP), Diisobutyl phthalate (DiBP), and Dibutyl phthalate (DnBP) were the most abundant PAE congeners, with DEHP posing the highest risk quotient to algae, based on water column concentration. Several other congeners demonstrated medium to high-risk levels for organisms living in the lagoon.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Tobia Politi
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | | | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| |
Collapse
|
3
|
Lorre E, Bianchi F, Vybernaite-Lubiene I, Mėžinė J, Zilius M. Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations. ENVIRONMENTAL RESEARCH 2023; 235:116667. [PMID: 37453508 DOI: 10.1016/j.envres.2023.116667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 μg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | | | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania; University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
4
|
Raudonytė-Svirbutavičienė E, Jokšas K, Stakėnienė R, Rybakovas A, Nalivaikienė R, Višinskienė G, Arbačiauskas K. Pollution patterns and their effects on biota within lotic and lentic freshwater ecosystems: How well contamination and response indicators correspond? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122294. [PMID: 37544404 DOI: 10.1016/j.envpol.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Aquatic environments are often severely polluted with chemical substances of anthropogenic origin, which can pose a potential threat to aquatic organisms and human health. In this study, patterns and sources of heavy metals (HMs, 6 metals) and polycyclic aromatic hydrocarbons (PAHs, 16 hydrocarbons), contamination indicators, environmental genotoxicity measures and metrics of ecological status in lotic and lentic ecosystems were collated for the first time. Chemical analysis has confirmed previously reported long-term contamination at certain study sites. The sediments of Lake Talkša, located in a city and characterized by exclusive anthropogenic pressure, exhibited the highest levels of contamination by both HMs and PAHs. Through positive matrix factorization (PMF) analysis, vehicle and industrial emissions were identified as the primary sources of HMs and PAHs. Our results revealed that frequencies of genotoxic aberrations were higher in river sites compared to lakes, with the highest genotoxic risk observed in the Nemunas River below industrial cities Alytus and Kaunas. Surprisingly, even the severely contaminated Lake Talkša showed only a "moderate" grade of genotoxic risk, highlighting the potential for adaptation of biota to long-term contamination especially in lentic ecosystems. The ecological quality status assessed by macroinvertebrate metrics, which may be sensitive to observed high biological contamination, appeared to be unrelated to contamination patterns. Consequently, to obtain the robust information on anthropogenic contamination and its effects, a combination of various assessment methods and metrics should be employed.
Collapse
Affiliation(s)
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania.
| | - Rimutė Stakėnienė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania.
| | | | - Reda Nalivaikienė
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania.
| | | | - Kęstutis Arbačiauskas
- Nature Research Centre, Akademijos St. 2, 08412, Vilnius, Lithuania; Vilnius University, Life Sciences Center, 7 Saulėtekio Ave, LT- 10257 Vilnius, Lithuania.
| |
Collapse
|
5
|
Moreno-Pérez PA, Hernández-Téllez M, Bautista-Gálvez A. In Danger One of the Largest Aquifers in the World, the Great Mayan Aquifer, Based on Monitoring the Cenotes of the Yucatan Peninsula. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:189-198. [PMID: 34250569 DOI: 10.1007/s00244-021-00869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The aquifer flowing beneath the Yucatan Peninsula, México, is one of the largest in the world and is in direct contact with the surface through "cenotes" (sinkholes) that have been documented to be contaminated with various classes of pollutants. The objective of this study was to evaluate the environmental status of the Great Mayan Aquifer through a review of data published on pollution of the cenotes. Approximately 1000 known georeferenced cenotes on the Yucatan Peninsula were geographically located. A map was generated using the geographic information system software. High-resolution satellite images were processed to complement the "QuickMap Services" and the formatting service of the Environmental Systems Research Institute. From the literature, 173 cenotes were identified as being sampled for various pollutants, and of these, one or more classes of pollutants were detected in 160 (i.e., greater than 92%) of the cenotes. Pollutants reported to be present included bacteria and viruses of human origin, fecal sterols, polycyclic aromatic hydrocarbons (PAHs), pesticides, pharmaceuticals, illicit drugs and personal care products. From the review of the literature, only 13 cenotes were reported to be free of the target pollutants. From this study, it can be concluded that the aquifer system with the Yucatan Peninsula is vulnerable to contamination from pollutants originating from wastewater, as well as surface runoff and infiltration from urban and agricultural lands.
