1
|
Li A, Chen Y, Du M, Deng K, Cui X, Lin C, Tjakkes GHE, Zhuang X, Hu S. Healthy lifestyles ameliorate an increased risk of periodontitis associated with polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 364:143086. [PMID: 39146990 DOI: 10.1016/j.chemosphere.2024.143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The risk of chronic inflammatory diseases has been linked to exposure to polycyclic aromatic hydrocarbons (PAHs). However, limited data are available regarding their impact on periodontitis. This study aims to explore the association between PAHs and periodontitis while also evaluating the potential modifying effects of healthy lifestyles. We included 17,031 participants from the US National Health and Nutrition Examination Survey (NHANES, 2001-2004 and 2009-2014). A meta-analysis-based environment-wide association study (EWAS) was adopted to identify environmental chemicals for the mean probing pocket depth (PPD) and the mean attachment loss (AL). PAHs were further evaluated concerning the cross-sectional association with Mod/Sev periodontitis using multivariable logistic regression models. Moreover, healthy lifestyle scores were estimated to assess their modifying effect on the PAH-periodontitis association. EWAS analysis identified several urinary PAH metabolites as significant risk factors for the mean PPD and AL (false discovery rate <0.05, Q > 0.05). Periodontitis severity was positively associated with eight individual and total PAH concentrations. Stratifying the participants in terms of healthy lifestyle scores did not reveal any association in the healthy group. Moreover, the association weakened in never-smokers and individuals with sufficient physical activity and normal weight. PAH exposure was a risk factor for periodontitis. A healthier lifestyle was observed to offset the risk potentials of PAHs for periodontitis. Smoking cessation, physical activity, and weight loss might be recommended as a healthy lifestyle strategy for ameliorating PAH-related periodontitis.
Collapse
Affiliation(s)
- An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China; Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Yuntao Chen
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Mi Du
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Geerten-Has E Tjakkes
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shixian Hu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Gastroenterology and Hepatology, UMCG, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Rahman SM, Malin Igra A, Essig JY, Ekström EC, Dreij K, Trask M, Lindh C, Arifeen SE, Rahman A, Krais AM, Kippler M. Polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy and child anthropometry from birth to 10 years of age: Sex-specific evidence from a cohort study in rural Bangladesh. ENVIRONMENTAL RESEARCH 2023; 227:115787. [PMID: 36997043 DOI: 10.1016/j.envres.2023.115787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have endocrine disrupting properties and they cross the placental barrier, but studies on gestational exposure and child anthropometry are inconclusive. We aimed to elucidate the impact of early gestational PAH exposure on anthropometry from birth to 10 years of age in 1295 mother-child pairs from a nested sub-cohort of the MINIMat trial in Bangladesh. Several PAH metabolites [1-hydroxyphenanthrene (1-OH-Phe), Σ2-,3-hydroxyphenanthrene (Σ2-,3-OH-Phe), 4-hydroxyphenanthrene (4-OH-Phe), 1-hydroxypyrene (1-OH-Pyr), Σ2-,3-hydroxyfluorene (Σ2-,3-OH-Flu)] were quantified in spot urine collected around gestational week 8 using LC-MS/MS. Child weight and height were measured at 19 occasions from birth to 10 years. Multivariable-adjusted regression models were used to assess associations of maternal PAH metabolites (log2-transformed) with child anthropometry. The median concentration of 1-OH-Phe, Σ2-,3-OH-Phe, 4-OH-Phe, 1-OH-Pyr and Σ2-,3-OH-Flu was 1.5, 1.9, 0.14, 2.5, and 2.0 ng/mL, respectively. All maternal urinary PAH metabolites were positively associated with newborn weight and length and all associations were more pronounced in boys than in girls (p interaction for all <0.14). In boys, the strongest associations were observed with Σ2-,3-OH-Phe and Σ2-,3-OH-Flu for which each doubling increased mean birth weight by 41 g (95% CI: 13; 69 and 12; 70) and length by 0.23 cm (0.075; 0.39) and 0.21 cm (0.045; 0.37), respectively. Maternal urinary PAH metabolites were not associated with child anthropometry at 10 years. In longitudinal analysis, however, maternal urinary PAH metabolites were positively associated with boys' weight-for-age (WAZ) and height-for-age Z-scores (HAZ) from birth to 10 years, but only the association of 4-OH-Phe with HAZ was significant (B: 0.080 Z-scores; 95% CI 0.013, 0.15). No associations were observed with girls' WAZ or HAZ. In conclusion, gestational PAH exposure was positively associated with fetal and early childhood growth, especially in boys. Further studies are needed to confirm causality and to explore long-term health effects.
Collapse
Affiliation(s)
- Syed Moshfiqur Rahman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Julie Y Essig
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mercedes Trask
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anisur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Jain RB. Associations between concentrations of serum α-klotho and selected urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons: data for US adults aged 40-79 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33298-33306. [PMID: 36474043 DOI: 10.1007/s11356-022-24565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
For the first time, the associations between urinary concentrations of oxidant polycyclic aromatic hydrocarbon (PAH) metabolites and serum concentrations of anti-oxidant α-klotho were estimated for US adults aged 40-79 years. Multivariate regression models with α-klotho as dependent variable and one of the urinary metabolite of PAH as independent variables were fitted. In the absence of albuminuria and normal (eGFR > 90 mL/min/1.73 m2) kidney function, 10% increases in concentrations of 2-hydroxynaphthalene, 9-hydroxyfluorene, and ∑PAH were associated with 0.25%, 0.32%, and 0.19% decreases in serum α-klotho concentrations. In the absence of albuminuria and near normal (60 < = eGFR < 90 mL/min/1.73 m2) kidney function, 10% increases in concentrations of 1-hydroxynaphthalene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, and ∑PAH were associated with 0.17%, 0.38%, 0.34%, and 0.18% decreases in serum α-klotho concentrations. To what degree, these mild decreases in α-klotho are a matter of concern, is a subject ripe for discussion and additional investigations. When kidney function was normal or near normal but albuminuria was present, the associations between α-klotho and different metabolites of PAH were, more or less, randomly positive or negative and none reached statistical significance. To conclude, exposure to polycyclic aromatic hydrocarbons may result in reduced concentrations of α-klotho, an antiaging protein.
