1
|
Hersh EW, Medina ARL, Whitton J. Dispersal and establishment traits provide a colonization advantage for a polyploid apomictic plant. AMERICAN JOURNAL OF BOTANY 2023; 110:e16149. [PMID: 36857315 DOI: 10.1002/ajb2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Apomictic plants (reproducing asexually through seed) often have larger ranges and occur at higher latitudes than closely related sexuals, a pattern known as geographical parthenogenesis (GP). Explanations for GP include differences in colonizing ability due to reproductive assurance and direct/indirect effects of polyploidy (most apomicts are polyploid) on ecological tolerances. While life history traits associated with dispersal and establishment also contribute to the potential for range expansion, few studies compare these traits in related apomicts and sexuals. METHODS We investigated differences in early life history traits between diploid-sexual and polyploid-apomictic Townsendia hookeri (Asteraceae), which displays a classic pattern of GP. Using lab and greenhouse experiments, we measured seed dispersal traits, germination success, and seedling size and survival in sexual and apomictic populations from across the range of the species. RESULTS While theory predicts that trade-offs between dispersal and establishment traits should be common, this was largely not the case in T. hookeri. Apomictic seeds had both lower terminal velocity (staying aloft longer when dropped) and higher germination success than sexual seeds. While there were no differences in seedling size between reproductive types, apomicts did, however, have slightly lower seedling survival than sexuals. CONCLUSIONS These differences in early life history traits, combined with reproductive assurance conferred by apomixis, suggest that apomicts achieve a greater range through advantages in their ability to both spread and establish.
Collapse
Affiliation(s)
- Evan Whitney Hersh
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Alberto Ruiz-Larrea Medina
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Jeannette Whitton
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada, V6T 1Z4
| |
Collapse
|
2
|
Borowy D, Swan CM. The effects of local filtering processes on the structure and functioning of native plant communities in experimental urban habitats. Ecol Evol 2022; 12:e9397. [PMID: 36262263 PMCID: PMC9575998 DOI: 10.1002/ece3.9397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Despite a growing literature-base devoted to document biodiversity patterns in cities, little is known about the processes that influence these patterns, and whether they are consistent over time. In particular, numerous studies have identified the capacity of cities to host a rich diversity of plant species. This trend, however, is driven primarily by introduced species, which comprise a large proportion of the urban species pool relative to natives. Using an experimental common garden study, we assessed the relative influence of local assembly processes (i.e., soil environmental filtering and competition from spontaneous urban species) on the taxonomic and functional diversity of native plant communities sampled over four seasons in 2016-2018. Taxonomic and functional diversity exhibited different responses to local processes, supporting the general conclusion that species- and trait-based measures of biodiversity offer distinct insights into community assembly dynamics. Additionally, we found that neither soil nor competition from spontaneous urban species influenced taxonomic or functional composition of native species. Functional composition, however, did shift strongly over time and was driven by community-weighted mean differences in both measured traits (maximum height, Hmax; specific leaf area, SLA; leaf chlorophyll a fluorescence, Chl a) and the relative proportions of different functional groups (legumes, annual and biennial-perennial species, C4 grasses, and forbs). By contrast, taxonomic composition only diverged between early and late seasons. Overall, our results indicate that native species are not only capable of establishing and persisting in vacant urban habitats, they can functionally respond to local filtering pressures over time. This suggests that regional dispersal limitation may be a primary factor limiting native species in urban environments. Thus, future regreening and management plans should focus on enhancing the dispersal potential of native plant species in urban environments, in order to achieve set goals for increasing native species diversity and associated ecosystem services in cities.