Collapse
Affiliation(s)
- Pablo Antonio Moreno-Pérez
- Laboratory of Medical and Environmental Microbiology, Faculty of Medicine, Autonomous University of the State of Mexico, Av. Paseo Tollocan, Calle Jesús Carranza, Moderna de La Cruz, 50180, Toluca de Lerdo, Mexico.
| | - Marivel Hernández-Téllez
- Inter-American Institute of Technology and Water Sciences, Autonomous University of the State of Mexico, 10 Toluca. Carretera Toluca-Ixtlahuaca km. 14.5 San Cayetano Morelos, CP. 50120, Toluca, Mexico
| | - Arely Bautista-Gálvez
- Mayan Faculty of Agricultural Studies of the Autonomous University of Chiapas, Carretera Catazaja-Palenque 14 Km 4, CP. 29960, Catazaja, Chiapas, Mexico
| |
Collapse
|
6
|
Sun Y, Zhang R, Ma R, Zhou H, Zhang F, Guo G, Li H, Lü C. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments of Daihai Lake in Inner Mongolia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23123-23132. [PMID: 33439447 DOI: 10.1007/s11356-021-12349-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are typical toxic organic pollutants that can accumulate in sediments and may be toxic to aquatic organisms. In the present study, the contamination level, composition pattern, and sources of sixteen PAHs listed by the United States Environmental Protection Agency were investigated in surface sediments and a sediment core from Daihai Lake, which is located in a typical semiarid area of Inner Mongolia, China, and the ecological risk of these PAHs was assessed. The results show that the total concentration of PAHs in the surface sediments ranged from 204.6 to 344.5 ng/g with an average value of 287.2 ng/g and that compared with other aquatic systems, the level of PAHs in the sediments from Daihai Lake was low. However, a general upward trend was observed for the concentrations of PAHs in the sediment core, which might be related to the increase in human activities in the area. Moreover, the PAH concentrations were significantly positively correlated with the total organic carbon (TOC) content in the sediments, and it is thus inferred that TOC regulates the distribution of PAHs in Daihai Lake. Three-ring and four-ring PAHs were found to be predominant in all the sediment samples, and phenanthrene (Phe) was the most abundant compound. According to the composition of PAHs and the anthracene (Ant)/(Ant+Phe) or fluoranthene (Flt)/(Flt+pyrene (Pyr)) ratios, the PAHs in Daihai Lake mainly originated from the combustion of domestic coal, grass, and wood, and petroleum cannot be ignored as a source considering the growth of industry. Risk assessment based on a comparison of PAH concentrations and the effect range low (ERL) and effect range median (ERM) values demonstrated that acenaphthene (Ace) at 11 sites and fluorene (Flu) at 7 sites had occasional adverse biological effects.
Collapse
Affiliation(s)
- Yuwei Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China.
| | - Ruipeng Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Haijun Zhou
- College of Geographical Sciences, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China.
| | - Fujin Zhang
- Institute of Environmental Resources and Analytical Technique, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| |
Collapse
|
7
|
Clergé A, Le Goff J, Lopez-Piffet C, Meier S, Lagadu S, Vaudorne I, Babin V, Cailly T, Delépée R. Investigation by mass spectrometry and 32P post-labelling of DNA adducts formation from 1,2-naphthoquinone, an oxydated metabolite of naphthalene. CHEMOSPHERE 2021; 263:128079. [PMID: 33297078 DOI: 10.1016/j.chemosphere.2020.128079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/08/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Naphthalene is the simplest representative of polycyclic aromatic hydrocarbons (PAHs). It is detected as major pollutant in the different compartments of the environment. This compound is considered by the international agency for research on cancer (IARC), the specialized cancer agency of the World Health Organisation (WHO), as a possible carcinogenic (group 2B) since 2002, mainly based on studies on chronic inhalation in rodent by the national toxicology program of the U.S. department of health and human services. In humans, its main metabolites correspond to derivatives substituted in position and 1 and 2 as 1,2-naphthoquinone (1,2-NphQ). Based on previous studies, 1,2-NphQ is supposed to react with DNA to form mostly depurinating adducts, a possible initiating step of carcinogenicity. To confirm this potentiality, adducts were synthetized by the reaction of 1,2-NphQ with 2'-deoxyguanosine (2'-dG) in N,N-dimethylformamide (DMF), water and calf thymus DNA. 2'-dG adducts were analyzed by 32P post-labelling, HPLC with ultra-violet detection and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). We found stable DNA adducts detected in DNA. We proposed a formation mechanism by a 1,4-Michael addition with 2'-dG. Adducts with 2'-deoxyxanthosine are formed after a spontaneous deamination of 2'-dG. These adducts are good candidates as biomarkers allowing evaluation of exposure to naphthalene and its derivatives in the development of pathologies such as cancer.
Collapse
Affiliation(s)
- Adeline Clergé
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France.
| | | | - Claire Lopez-Piffet
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France
| | | | - Stéphanie Lagadu
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Isabelle Vaudorne
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Victor Babin
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France
| | - Thomas Cailly
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France; Normandy University, UNICAEN, IMOGERE, Caen, France; Department of Nuclear Medicine, CHU Côte de Nacre, Caen, France
| | - Raphaël Delépée
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|