Collapse
|
4
|
Tabatabaei Z, Shamsedini N, Mohammadpour A, Baghapour MA, Hoseini M. Exposure assessment of children living in homes with hookah smoking parents to polycyclic aromatic hydrocarbons: urinary level, exposure predictors, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68667-68679. [PMID: 35543784 PMCID: PMC9091547 DOI: 10.1007/s11356-022-20589-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Children are extremely liable to indoor air pollutants as their physiology and a few metabolic pathways are different from those of adults. The present cross-sectional study aimed to assess exposure of children living with parents who use hookah tobacco smoke to polycyclic aromatic hydrocarbons (PAHs) using a biomonitoring approach. The study was conducted on 25 children (7-13 years of age) exposed to hookah smoke at home and 25 unexposed age-matched children. Urinary levels of five metabolites of PAHs were quantified via headspace gas chromatography-mass spectrometry (GC-MS). Urinary malondialdehyde (MDA) was measured, as well. Information regarding the sociodemographic and lifestyle conditions was collected through interviews using managed questionnaires. The urinary 1-OH-NaP and 9-OH-Phe concentrations were respectively 1.7- and 4.6-folds higher in the case samples compared to the control group (p < 0.05). In addition, urinary MDA levels were 1.4 times higher in the exposed children than in the unexposed group, but the difference was not statistically significant (p > 0.05). Increasing the consumption of grilled and meat food in the diet increased the participants' urinary 2-OH-Flu and 1-OH-Pyr levels, respectively. Moreover, sleeping in the living room instead of the bedroom at night was a significant predictor of high 1-OH-NaP and 2-OH-NaP concentrations in the children's urine. Overall, the findings confirmed that children living in their homes with hookah-smoking parents were significantly exposed to naphthalene and phenanthrene. Hence, implementing protective measures is critical to reduce the exposure of this group of children.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Shamsedini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Amin Mohammadpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Tabatabaei Z, Hoseini M, Fararooei M, Shamsedini N, Baghapour MA. Biomonitoring of BTEX in primary school children exposed to hookah smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69008-69021. [PMID: 35554839 PMCID: PMC9100313 DOI: 10.1007/s11356-022-19882-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 05/16/2023]
Abstract
Hookah smoking is one of the major indoor sources of benzene, toluene, ethylbenzene, and xylenes (BTEX). This study aimed to investigate the potential exposure to BTEX among primary school children, particularly those exposed to hookah smoke. This cross-sectional study was conducted in Khesht, one of the southwestern cities in Iran, in mid-June 2020. Totally, 50 primary school children exposed to hookah smoke were chosen as the case group and 50 primary school children were selected as the control group. Urinary un-metabolized BTEX was measured by a headspace gas chromatography mass spectrometry (GC-MS). Additionally, a detailed questionnaire was used to gather data and information from the students' parents. The mean levels of urinary benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene were 1.44, 5.87, 2.49, 6.93, and 7.17 μg/L, respectively in the exposed children. Urinary BTEX was 3.93-folds higher in the case group than in the controls (p<0.05). Household cleaning products, the floor on which the house was located, children's sleeping place, and playing outdoors were found to be important factors in predicting urinary BTEX levels. Overall, it was found necessary to avoid indoor smoking to prevent the emission of BTEX compounds via exhaled mainstream smoke and to protect vulnerable non-smokers, especially children, from exposure to second-hand and third-hand smoke.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Department of Environment Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararooei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Shamsedini
- Department of Environment Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hoseini M, Fararouei M, Bahrany S, Roosta S. Health risk assessment of polycyclic aromatic hydrocarbons in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. Sci Rep 2022; 12:8254. [PMID: 35585178 PMCID: PMC9117185 DOI: 10.1038/s41598-022-12040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments, posing serious environmental risks. The present study aimed to investigate the concentrations of urinary PAHs and their health effects in individuals living near restaurants via a health risk assessment analysis. This cross-sectional study was performed on 57 people living near restaurants and 30 individuals as the control group. Five urinary metabolites of PAHs were monitored. In order to evaluate the effects of the urinary metabolites of PAHs on Malondialdehyde (MDA) concentration, Total Anti-oxidation Capacity (TAC) in urine samples, and C-Reactive Protein (CRP) in serum samples, regression model was used by considering the effects of the possible confounding factors. Non-carcinogenic health risk was calculated, as well. The median concentration of urinary PAHs was 1196.70 and 627.54 ng/g creatinine in the people living near restaurants and the control group, respectively. Among the metabolites, the lowest and highest mean concentrations were related to 9-OHPhe and 1-OHP, respectively in the two study groups. Moreover, PAHs were significantly associated with MDA level and TAC (p < 0.05). Hazard Quotient (HQ) and Hazard Index (HI) were less than 1. Long-term studies are required to determine the actual health effects by identifying the sources of PAHs emission and to find ways to decrease the production of these compounds.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|