Collapse
Affiliation(s)
- Dorothy Borowy
- Geography and Environmental Systems DepartmentUniversity of MarylandBaltimoreMarylandUSA
| | - Christopher M. Swan
- Geography and Environmental Systems DepartmentUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
3
|
Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS, Jones LR, Lichti NI, Lustenhouwer N, Schreiber SJ, Strickland C, Sullivan LL, Cavazos BR, Giladi I, Hastings A, Holbrook KM, Jongejans E, Kogan O, Montaño-Centellas F, Rudolph J, Rogers HS, Zwolak R, Schupp EW. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AOB PLANTS 2019; 11:plz016. [PMID: 31346404 PMCID: PMC6644487 DOI: 10.1093/aobpla/plz016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
Collapse
Affiliation(s)
- Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Center for Latin American Studies, University of Florida, Gainsville, FL, USA
| | | | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Christopher Strickland
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Eelke Jongejans
- Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Javiera Rudolph
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
4
|
Johnson JS, Cantrell RS, Cosner C, Hartig F, Hastings A, Rogers HS, Schupp EW, Shea K, Teller BJ, Yu X, Zurell D, Pufal G. Rapid changes in seed dispersal traits may modify plant responses to global change. AOB PLANTS 2019; 11:plz020. [PMID: 31198528 PMCID: PMC6548345 DOI: 10.1093/aobpla/plz020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/26/2019] [Indexed: 05/22/2023]
Abstract
When climatic or environmental conditions change, plant populations must either adapt to these new conditions, or track their niche via seed dispersal. Adaptation of plants to different abiotic environments has mostly been discussed with respect to physiological and demographic parameters that allow local persistence. However, rapid modifications in response to changing environmental conditions can also affect seed dispersal, both via plant traits and via their dispersal agents. Studying such changes empirically is challenging, due to the high variability in dispersal success, resulting from environmental heterogeneity, and substantial phenotypic variability of dispersal-related traits of seeds and their dispersers. The exact mechanisms that drive rapid changes are often not well understood, but the ecological implications of these processes are essential determinants of dispersal success, and deserve more attention from ecologists, especially in the context of adaptation to global change. We outline the evidence for rapid changes in seed dispersal traits by discussing variability due to plasticity or genetics broadly, and describe the specific traits and biological systems in which variability in dispersal is being studied, before discussing some of the potential underlying mechanisms. We then address future research needs and propose a simulation model that incorporates phenotypic plasticity in seed dispersal. We close with a call to action and encourage ecologists and biologist to embrace the challenge of better understanding rapid changes in seed dispersal and their consequences for the reaction of plant populations to global change.
Collapse
Affiliation(s)
- Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, OR, USA
| | | | - Chris Cosner
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Behavior, Iowa State University, Ames, IA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Brittany J Teller
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Xiao Yu
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Damaris Zurell
- Department of Geography, Humboldt-University Berlin, Berlin, Germany
- Department of Land Change and Science, Swiss Federal Institute WSL, Birmensdorf, Switzerland
| | - Gesine Pufal
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Olivieri I, Tonnabel J, Ronce O, Mignot A. Why evolution matters for species conservation: perspectives from three case studies of plant metapopulations. Evol Appl 2015; 9:196-211. [PMID: 27087848 PMCID: PMC4780382 DOI: 10.1111/eva.12336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/30/2015] [Indexed: 01/16/2023] Open
Abstract
We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self‐compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.
Collapse
Affiliation(s)
- Isabelle Olivieri
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| | - Jeanne Tonnabel
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France; Department of Ecology and Evolution Le Biophore UNIL-SORGE University of Lausanne Lausanne Switzerland
| | - Ophélie Ronce
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| | - Agnès Mignot
- Institut des Sciences de l'Evolution Université Montpellier CNRS IRD EPHE CC65 Place Eugène Bataillon, 34095, Montpellier cedex 5 France
| |
Collapse
|
6
|
Staehlin BM, Fant JB. Climate Change Impacts on Seedling Establishment for a Threatened Endemic Thistle, Cirsium pitcheri. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/0003-0031-173.1.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
The influence of habitat conditions on the performance of two invasive, annuals — Impatiens glandulifera and Bidens frondosa. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0333-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Acker P, Robert A, Bourget R, Colas B. Heterogeneity of reproductive age increases the viability of semelparous populations. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Acker
- Laboratoire Ecologie, Systématique et Evolution (ESE); Université Paris-Sud 11; UMR 8079 UPS-CNRS-AgroParisTech; Faculté des Sciences d'Orsay; Bât. 360 91405 Orsay Cedex France
| | - Alexandre Robert
- Muséum National d'Histoire Naturelle; UMR 7204 MNHN-CNRS-UPMC; 55 rue Buffon 75005 Paris France
| | - Romain Bourget
- LAREMA; Département de Mathématiques; Université d'Angers; 2, Bd Lavoisier 49045 Angers Cedex 01 France
- IRHS (INRA, Université d'Angers, Agrocampus Ouest); SFR QUASAV; rue G. Morel 49071 Beaucouzé France
| | - Bruno Colas
- Laboratoire Ecologie, Systématique et Evolution (ESE); Université Paris-Sud 11; UMR 8079 UPS-CNRS-AgroParisTech; Faculté des Sciences d'Orsay; Bât. 360 91405 Orsay Cedex France
- Université Paris Diderot; Sorbonne Paris Cité France
| |
Collapse
|
9
|
Monty A, Mahy G. Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae). OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.17769.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Riba M, Mayol M, Giles BE, Ronce O, Imbert E, Van Der Velde M, Chauvet S, Ericson L, Bijlsma R, Vosman B, Smulders MJM, Olivieri I. Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats? THE NEW PHYTOLOGIST 2009; 183:667-677. [PMID: 19659587 DOI: 10.1111/j.1469-8137.2009.02948.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.
Collapse
Affiliation(s)
- Miquel Riba
- CREAF (Center for Ecological Research and Forestry Applications), Autonomous University of Barcelona, ES-08193 Bellaterra, Spain
| | - Maria Mayol
- CREAF (Center for Ecological Research and Forestry Applications), Autonomous University of Barcelona, ES-08193 Bellaterra, Spain
| | - Barbara E Giles
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Ophélie Ronce
- Université Montpellier 2, Institut des Sciences de l'Evolution, UMR CNRS 5554, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Eric Imbert
- Université Montpellier 2, Institut des Sciences de l'Evolution, UMR CNRS 5554, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Marco Van Der Velde
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands
| | - Stéphanie Chauvet
- Université Montpellier 2, Institut des Sciences de l'Evolution, UMR CNRS 5554, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
- Association Tela Botanica, Institut de Botanique, 163 Rue Auguste Broussonnet, F-34090 Montpellier, France
| | - Lars Ericson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - R Bijlsma
- Population and Conservation Genetics, Theoretical Biology, University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands
| | - Ben Vosman
- Plant Research International, Wageningen UR, PO Box 16, NL-6700 AA Wageningen, The Netherlands
| | - M J M Smulders
- Plant Research International, Wageningen UR, PO Box 16, NL-6700 AA Wageningen, The Netherlands
| | - Isabelle Olivieri
- Université Montpellier 2, Institut des Sciences de l'Evolution, UMR CNRS 5554, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| |
Collapse
|
11
|
Colas B, Kirchner F, Riba M, Olivieri I, Mignot A, Imbert E, Beltrame C, Carbonell D, Fréville H. Restoration demography: a 10-year demographic comparison between introduced and natural populations of endemicCentaurea corymbosa(Asteraceae). J Appl Ecol 2008. [DOI: 10.1111/j.1365-2664.2008.01536.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
KIRCHNER FLORIAN, ROBERT ALEXANDRE, COLAS BRUNO. Modelling the dynamics of introduced populations in the narrow-endemicCentaurea corymbosa: a demo-genetic integration. J Appl Ecol 2006. [DOI: 10.1111/j.1365-2664.2006.01179.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|